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ABSTRACT Mobile edge computing (MEC) is proposed as a new paradigm to meet the ever-increasing
computation requirements, which is caused by the rapid growth of the Internet of Things (IoT) devices.
As a supplement to the terrestrial network, satellites can provide communication to terrestrial devices in
some harsh environments and natural disasters. Satellite edge computing is becoming an emerging topic and
technology. In this paper, a game-theoretic approach to the optimization of computation offloading strategy
in satellite edge computing is proposed. The system model for computation offloading in satellite edge
computing is established, considering the intermittent terrestrial-satellite communication caused by satellites
orbiting. We conduct a computation offloading game framework and compute the response time and energy
consumption of a task based on the queuing theory as metrics of optimizing performance. The existence
and uniqueness of the Nash equilibrium is theoretically proved, and an iterative algorithm is proposed to
find the Nash equilibrium. Simulation results validate the proposed algorithm and show that the game-based
offloading strategy can greatly reduce the average cost of a device.

INDEX TERMS Edge computing, game theory, Nash equilibrium, offloading strategy optimization, queuing
system.

I. INTRODUCTION
In recent years, relying on the construction of infrastructure
(such as the terrestrial Internet and mobile network) and the
popularization of smart devices, IoT technology has devel-
oped rapidly. According to the survey of Gartner Inc., it is
estimated that the total number of networked or connected
IoT devices in 2020 will be 20.8 billion [1]. Limited by
cost and technology, the terrestrial network covers only about
20% of the total land area and is mainly concentrated in
urban areas. For some harsh environments such as deserts,
forests, mountains, and oceans, the terrestrial network cannot
cover entirely. Besides, in case of natural disasters, such as
floods, earthquakes, tsunamis, etc., the terrestrial network is
vulnerable. With its extensive coverage and system robust-
ness, satellite communication systems can provide access
services for IoT devices in remote areas, realizing the ‘‘Inter-
net of Everything’’ in the real sense of the world. Satellites
have not only become an important part of the Internet of
Things, but also a powerful complement to future 5G/6G
communication [2]–[4].

The associate editor coordinating the review of this manuscript and
approving it for publication was Charith Perara.

The computing and energy resources of devices are usu-
ally limited. Thus, IoT devices need to rely on the cloud to
store and process data. However, cloud computing platforms
are often physically and logically distant from the terminal.
The proliferation of devices and associated data streams has
put significant pressure on the network. It becomes a bot-
tleneck of providing satisfactory quality of service (QoS).
MEC offers a new paradigm for a myriad of mission-critical
applications [5]. The core idea is to extend the capabilities of
the cloud to the network edge, closer to IoT devices, to reduce
data traffic and response latency. Comparing to cloud com-
puting, MEC has the advantage of significantly reducing
latency, avoiding congestion, and prolonging the battery life
of devices [6], [7]. Therefore, it has recently been widely used
in both industry and academia [8]–[10]. Recently, some stud-
ies have combined satellite with edge computing to deploy
MEC servers on satellites for lower latency andmore general-
purpose applications [11]–[15]. Satellite edge computing is
becoming an emerging topic and technology.

As one of the principal challenges of MEC, the computa-
tion offloading, i.e., the problem of transmitting computation
tasks from mobiles to MEC servers has been studied in vari-
ous application scenarios. When mobile devices aggressively
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and unrestrictedly offload their computation tasks to theMEC
server, it usually causes an enormous communication bur-
den and severe signal crosstalk to the network. Meanwhile,
it will overload the MEC server, and significantly increase
the overall task processing time. It will compromise the
benefits of computation offloading. Therefore, the strategy
of computation offloading needs to be optimized to obtain
better QoS. However, to the best of the author’s knowl-
edge, there has been no research on computation offloading
optimization in satellite edge computing. Different from the
fixation of base stations inMEC, satellites orbit and have high
dynamics, which leads to an intermittent terrestrial-satellite
communication.

In this work, we propose a game-theoretic approach to the
optimization of computation offloading strategy for terrestrial
devices in satellite edge computing scenarios. Our main con-
tributions are summarized as follows.
1) We establish the system model of computation offload-

ing in satellite edge computing. There are multiple
terrestrial devices located in the same area, where com-
putation tasks can be executed locally on the device or be
offloaded to satellites for execution. Unlike other MEC
scenarios, the intermittent terrestrial-satellite communi-
cation caused by satellite orbiting is considered in the
system model.

2) We formulate an offloading game model, in which each
device will selfishly choose the strategy that will mini-
mize its cost. The response time and energy consump-
tion of a task are computed based on the queuing theory.
They are the metrics of optimizing performance. The
existence and uniqueness of the Nash equilibrium is
theoretically proved.

3) We propose an iterative algorithm to search the Nash
equilibrium of the game. Simulation results validate the
theoretical analysis and the convergence of the algo-
rithm. The game-based offloading strategy can greatly
reduce the average cost of a device.

The remainder of this paper is organized as follows.
In Section II, a rapid overview of related work is illustrated.
Therefore, the systemmodel is established in Section III. The
computation offloading game formulation and the proof of
the existence and uniqueness of the Nash equilibrium are
presented in Section IV. An iterative algorithm to find the
Nash equilibrium is proposed in Section V. The simulation
results are presented and discussed in Section VI. Finally,
we conclude this work in Section VII.

II. RELATED WORKS
For all we know, there have been no researches on com-
putation offloading in satellite edge computing. Therefore,
we present some literature on optimizing the offloading strat-
egy in MEC. The relevant technologies described are helpful
for our research. For the most recent comprehensive survey,
readers can refer to [16]–[18].

According to the number of users, computation offloading
can be divided into two categories: single-user scenario and

multi-user scenario. In a single-user scenario, the offload-
ing strategy optimization problem is often converted into
an optimal programming problem. Wang et al. developed
a low-complexity adaptive offloading decision-transmission
scheduling scheme based on the Lyapunov optimization the-
ory for mobile devices, optimizing the average execution time
and average energy consumption of tasks [19]. Liu et al. used
the Markov decision process to develop a task offloading
strategy with minimum delay under power constraints and
proposed an effective one-dimensional search algorithm to
find the optimal task scheduling strategy. This strategy has
a shorter average execution delay than the baseline strat-
egy [20]. Mao et al. proposed a Lyapunov optimization-based
dynamic calculation offloading (LODCO) algorithm, which
can jointly determine the task offloading strategy, CPU calcu-
lation frequency, and mobile device transmit power. Through
the instantaneous auxiliary information, the optimal solution
is obtained through the bisection search, which reduces the
energy consumption of the device [21]. Zhang et al. pro-
posed an Energy-Efficient Computation Offloading (EECO)
scheme, which optimizes the offloading strategy and radio
resource allocation, and achieves minimum energy consump-
tion under delay constraints [22]. In general, for a single-
user scenario, researchers have focused on optimizing task
offloading strategies and radio resource allocation (such as
channel, spectrum, transmit power, etc.). The optimization
metrics are task latency and/or energy consumption.

In a multi-user scenario, computation offloading opti-
mization is often modeled as a game problem. Li estab-
lished the M/G/1 queuing model and the non-cooperative
game framework for the multi-user, non-cooperative compu-
tation offloading scenario. Through theoretical calculations,
the existence of the Nash equilibrium of the game is proved,
and a distributed algorithm is designed to find the equilib-
rium [23]. Cardellini et al. describe the optimal computation
offloading problem for non-cooperative users as a gener-
alized Nash equilibrium problem (GNEP) for the device-
edge-cloud three-tier architecture. The existence of the Nash
equilibrium is theoretically proved, and the characteristics
of equilibrium are illustrated by numerical examples [24].
Cao et al. demonstrated that the multi-user computing offload
problem is a potential game, and there is at least one pure
strategy Nash equilibrium. They proposed a fully distributed
computation offloading (FDCO) algorithm based on machine
learning technology, which can converge to purely strategic
Nash equilibrium without any information exchange [25].
Zheng et al. studied the multi-user computation offloading
problem in a dynamic environment and expressed the user’s
decision process as a stochastic game. They prove that the
stochastic game is equivalent to a weighted potential game
with at least one Nash equilibrium, and propose a multi-agent
stochastic learning algorithm to search the Nash equilibrium
with a guaranteed convergence rate [26]. In general, the game
problem in multi-user scenarios focuses on the establishment
of the game model, the selection of optimization targets, and
the algorithm for finding Nash equilibrium. The optimization
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metric is similar to the single-user scenario, which is a com-
bination of task response time and energy consumption.

III. SYSTEM MODEL
The satellite edge computing scenario is shown in Figure 1.
A set of remote terrestrial devices is located in a small fixed
area, and a set of satellites is in orbit. A task can be executed
locally on a device or offloaded to an edge computing server
deployed on a satellite via satellite-terrestrial communication.
Due to the intermittent terrestrial-satellite communication,
a device cannot offload tasks to a satellite at any time,
i.e., tasks will be offloaded only if the satellite is flying over.

FIGURE 1. The satellite edge computing scenario.

We abstract the above satellite edge computing scenario
to the system model shown in Figure 2. There are N mobile
devices, denoted as N = {1, 2, . . . , N}, and M satellites
covering the area, denoted as M = {1, 2, . . . , M}. Due to
the limited onboard resources, we assume that only one edge
computing server is deployed on satellite. The task execution
on mobile devices and satellites is both characterized as a
queuing system. The queuing theory has been widely used
to analyze task processing and resource allocation in edge
computing [27], [28]. Obviously, if all the tasks are executed
locally on a device or offloaded to a satellite, the waiting
time for execution and power consumption in the queue will
increase dramatically. Therefore, the computation offloading
strategy for each device should be optimized to improve the
performance.

The systemmodel consists of three parts, the orbit model of
the satellite, the communicationmodel of task offloading, and
the computation model of task execution. For a better read-
ing, the notations mainly used in this paper are summarized
in Table 1.

A. ORBIT MODEL
Different from the stable communication in MEC, the satel-
lite cannot always communicate with terrestrial devices. The
terrestrial-satellite communication link can be established,
only if the satellite orbits satisfy specific geometric con-
straints. The space geometry of the communication link
between a satellite and a fixed location on the ground is shown
in Figure 3.

FIGURE 2. The system model of satellite edge computing.

FIGURE 3. The space geometry of the link between a satellite and a
mobile device.

Here, α is the elevation angle of the mobile device, β is
the half-angle of view of the satellite, Re is the radius of the
earth, and h is the altitude of the satellite. Regardless of the
influence of other factors, data transmission is only avail-
able when α > 0. According to the geometric relationship,
the expression of α can be obtained as follows [29]:

α=arctan
cos1φ cosϕt cosϕs+sinϕt sinϕs−

Re
Re+h√

1−(sinϕt sinϕs+cos1φ cosϕt cosϕs)2
(1)

Here,1φ = φt−φs, φt and ϕt are longitude and latitude of
the mobile device, respectively. φs, and ϕs are longitude and
latitude of the satellite, respectively.
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TABLE 1. The notations are used in this paper.

If the distance between mobile devices is very far,
the devices will communicate with different satellites. There
is no competition in resources. Therefore, we assume that
the terrestrial device is located in a small fixed area. The
geometric relationship between these devices and a satellite
is the same.

According to the positive or negative of the elevation
angle α, we define the percentage of communication time in a
cycle as θ = {θ1, θ2, . . . , θM}, 0≤ θj ≤ 1, where θj represents
the percentage of time that device can communicate with
satellite j in an orbit period.

B. COMMUNICATION MODEL
Suppose that mobile device i offloads its computation tasks to
satellite j via a terrestrial-satellite network. We only consider

that devices offload tasks to satellites. The results transmitted
from the satellite to the mobile device is neglected in this
work because the size of computation outcome data is much
smaller than that of the computation input data [30]. Consid-
ering the mutual interference between the mobile device and
background noise, the uplink data rate for mobile device i to
satellite j can be calculated by [31]

Ri,j = B log2

1+
pigi,j

σ0 +
∑

s∈N,s 6=i
psgs,j

 (2)

where B denotes the channel bandwidth, pi denotes transmit-
ting power of device i, gi,j denotes the channel gain between
the device i and the satellite j, and σ0 denotes the background
noise power. According to (2), the data rate of task offload-
ing is positively correlated with the transmission power of
the device itself. However, the excessively high transmitting
power leads to excessive energy consumption, which reduces
the advantage of computation offloading. Additionally, due
to the interference, if too many devices offload tasks to satel-
lites, the data rate will decrease, leading to a long offloading
time.

C. COMPUTATION MODEL
We assume that each mobile device could generate a series of
homogeneous tasks. The tasks generated by device i can be
represented by the resources required and the size of data, i.e.,
Taski = {ci, di}. Where ci represents the number of comput-
ing resources required to execute a task; for example, ci can be
quantified by the number of CPU cycles. di denotes the size
of the computation input file describing some information of
a task, such as the program codes or the corresponding data.
Both ci and di are random variables, the means are c̄i and d̄i,
respectively, and second moments are c2i and d

2
i , respectively.

We assume that computation power (e.g. the CPU cycle/sec)
of mobile device and satellite is C(m)i and C(s)j respectively,
for all 1 ≤ i ≤ N , 1 ≤ j ≤ M .
Both terrestrial devices and satellites are characterized as

an M/G/1 queuing system. In this way, the time interval for
task generation follows the exponential distribution, and the
task execution time follows an arbitrary probability distri-
bution. We denote that device i generates task at rate λi,
1≤ i ≤N , i.e., the time interval for task generation is an inde-
pendent and identically distributed (i.i.d.) random variable
subject to the exponential distribution with a mean of 1/λi.
The percentage of device i’s tasks that are executed locally
and offloaded to a satellite is defined as the computation
offloading strategy of device i, denoted by xi = {xi,0, xi,1,
. . . , xi,M}. Here, xi,0 represents the percentage of the tasks that
are executed locally, and xi,j represents the percentage of the
tasks that are offloaded to satellite j. Obviously, the offloading
strategy for any device meets the constraints below.

xi,j ≥ 0, ∀i ∈ N, ∀j ∈M
M∑
j=0

xi,j = 1, ∀i ∈ N (3)
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IV. PROBLEM FORMULATION AND ANALYSIS
In satellite edge computing, mobile devices compete for com-
puting and communication resources. The mobile devices
are selfish and competitive to choose the offloading strategy,
which is most beneficial to them. Therefore, we formulate
the computation offloading problem as a game problem. Each
player (i.e., mobile device) expects to get a better QoS by
deciding whether and where to offload a task.

A. COMPUTATION OFFLOADING GAME
The strategy of player i is the percentage of tasks that are
executed locally on a device or offloaded to satellite, denoted
by xi =

{
xi,0, xi,1, . . . , xi,M

}
∈ Xi, as described in Section III.

Here,Xi, which is the set of strategies of device i, is closed and
convex (because of Xi ⊆ RM and xi,0+ xi,1+ . . .+ xi,M = 1).
Let X = X1 × X2 × . . . × XN be the set of combinations of
all devices’ strategies. Denoted by x = {x1, x2, . . . , xN } ∈ X
the overall vector of all players’ strategies, and x−i = {x1, . . . ,
xi−1, xi+1, xN} the vector of all players’ strategies except that
of player i. We choose the average response time and average
power consumption of a task as the performance metrics in
the offloading game. The cost function of player i can be
computed as follow

Pi (xi, x−i) = Ti + µiEi (4)

where Ti is the average response time of all tasks generated
by device i, Ei is the average energy consumption of the
task generated by device i, and µi ∈ R+ is the impact
factor of energy consumption. The game with N devices is
specified by G = {x1, x2, . . . , xN ; P1, P2, . . . , PN}. The
aim of device i, given other devices’ strategies x−i, is to
choose a strategy xi ∈ Xi that minimizes his cost function
Pi (xi, x−i) i.e., to

minPi (xi, x−i) , subject to xi ∈ Xi (5)

It is a typical game problem. The objective function to be
optimized is not only related to its strategy but also related
to the strategies of other players.

B. THE PERFORMANCE METRIC
As described in the above part, the performance metric is
the combination of average response time and average power
consumption of a task. Tasks can be executed locally on
devices or offloaded to satellites. We compute the average
response time and average energy consumption in each case
separately.

1) COMPUTATION TASK OFFLOADED TO SATELLITE
If the mobile device i offloads a task to satellite j, it takes three
steps: offload a task, execute on satellite, and return the result.
Due to the high dynamic of satellites, device i cannot always
communicate with satellite j. Therefore, the waiting time for
communication should be considered in both offloading and
returning.

First, we compute the average response time of the task
that is offloaded from device i to satellite j, which consists of
five parts: averagewaiting time for offloading Tw_offi,j , average

transmission time T transi,j , average queue waiting time Tw_quei,j ,
average executing time T sati,j , and average waiting time for
returning Tw_backi,j . It is easy to get the expression of T transi,j
and T sati,j as follow:

T transi,j =
d̄
Ri,j

(6)

T sati,j =
c̄

C(s)j
(7)

The waiting time caused by satellite orbiting is related to
the percentage of time that device i can communicate with
satellite j, i.e., θj. Based on the knowledge of probability,
we can calculate Tw_offi,j and Tw_backi,j as below.

Tw_offi,j =

∫ Tj

θjTj

1
Tj

(
Tj − t

)
dt =

Tj
(
1− θj

)2
2

(8)

Tw_backi,j =

∫ θjTj

θjTj−T sati,j −T
w_que
i,j

1
θjTj

(
Ti − T sati,j −T

w_que
i,j − t

)
dt

=

(
1− θj

)
θj

(
T sati,j + T

w_que
i,j

)
−

(
T sati,j + T

w_que
i,j

)2
2θjTj

(9)

where Tj is the orbit period of satellite j, and
Tj � T sati,j + T

w_que
i,j .

The process of executing tasks on satellite j is an
M/G/1 queue system. Based on the queuing theory [34],
the average queue waiting time of the tasks on satellite j is

Tw_quei,j =
λ̃j

2
(
1− ρ̃j

) c2(
C(s)j

)2 (10)

where λ̃j =
N∑
i=1

xi,jλi is the task arrival rate of satellite j,

and ρ̃j = λ̃jT sati,j is the utilization of the queue on satellite j.
Equation (10) can be simplified to

Tw_quei,j =

c2
N∑
i=1

xi,jλi

2
(
C(s)j − c̄

N∑
i=1

xi,jλi

)
C(s)j

(11)

Therefore, the average response time of the task that is
offloaded from device i to satellite j is

Ti,j = Tw_offi,j + T transi,j + Tw_quei,j + T sati,j + T
w_back
i,j

=
Tj
(
1− θj

)2
2

+
d̄
Ri,j
+

(
T sati,j + T

w_que
i,j

)
θj

−

(
T sati,j + T

w_que
i,j

)2
2θjTj

(12)

Next, we compute the average energy consumption of
the task that is offloaded from device i to satellite j, which
consists of two parts, average transmission energy consump-
tion E transi,j and average executing energy consumption Esati,j .
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According to the communication model, E transi,j can be com-
puted as follow,

E transi,j = piT transi,j =
pid̄
Ri,j

(13)

The energy consumption is proportional to the square of the
frequency of the CPU [30], [33]. Therefore, Esati,j can be
computed as follow,

Esati,j = κ
(
C(s)j

)2
c̄ (14)

where κ is the effective switch capacitance that depends on
the chip architecture [32].

The average energy consumption of the task offloaded
from device i to satellite j is

Ei,j = E transi,j + E
sat
i,j =

pid̄
Ri,j
+ κ

(
C(s)j

)2
c̄ (15)

2) COMPUTATION TASK executed locally
Same as offloading to satellite, the process of executing tasks
locally on device i is also an M/G/1 queue system. The
average response time of the task executed on device i is equal
to the average queue waiting time Tw_quei,0 plus the average
executing time T loci,0 , i.e.,

Ti,0 = Tw_quei,0 + T loci,0 (16)

Similarly, the local average executing time can be calcu-
lated as

T loci,0 =
c̄

C(m)i

(17)

Like (10), the average waiting time of the tasks that are
executed on device i is

Twaiti,0 =
λi

2 (1−ρi)
c2(

C(m)i

)2 = xi,0λic2

2
(
C(m)i −xi,0λic̄

)
C(m)i

(18)

where λi = xi,0λi is the task arrival rate of device i, and
ρi = λiT loci,0 is the utilization of the queue on device i.
Therefore, the average response time of the task that is

executed locally on device i is

Ti,0 = Tw_quei,0 + T loci,0 =
xi,0λic2

2
(
C(m)i − xi,0λic̄

)
C(m)i

+
c̄

C(m)i

Then we compute the average energy consumption of the
task that is executed locally on device i. Like (14), the average
energy consumption is

Ei,0 = κ
(
C(m)i

)2
c̄ (19)

Finally, the average response time of all tasks generated by
device i is

Ti = xi,0
(
Twaiti,0 + T

loc
i,0

)
+

M∑
j=1

xi,jTi,j (20)

The average energy consumption of the task generated by
device i is

Ei = xi,0Ei,0 +
M∑
j=1

xi,jEi,j (21)

C. THE EXISTENCE AND UNIQUENESS OF NASH
EQUILIBRIUM
In this part, we will analyze the existence and uniqueness of
Nash equilibrium for the offloading game. First, two well-
known lemmas [35], [36] are presented below.
Lemma 1: At least one Nash equilibrium for a

non-cooperative game G = {x1, x2, . . . , xN ; P1, P2, . . . , PN}
is existence if, for all 1 ≤ i ≤ N:

(1) The strategy space Xi is a non-empty, convex, and
compact subset of some Euclidean space.

(2) The cost function Pi (xi, x−i) is continues and
quasi-convex in Xi.
Lemma 2: A continuous and twice differentiable function

P(x), where x = (x1, x2, . . . , xM ), is convex if and only if its
Hessian matrix

H (P (x)) =
[
∂2P
∂xi∂xj

]
M×M

(22)

of second partial derivatives is positive semidefinite.
The following theorem gives the existence of the Nash

equilibrium of the above game.
Theorem 1(Existence): There is a Nash equilibrium for

the computation offloading game G = {x1, x2, . . . , xN ; P1,
P2, . . . , PN}, where Pi is defined by (4).
Proof: Obviously, Xi is a non-empty, convex, and compact

subset. Next, we compute the Hessian matrix of Pi (xi, x−i).
The partial derivative is

∂Pi
∂xi,0

=
λic2

2C(m)i

 2xi,0

C(m)i − xi,0λic̄
+

λic̄x2i,0(
C(m)i − xi,0λic̄

)2


+
c̄

C(m)i

+ µiκ
(
C(m)i

)2
c̄ (23)

∂Pi
∂xi,j
=

Tj
(
1− θj

)2
2

+
d̄
Ri,j
+

c̄

θjC
(s)
j

+
1
θj
Tw_quei,j

+
xi,j
θj

∂Tw_quei,j

∂xi,j
−

1
2θjTj

(
c̄

C(s)j
+ Tw_quei,j

)2

−
xi,j
θjTj

(
c̄

C(s)j
+ Tw_quei,j

)
∂Tw_quei,j

∂xi,j

+µi

(
pid̄
Ri,j
+ κ

(
C(s)j

)2
c̄
)

(24)

for all 1 ≤ j ≤ M . Here,

∂Tw_quei,j

∂xi,j
=

λic2

2
(
C(s)j − c̄

N∑
n=1

xn,jλn

)2 (25)
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The second-order partial derivative is

∂2Pi
∂x2i,0
= λic2

 1(
C(m)i −xi,0λic̄

)2+ 2xi,0(
C(m)i −xi,0λic̄

)3
 (26)

∂2Pi
∂x2i,j

=

(
1−

1
Tj

(
T sati,j + T

w_que
i,j

)) xi,j
θj

∂2Tw_quei,j

∂x2i,j

+
1
θj

(
1−

1
Tj

(
T sati,j + T

w_que
i,j

)) ∂Tw_quei,j

∂xi,j

+
1
θj

(
1−

xi,j
Tj

∂Tw_quei,j

∂xi,j

)
∂Tw_quei,j

∂xi,j
(27)

for all 1 ≤ j ≤ M . Here,

∂2Tw_quei,j

∂x2i,j
=

c2c̄λ2i(
C(s)j − c̄

N∑
n=1

xn,jλn

)3 (28)

From the above result, we can easily verify by straightfor-
ward algebraic manipulation that

∂2Pi
∂x2i,j

> 0 (29)

for all 0 ≤ j ≤ M , and

∂2Pi
∂xi,j∂xi,k

= 0 (30)

for all 0 ≤ j 6= k ≤ M . Therefore, the Hessian matrix

H (Pi (xi, x−i)) =
[

∂2Pi
∂xi,j∂xi,k

]
(M+1)×(M+1)

(31)

is a diagonal matrix, and the elements on the main diago-
nal are positive. The Hessian matrix is positive definition.
Thus, Pi (xi, x−i) is convex function of xi for each fixed x−i,
for all 1 ≤ i ≤ N . Obviously, Pi (xi, x−i) is quasi-convex.
By Lemma 1, there is at least one Nash equilibrium for the
gameG = {x1, x2, . . . , xN ;P1,P2, . . . ,PN}. Theorem 1 holds.
We denote the Nash equilibrium is x∗ = {x∗1,x

∗

2, . . . , x
∗
N }.

Moulin has proved in [37] that if a game is dominance-
solvable (hence Cournot-stable), the game has a unique
Nash equilibrium, which is said to be a Cournot-stable Nash
equilibrium outcome. A sufficient condition for dominance-
solvable in [37] is presented below.
Lemma 3: For a non-cooperative game G = {x1, x2,

. . . , xN ; P1, P2, . . . , PN} whose Hessian matrix is positive
definition, if we have:∑

k=1,2,...M
k 6=j

∣∣∣∣ ∂2Pi
∂xi,j∂xi,k

∣∣∣∣ <
∣∣∣∣∣∂2Pi∂x2i,j

∣∣∣∣∣ , ∀i ∈ N (32)

Then G is dominance-solvable.
The following theorem gives the uniqueness of the Nash

equilibrium of the above game.

Theorem 2 (Uniqueness): The computation offloading
game G = {x1, x2, . . . , xN ; P1, P2, . . . , PN} has a uniqueness
Nash equilibrium, where Pi is defined by (4).
Proof: From (29) and (30), it is easily verified∑

k=1,2,...M
k 6=j

∣∣∣∣ ∂2Pi
∂xi,j∂xi,k

∣∣∣∣=0 <
∣∣∣∣∣∂2Pi∂x2i,j

∣∣∣∣∣ , ∀i ∈ N (33)

By Lemma 3, the game has a unique Nash equilibrium.
Theorem 2 holds.

V. ALGORITHMS
In this section, an iterative algorithm is proposed to find the
Nash equilibrium of the computation offloading strategy. The
details are shown in Algorithm 1.

Algorithm 1 Search the Nash Equilibrium of Computation
Offloading Strategy

Input: N , M , θj, Tj, λi,c̄i, d̄i, c2i , d
2
i ,C

(m)
i ,C(s)j ,Ri,j, pi, κ ,

for all 1 ≤ i ≤ N and 1 ≤ j ≤ M .
Output: x∗ = {x∗1,x

∗

2, . . . , x∗N}: Nash equilibrium of
offloading strategy.
1: Initialize: x= {x1, x2,. . .xN}
2: t = 1
3: While t <Max iterations do
4: fori = 1 to N do
5: find x’i that minimizes the cost function Pi with

x−i
6: compute the cost function Pi (x’i) by (22)
7: if Pi (x’i) > Pi (xi)then
8: x’i = xi
9: end if

10: end for
11: if ‖x’i − xi‖ > ε then
12: t = t + 1
13: else
14: x∗ = x’i
15: return x∗

16: end if
17: end while

We set the initial strategy of each device as an even dis-
tribution, i.e., xi = (1/(M+1), 1/(M+1), . . . , 1/(M+1)), for
all 1 ≤ i ≤ N . In each iteration, every device will search
the best offloading strategy x’i in the current situation and
compute the minimum cost function Pi (x’i). x’i is solved by
the Lagrange multiplier, i.e., solving the following equations.

∇L (xi, φ) = 0⇔


∂Pi
∂xi,j
= φ, j ∈M

M∑
j=0

xi,j = 1
(34)

The derivative of the cost function has been derived in the
proof process of Theorem 1. The classical bisection method
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is used to find the solution of (34). Let I denote the maximum
length of iterations, and ε denote the accuracy requirement.
Then, the time complexity is O(M (log(I /ε))).

According to the characteristic of the Nash Equilibrium,
the strategy will only be updated when the cost function
decreases. The algorithm terminates when the two strategies
sets are close enough, i.e.,

‖x’i − xi‖ =

√√√√√ N∑
i=1

M∑
j=0

∣∣∣x ′i,j − xi,j∣∣∣2 < ε (35)

The final converged strategy set x∗ is the Nash equilibrium
of the task offloading game, i.e., no device can reduce its cost
function if all other devices adopt the strategies x∗

−i. Since the
optimal strategy for all devices needs to be solved, the overall
time complexity of Algorithm 1 is O(KMN(log(I /ε))), where
K is the number of iterations.

VI. SIMULATION
A. PARAMETER SETTING
In this section, we show illustrative results to demonstrate the
performance of the proposed algorithm. In the simulation, the
task generation rate λi = 0.15+ 0.0075(i− 1) tasks/second,
the average number of computing resources c̄i = 1+0.5(i−1)
billion cycles, the second moments c2i = 1.6c̄2i , the average
size of task d̄i = 1+0.1(i − 1) MB, the second moments
d2i = 1.5d̄2i , the computation power of mobile device C(m)i =

1+0.1(i−1) GHz, the computation power of satellite C(s)j =
2.5 + 0.1(j − 1) GHz, the uplink data rate Ri,j = 10MBps,
effective switch capacitance κ = 10−28. These parameters
are obtained by referring to [11], [23]. We choose the Iridium
constellation as the satellite system in the simulation. The
specific parameters are shown in Table 2. The constellation
consists of 66 satellites distributed over 6 orbital planes. The
coordinate of the satellite is acquired by STK.

TABLE 2. The parameters of the satellite constellation.

B. SIMULATION RESULTS
In Figure 4, using device 5 as an example, we show the
convergence process of the offloading strategy. The number
of devices is 10, the number of satellites is 22 (consisting
of 2 planes), and the terminated error ε = 10. It is obvious
that the strategy of device 5 changes with the increase of the
iterations before getting the Nash equilibrium, and the strat-
egy remains almost unchanged when gradually approaching
the Nash equilibrium. Finally, the strategy is convergent after
63 iterations. It shows that the Nash equilibrium of the com-
putation offloading game exists.

FIGURE 4. The strategy of device 5.

TABLE 3. The analysis of convergence rate.

Next, the convergence rate of the algorithm is discussed.
The number of devices is 10, and the number of satellites
is 11. In table 3, we show the number of iterations K for
the accuracy requirement ε = 10−1, 10−1.5, 10−2, . . . , 10−5.
It seems that there is a rough linear growing trend of K with
the increase of log(1/ε). The conclusion is consistent with the
previous analysis of the time complexity of the algorithm.

Then, we do some research about the impact of some
parameters on the performance of the algorithm. It reflects
the adaptability of the proposed algorithm in satellite edge
computing and helps the construction of satellite edge com-
puting. Figure 5 shows the relationship between the average
cost of device and the number of devices. The number of
satellites is 22 (consisting of 2 planes). It is easily seen that
the cost increases with the growth of the device number. It is
because that the competition for resources among devices
becomes more intense. Therefore, the average cost of a
device is roughly positively related to the number of devices.
Figure 5 also shows the performance of different strategies.
The performance of the Nash equilibrium strategy solved by
the proposed algorithm is much higher than other strategies.
Particularly, when the number of devices is large, it has amore
significant advantage. It is because when the competition is
fierce, other strategies cannot balance the competition for
resources among devices, resulting in a significant increase
in cost. The proposed algorithm can effectively reduce the
cost of device when the number of devices increases.
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FIGURE 5. The relationship between the average cost of a device and the
number of devices under different strategies.

Then, we discuss the impact of the number of satellites in
two ways. One is the number of satellites per plane, and the
other is the number of orbit planes. Figure 6 shows the rela-
tionship between the average cost of a device and the number
of satellites per plane. The number of devices is 10, and the
number of orbit plane is 1. The average cost of equipment is
roughly negatively correlated with the number of satellites.
As the number of satellites increases, the on-board resources
increase, and the average cost decreases. The amount of cost
reduction used by the proposed algorithm is higher than other
algorithms. It suggests that the proposed algorithm can make
more efficient use of resources.

FIGURE 6. The relationship between the average cost of a device and the
number of satellites per plane under different strategies.

Figure 7 shows the relationship between the average cost of
a device and the number of orbit planes under Nash equilib-
rium strategy. When the number of satellites per orbital plane
is constant, the average cost decrease as the number of orbital
planes increases. However, as the number of orbit planes
increases, the amount of the average cost reduction decreases.
Additionally, if the number of satellites per plane is large,
increasing the number of orbit plane does not effectively

FIGURE 7. The relationship between the average cost of a device and the
number of orbit planes under Nash equilibrium strategy.

reduce the cost. It is because when the on-board resources
are saturated, increasing the number of satellites will not
effectively reduce the cost of a device, but will lead to an
increase in satellite system cost. Therefore, in order to achieve
optimal system performance, satellite orbital parameters and
quantities need to be optimized.

Figure 8 shows the relationship between the average cost of
a device and the task generation rate of device under different
strategies. The number of devices is 10, and the number of
satellites is 22 (consisting of 2 planes). It is easily seen that the
average cost of a device under Nash equilibrium will slowly
increase with the growing of λ. When λ is small, the cost
under the Nash equilibrium and all local execution are the
same. It means that the offloading strategy converges to all
tasks being executed locally. As the λ increases, if all the
task is executed locally, the cost will increase dramatically
until it is saturated. If the device uses an even offloading
strategy, the cost is stable. For a random offloading strategy,

FIGURE 8. The relationship between the average cost of a device and the
task generation rate of device under different strategies.
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the cost is fluctuating, and the overall trend is on the rise.
It shows that the proposed algorithm can effectively optimize
the offloading strategy.

In general, the Nash Equilibrium strategy solved by the
proposed algorithm can minimize the average cost of the
device. It makes each device properly allocate tasks and uti-
lize local and on-board resources under different parameters.

VII. CONCLUSION
In this paper, the game theory is used to optimize the com-
putation offloading strategy of multiple mobile devices com-
peting for on-board resources from multiple satellites in
a satellite edge computing scenario. The system model of
computation offloading is established in consideration of the
intermittent communication caused by the high dynamic of
satellites. We compute the average response time and average
energy consumption of a task as the performance metrics.
We establish a queuing model for multiple devices and mul-
tiple satellites and analytically obtain the game strategy and
cost functions of the computation offloading game. The exis-
tence and uniqueness of the Nash equilibrium is theoretically
proved, and an iterative algorithm is designed to find the
Nash equilibrium strategy of each device. Finally, numerical
simulations show that the effectiveness of the algorithm and
the game-based offloading strategy can significantly reduce
the average cost of device.
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