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ABSTRACT The performance of facial expression recognition (FER) tends to deteriorate due to high
intraclass variations and high interclass similarities. To address this problem, an expression recognition
model based on a joint partial image and deep metric learning method (PI&DML) is proposed. First,
we propose cropping the active units (AU) that are most closely related to the expression to generate a partial
image for feature extraction, which is conducive to mitigating the negative impact of the abovementioned
problems to some extent. Second, a novel expression metric loss function (EMLF) is suggested to enhance
the intraclass similarities and interclass variations. Finally, superior performance is achieved by jointly
optimizing the expression metric loss and classification loss. As demonstrated by the visualization results,
the proposed EMLF is effective at increasing the distance between various expressions and reducing
the distance between the same expressions. The evaluations on three public expression databases have
demonstrated that our method is capable of achieving better results than the state-of-the-art methods.

INDEX TERMS Facial expression recognition, deep metric learning, metric loss function, partial images,
jointly optimizing, high intraclass variations, high interclass similarities.

I. INTRODUCTION
Afacial expression is considered a major manifestation of
human emotion. Therefore, if a machine is capable of accu-
rately recognizing the facial expressions of human beings,
it can improve the outcomes of human-computer interac-
tion (HCI). FER has attracted increasing attention due to
its widespread applications in HCI systems such as sociable
robots, medical treatments, driver fatigue surveillance and so
on [1]. The generic FER framework applied in most works
can be split into three major parts, which are face detec-
tion, facial feature extraction and classification. Among them,
the extraction of the most discriminative facial features is
viewed as a significant factor in determining model perfor-
mance, and these features can be roughly classed into two cat-
egories, which are human designed and learned features [2].

The human-crafted features primarily refer to local fea-
tures, such as the SIFT [3], HOG [4], LBP [5], [6], LPQ [7],
etc. In addition to the abovementioned methods used to
extract the 2D features of static images, focusing on the
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temporal and spatial information in an image sequence
method is also proposed, such as using spatiotemporal covari-
ance descriptors (Cov3D) [8], the temporal modeling of
the shape (TMS) [9], expressionlets on a spatiotemporal
manifold (STM-ExpLet) [10], etc. The FER method based
on human-crafted features requires additional classifiers for
classification, such as K-NN classifier [11], the SVM classi-
fier [12], and the Hidden Markov model [13]. Although this
method has been applied in more cases, its features tend to
be relatively singular, and they are susceptible to disruptions
caused by head pose and illumination changes [14].

The learned features mainly refer to the features extracted
using deep learning methods [15]–[18]. In addition to the
features being diversified and robust to illumination changes
and different head poses, the methods have also achieved
remarkable results in recent years. Khorrami et al. performed
emotion recognition on video data using both CNNs and
RNNs [19]. The CNN is employed to extract the image
features, and the RNN is used to express temporal informa-
tion changes. Yang et al. suggested a de-expression residual
learning method based on the cGAN [20]. Reference [21]
took the SIFT features of landmark points as input data and
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applied them to a well designed DNN model to extract the
optimal discriminative features for expression classification.

Despite the excellent performances achieved by these
works in some datasets, they rarely focus on issues such
as high intraclass variations and high interclass similarities,
which could be caused by diverse head poses, illuminations,
occlusions, and personal attributes (skin tone, age, gender,
ethnicity, etc.), and this remains a challenge to applying the
FER in the real-world that needs addressing. As illustrated
in Fig.1.(a), there are high intraclass variations and high inter-
class similarities due to different personal attributes or illu-
minations, and the learned features in the same class are
scattered, which makes it difficult to perform classification
in an embedded space. To solve this problem, we combined
partial images and the expression metric loss function to
reduce the intraclass variations and enhance the interclass
variations.

FIGURE 1. An illustration of features learned by (a) most existing
methods (b) the proposed PI&DML model (Note: The length of the green
arrow represents the distance between the same expressions, and the
length of the red arrow represents the distance between different
expressions. The greater the distance, the smaller the similarity.)

In this paper, distinct from previous works, we have not
only researched extracting discriminative features based on
the proposed metric loss function, but also explored the
importance of partial images in determining FER perfor-
mance. First, we crop the action units that are most relevant to
the expression changes to generate a partial image, which is
effective at addressing the abovementioned problems result-
ing from different illuminations, occlusions and other diverse
factors in the overall image. Through experiments, we found
that partial images can not only greatly reduce the dimensions
of the input data, but also achieve better performance than
the original image. Second, we apply the hard sample mining
strategy to identify the hardest positive and negative sample
pairs in the embedded space, which involves a relatively small
amount of computations when compared to the previous
metric-based learning. Third, we propose a novel expression
metric loss function (EMLF) that is capable of achieving
fast convergence to increase not only the similarity between
positive sample pairs but also the variations between nega-
tive sample pairs, as shown in Fig.1.(b). Finally, by jointly
optimizing the expression metric loss and classification loss
in a unified framework, an improved classification accuracy
compared to the state-of-the-art methods is achieved. Further-
more, we found that the joint optimization of the proposed

metric loss and classification loss can use fewer training
epoches to achieve faster convergence than a single optimized
classification loss.

Overall, the contributions of this work are four-fold. 1) The
PI&DML model is proposed which aims to learn discrim-
inative representations with lower intraclass variations and
higher interclass distances. 2) A method for constructing par-
tial images is proposed, which is conducive to mitigating the
negative impacts of the abovementioned problems to some
extent, and can greatly reduce the dimension of the input data
and amount of calculations. 3) A novel expression metric loss
function (EMLF) is suggested to enhance the intraclass sim-
ilarities and interclass variations. 4) Superior performance is
achieved by jointly optimizing the expression metric loss and
classification loss. The evaluations on three public expression
databases have demonstrated that our method is capable of
achieving better results than the state-of-the-art methods.

The rest of the paper is organised as follows. Section 2
briefly reviews the related topics. Section 3 outlines the meth-
ods proposed in this paper, including the method of construct-
ing partial images, the hard sample mining strategy and the
proposed expression metric loss function. The experimental
results compared with the state-of-the-art methods are given
in Section 4. Finally, Section 5 presents a brief conclusion to
this paper.

II. RELATED WORK
As mentioned in the introduction, expression recognition
methods can be grouped into two categories: still image and
sequence-based approaches. Since still image methods are
more generic and can also be used to identify expressions
from video sequences, we focus on methods for recognizing
expressions using still images. Among these, deep learning
methods based on convolutional neural network (CNN) archi-
tectures have recently shown excellent performance on FER
tasks. Despite its popularity, first, the features learned using
this methodmay generate similar representations for different
expressions, especially for the same person or the same image
brightness. Second, CNNs may generate high variations for
the same expression, especially for different people and
images with different brightnesses [2]. The emerging deep
metric learning methods have demonstrated strong effec-
tiveness in vision tasks with high intraclass variations and
high interclass similarities, such as image retrieval [39], [40],
person reidentification [41], [42], etc., which suggests that
deep metric learning can also solve the problems in FER.

Conventional metric learning methods usually learn a
linear embedding of the data using the Mahalanobis distance
[43], [44], but this is not enough to characterize the nonlinear
relationships between sample pairs, which are quite common
in real-world applications. Although the kernel trick can be
adopted to address this limitation, the expression power of
kernel functions is often not flexible enough to capture the
nonlinearity in the data [45]. Inspired by deep learning, which
can effectively solve the nonlinearity problem of samples,
deep metric learning has been proposed to learn nonlinear
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mappings [46]–[48]. For example, Hu et al. proposed a new
discriminative deep metric leaning method using deep neural
networks for face verification [46], and Wang et al. proposed
an angular loss for learning better similarity metrics [49].
The multi-similarity loss under the general pair weighting
framework was proposed in [28].

For expression recognition, most recently, the island loss
function based on the center loss [22] was proposed to
reduce the intraclass variations while enlarging the inter-
class difference [2], which has led to satisfactory perfor-
mance. Nevertheless, this method is more sensitive to noise
samples, and there more hyperparameters that need to be
determined. In addition, there are some other research works
based on metric learning that have produced positive results
[14], [23], [24]. However, a majority of them necessitate
the selection of sample pairs and the labeling of identity
information in advance, which requires much of extra work.

III. APPROACH
In this section, we will start by presenting the overall frame-
work for the proposedmodel, and then introduce the approach
for constructing the partial image, the hard sample mining
strategy and the proposed EMLF.

A. FRAMEWORK
The overall framework of the proposed model is illustrated
in Fig.2. First, the mini-batch samples are cropped to generate
partial images, which will be sent to the CNN for feature
extraction. Then, the hardest positive and negative sample
pairs are mined by applying hard sample mining technology
in the embedded space for the calculation of the expression
loss using the proposed EMLF. Third, the classification loss is
calculated at the last fully connected layer. Finally, the overall

network is optimized by minimizing the sum of the metric
loss and classification loss expressions.

The specific architecture of our proposed model is inspired
by the VGG block [50], which consists of a sequence of
convolutional layers, followed by a max pooling layer for
spatial down sampling. This allows the depth model to be
constructed by reusing simple basic blocks. By carefully
designing the network parameters, we also found that it is
more efficient to use several deep and narrow convolution (i.e.
3× 3) layers than a few wide convolution layers. In terms of
specific structural parameters, our PI&DML model for both
datasets is I(60×30)-C(3,32)-C(3,32)-P(2)-C(3,64)-C(3,64)-
P(2)-C(3,128)-C(3,128)-P(2)-FC(512)-FC(256)-FC(128)-
FC(n_classes), where I(60×30) means the size of the
partial image, and C(3,32) is a convolutional layer with
32 3×3 filters. FC(512) refers to a fully connected layer,
with 512 nodes. Additionally, FC(n_classes) is the softmax
layer with n_classes outputs, where n_classes represents the
number of expression classes for each dataset. P(2) means a
2×2 max pooling layer. The stride of each layer was 1 with
the exception of the pooling layer. The value of the stride
for each pooling layer was set to 2. Convolutional layers are
used to extract the features of expressions, using the hard
sample mining strategy and calculating the metric loss in the
penultimate layer of the network, more features of the sample
are retained, so that the similarity information between the
samples can be fully utilized.

B. METHOD OF CONSTRUCTING PARTIAL IMAGE
Human expressions are expressed by the movements of facial
components, such as eyes, the mouth and so on. Inspired by
this, we select the action units (AU) [25] (eye, nose, mouse)
that are considered to be most relevant to the expression
to generate a partial image for extracting the discriminative

FIGURE 2. The architecture of the proposed PI&DML model. (Note: JEMLF represents expression metric loss, JCLASS represents
classification loss and n_classes indicates the number of types of expressions. For the second layer of convolution, 64× 34 represents the
size of the input data, and 32 is the number of convolution kernels. Similarly, network parameters of other layers can be obtained.)
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FIGURE 3. Partial Image (a) the steps of forming a partial image (b) the display of partial images. The expressions of each line from top to bottom are
angry and happy.

features. The steps of forming a partial image are shown
in Fig.3.(a), and an example of a partial image is shown
in Fig.3.(b). It is clearly indicated that partial images mitigate
the influence of personal attributes, illumination and occlu-
sion when compared with the corresponding original images
from the CK+ dataset [32] in Fig.4.

FIGURE 4. Original images selected from CK+ dataset, the expressions of
each line from top to bottom are angry and happy.

Formally, we apply the face detection method from [26]
and the landmark detection method from [27] to obtain
face matrix A and the landmark coordinates (xi, yi), i =
0, 1, · · · 67. After this step, we can obtain the boundary
point coordinates of each AU. According to the boundary
point coordinates, each AU can be detected from the original
image, and the composition of each AU is shown in (1).

Eye = A [y37 − τ1 : y2 + τ1, x1 − τ2 : x2 + τ2]

Nose = A [y28 : y33, x31 − τ1 : x35 + τ1]

Mouse = A [y50 − τ2 : y57 + τ1, x48 − τ2 : x54 + τ2] (1)

where τ1 and τ2 represent expanded range at the boundary
point of each AU. In order to generate a partial image, each
AU needs to be resized to a fixed size S, and the composition
of the partial image is indicated in (2), where C denotes the
images that are spliced together.

It is known from (1) and (2) that the partial image data
are composed of only three parts with respect to the original
image data A, which greatly reduces the dimensions of the
input data, thereby reducing the amount of calculations.

Pimage = C{S(Eye), S(Nose), S(Mouth)} (2)

C. HARD SAMPLE MINING STRATEGY
In the embedded space, let xi ∈ Rd be the ith feature of the
sample; then, we can obtain a feature matrix X ∈ Rm×d for
the mini-batch samples, wherem indicates the batch size. The
similarity between two samples is defined as Sij =< xi, xj >,

where < ·, · > denotes the dot product. Then we can obtain
an m × m similarity matrix S, the element of which at (i, j)
is Sij for the mini-batch samples. Our aim is to enhance the
similarity between the samples of the same classes while
reducing the similarity between different classes of samples.
It is a simple and easy way to identify samples of the same
kind with low similarity (hardest positive pairs) to the cur-
rent sample (anchor) and, to increase their similarity to the
anchor, or to identify different kinds of samples (hardest
negative pairs) with higher similarity to the anchor, and to
reduce its similarity to the anchor. We apply the hard mining
strategy method from [28] to identify the hardest positive
pairs and negative pairs as illustrated in Fig.5.

FIGURE 5. Illustration for strategy of hard sample mining. (a) hardest
positive pairs mining method (b) hardest negative pairs mining method.
(Note: Green dots represent positive samples and blue dots represent
samples of different classes than positive samples. The distance between
the points represents the degree of similarity, and the further away the
samples are, the smaller the similarity is.)

Formally, if xi is an anchor, the hardest negative pair
{
xi, xj

}
is selected. If Sij satisfies the condition:

S−ij > min
yk=yi

Sik − ε (3)

where ε indicates a given margin, and yk denotes the label of
the kth sample. Also, hardest positive pair

{
xi, xj

}
needs to be

met:

S+ij > max
yk 6=yi

Sik + ε (4)

D. EXPRESSION METRIC LOSS FUNCTION
Distinct from the previous works such as the contrastive
loss [29], triplet loss [30], lifted structure loss [31], etc.,
a new pair-based expression metric loss function (EMLF) is
proposed that removes the need for hyperparameters and is
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capable of achieving faster convergence rates. Our EMLF is
presented as follows:

JP_Loss = log
∑
k∈Pi

(−Sik+ +
√
(−Sik+)

2
+ 1) (5)

JN_Loss = log
∑
k∈Ni

(Sik− +
√
(Sik−)

2
+ 1) (6)

JEMLF =
1
m

∑
i

(JP_Loss + JN_Loss) (7)

where Pi and Ni represent the hardest positive pairs and hard-
est negative pairs, respectively. JP_Loss and JN_Loss denote the
hardest positive pairs loss and the hardest negative pairs loss,
respectively. It can be seen from (6) that reducing this loss
value is equivalent to reducing the similarity between the
hardest negative sample pairs, and the same reason can be
analyzed in (5).

The softmax loss is used to calculate the classification loss,
and the L2-Norm is applied to prevent overfitting. The total
loss is defined as follows:

Jtotal = −
1
N

∑
i

yi log(
efyi∑
j e
fj
)+ JEMLF+λ

∑
w

‖W‖2 (8)

IV. EXPERIMENTS
In this section, to demonstrate the effectiveness of the pro-
posed method for facial expression recognition, experiments
are conducted on the CK+ [32], Oulu-CASIA [33] and
MMI [34] public facial expression databases to evaluate
the proposed model. Furthermore, in order to demonstrate
the effectiveness of the proposed partial image method and
EMLF, the PI&DML model is compared with three baseline
CNNs, which have same network structure as the PI&DML.
They are the following: (1) Original images (the images of
the detected face) + Softmax loss + EMLF (OSE), (2) Par-
tial images + Softmax loss (PS), and (3) Partial images +
Softmax loss + EMLF (PSE).

A. EXPERIMENTAL DATASETS
CK+ dataset: it contains a total of 327 image sequences
collected from 118 subjects, each of which is labeled as one
of 7 expressions, i.e. anger, contempt, disgust, fear, happi-
ness, sadness and surprise. Each sequence starts with a neutral
face, and reaches the peak in the last frame. Similar to other
works [2], [14], the last three frames of each sequence are
selected to generate 981 images for the experimental dataset.

Oulu-CASIA dataset: it contains totally 480 image
sequences collected from 80 subjects, each of which contains
one of 6 expressions, i.e. anger, disgust, fear, happiness,
sadness and surprise. Similar to the CK+ database, each
sequence starts with a neutral facial expression and ends with
the facial expression of each emotion. Following the previous
works [2], [14], [16], the last three frames are collected as
the peak frames of the labeled expression for each sequence.
Thus, the Oulu-CASIA dataset contains 1,440 images for our
experiments.

MMI dataset: The MMI database consists of 236 image
sequences collected from 31 subjects, each sequence is
labeled as one of 6 basic expressions, i.e. anger, disgust,
fear, happiness, sadness, and surprise, starting from a neutral
expression, through a peak phase in the middle, and back to a
neutral face at the end. Similar to other works [2], [14], [20],
we selected 208 sequences captured in frontal view and three
frames in the middle of each image sequence are collected as
peak frames associated with the provided label. Hence, there
are a total of 624 images used in our experiments.

Preprocessing: The image resolutions of the CK+ dataset,
Oulu-CASIA dataset and MMI dataset are 640×490,
320×320, and 186×185, respectively. In the selection of the
size of the partial image, we observed the size of all partial
images and took an equilibrium value (60×30) from them as
the size of the final partial image, this equilibrium value will
not cause obvious distortion of all partial images, and it can
reduce the dimensions of the input data compared to the initial
size of the images of the dataset. Face alignment is performed
in works [2], [14], [19] and [20]; and in [2] and [18], they
adjusted the contrast of the image. However, the above two
operations are not performed on the images here and excellent
results are achieved in our work, suggesting that the partial
image is effective.

Training/testing strategy: To demonstrate the effectiveness
of the proposed method, similar to other works [2], [20],
a 10-fold subject-independent cross-validation is adopted for
the evaluations conducted on all datasets, where each dataset
is further split into 10 subsets. For each run, the data from
8 subsets are used for training and those from the remaining
2 subsets are used for testing. The results are reported as
the average of the 10 runs. The training set and the test set
cannot have the same kind of expression of the same person
at the same time during each run, because if the same kind
of expression of the same person appears in both sets at the
same time, the model is likely to learn to determine whether
is the same person or not in those images, not to determine
whether is the same expression.

B. PARAMETERS SETTINGS
In (1), we empirically set τ1 = 25, τ2 = 9, and S = (40, 25)
for both datasets. In (3) and (4), ε is set to 0.1. For the metric
space learning and classification, the Adam [35] optimizer
with a batch size of 8 and a learning rate of 0.0001 are used
to train the proposed model, the weights of the convolutional
layers and fully connected layers were both initialized ran-
domly using the ‘‘xaiver’’ procedure [51], and the number of
training epochs is set to 200.

C. EXPERIMENTS RESULTS
Results on the CK+ dataset: The mean accuracy of the
10-fold cross validation is indicated in Table 1. As revealed
by the last three results, better recognition accuracy can
be achieved by jointly optimizing the expression metric
loss and soft loss compared to a single use soft loss,
which shows that the proposed metric loss function plays a
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TABLE 1. Average accuracy on the CK+ database for seven expressions
classification.

positive role. Moreover, the recognition accuracy when using
partial images is higher than the accuracy of using the orig-
inal images, which shows that partial images can not only
greatly reduce the amount of calculations, but also help to
reduce the adverse effects caused by original images. Upon
their comparison, the proposed PI&DMLmodel outperforms
the human-crafted feature-based methods and deep learning
methods. Table 2 shows the confusion matrix of the PI&DML
model on the CK+ dataset, and it can be found that our
proposed method performs reasonably well at recognizing all
emotions.

TABLE 2. Confusion matrix of the PI&DML model for the CK+
database (%).

Results on the Oulu-CASIA dataset: Table 3 summarizes
the comparison results of the Oulu-CASIA dataset, and our
proposed method is indicated to improve the accuracy by 7%
compared to the current state of the art methods. In addition,
it can be clearly seen that the recognition accuracy is low

TABLE 3. Average accuracy on the OULU-CASIA database for six
expressions classification.

when experiments are performed on the original image, and it
is demonstrated that the partial image is capable of mitigating
the influences of the illumination, personal attributes and
other factors to some extent. The confusion matrix shown
in Table 4 indicates the results and demonstrates that all
emotions are accurately recognized.

TABLE 4. Confusion matrix of the PI&DML model for the OULU-CASIA
database (%).

Results on the MMI dataset: Since the MMI dataset con-
tains a small number of samples, it is not large enough to train
a deep model. Table 5 reports the average accuracy of 10 runs
on the MMI database for recognizing six expressions. It can
be clearly seen that the recognition accuracy of the proposed
PI&DML model is significantly better than those of all the
state-of-the-art methods. As shown in the confusion matrix
in Table 6, our algorithm was not successful enough for
the fear emotion. In particular, most of the fear emotions
were confused with surprise, which is the same as the results
of other works [2], [16], [20], but our model has a higher
recognition rate for other expressions.

TABLE 5. Average accuracy on the MMI database for six expressions
classification.

TABLE 6. Confusion matrix of the PI&DML model for the MMI
database (%).

D. VISUALIZATION RESULTS
To further illustrate the effectiveness of the proposed method,
we visualized the features learned by the OSE, PS and PSE
methods on the CK+ dataset, and these feature vectors are
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FIGURE 6. Visualization results on CK+ dataset. (a) Visualization of original input data. (b) Visualization of output features learned using the OSE
method. (c) Visualization of features learned using the PS method. (d) Visualization of features learned using the PSE method. The data points
were automatically grouped by PI&DML model.

visualized using the t-SNE [37], which provides a useful tool
for the visualization of the high dimension data. As shown
in Fig.6.(a), the input data were spread on a random basis,
and most overlap each other.

It can be seen from the comparison between Fig.6.(b) and
Fig.6.(d) that the classification effect of the partial images
is better than that of the original images when both the
classification loss and the proposed metric loss are used,
the distance between different classes is relatively large when
using partial images, and the features extracted from the
last fully connected layer of the proposed model were well
separated according to their label.

Comparing Fig.6.(c) with Fig.6.(d), it can be obtained that
the classification accuracy can be improved by using the pro-
posedmetric loss function, there is almost no overlap between
different classes, and the same classes of data can be well
clustered together. Therefore, our proposed method reduced
the distance between the same classes while increasing the
variations between different classes.

E. DISCUSSION ON THE COMPUTATIONAL COST
First, the method of constructing partial images does not
require a large amount of calculation, becausewe only add the
step of detecting human eyes, mouth, and nose organs based
on face detection, although adding this step slightly reduces
the speed of detection, this method simply concatenates the
detected partial image together without much calculation.
Second, because the partial image is much smaller than the
original image, the calculation amount of the model will be
reduced in the process of extracting image features. Finally,
hard sample mining strategy and metric learning technology
did increase the amount of calculation of the model, but by
reducing the batch size, the calculation has not increased
significantly. For example, in hard sample mining strategy,
the similarity matrix S = X · XT , where X ∈ Rbatchsize×256,
S ∈ Rbatchsize×batchsize, so the total number of calculations
required to obtain S are: 256× 256× batchsize× batchsize.
To reduce the amount of calculations, we choose a smaller
batch size of 8. Although the batch size is smaller, the exper-
iments results verify that a better convergence effect can be
achieved.

V. CONCLUSION
To address high intraclass variations and high interclass sim-
ilarities problems in FER, an expression recognition model

based on joint partial image and deep metric learning method
is proposed in this paper. First, partial image is beneficial
to reduce the above problem caused by personal attributes,
illuminations, occlusion and other factors to some extent.
Second, the proposed EMLF in combination with hard sam-
ple mining strategy is applied to learn the nonlinear metric
space. Finally, superior performance is achieved by jointly
optimizing expression metric loss and classification loss
when compared to the state-of-the-art methods on the CK+,
Oulu-CASIA and MMI databases.
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