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ABSTRACT Topographic effect in remote sensing images is severe in high mountainous areas. Efficiently to
reduce the effects, several topographic normalization models have been proposed. Since the performance of
the models is largely dependent on the spectral band and land surface type, the best performance model
can vary from image to image in an area as well as from band to band in an image. The normalized
difference vegetation index (NDVI) map has been widely used for the vegetation monitoring and assessment.
An efficient reduction of the topographic effect in the NDVI map must be required for the spatial analysis
of the vegetation monitoring and assessment. In this paper, we propose an efficient method to select the best
topographic normalizationmodel in each band to reduce the topographic effect of NDVImaps. The histogram
structural similarity (HSSIM) index was used for the model selection because the index allows to select the
best model in each band of an image. Five topographic normalization models were used for the test, which
include the sun-canopy-sensor (SCS), statistical-empirical, C-correction, Minnaert, and Minnaert + SCS.
The performance of the proposed method was validated by using two different season Landsat-8 OLI images
including the forest area of northernMalaysia. The standard deviations of the twoNDVImaps generated from
the test images were reduced by about 53.1% and 28.6% after correction in profile analysis. The coefficient of
determination (R2) between the two different NDVI maps increased from 0.626 to 0.759. It indicates that the
proposed method effectively reduced the topographic effect of the NDVI maps. This result implies that the
proposed method can work well in the topographic normalization. Furthermore, the proposed method would
be successfully applied to index maps including the normalized difference snow index (NDSI), normalized
difference water index (NDWI), etc.

INDEX TERMS Histogram structural similarity index, land cover identification, normalized difference
vegetation index (NDVI), performance assessment, topographic normalization models.

I. INTRODUCTION
Remotely sensed images have been widely used for the veg-
etation monitoring and assessment. However, it is not easy
to monitor and assess the vegetation changes in mountainous
areas due to severe topographic effect [1]–[6]. For example,
the reflectance values in the sun-shaded slope area are usually
lower than the sunlit slope area, even though the sun-shaded
and sunlit areas are covered by the same vegetation type [2].
This effect may have a significant influence on the vegetation
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cover identification results [5], [6]. Thus, the topographic
normalization process is required to improve vegetation cover
identification in mountainous area with high topographic
variations [3], [4].

Topographic normalization is defined as the normalization
of reflectance values on a slanted plane to a horizontal
plane [7]–[9]. Several topographic normalization models
have been developed to reduce the topographic effects. The
models have been proposed by considering the surface reflec-
tion types (Lambertian or non-Lambertian), the slope and
aspect of mountainous areas, the look angle, and the solar
zenith angles [10]–[13]. Among the proposed models, the
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Sun-canopy-sensor (SCS) [10], Statistical-empirical [11],
C-correction [11], Minnaert [12] and Minnaert + SCS [13]
have been widely and successfully used for the topographic
normalization.

Since the model performance largely depends on the spec-
tral band and land surface type, the best performance model
cannot be same in all images as well as it can be different
even in each image band. Thus, several performance eval-
uation methods have been proposed to evaluate the model
performance and find the best model among the topographic
normalization models, but the methods have a disadvantage
that they cannot determine the best model in each image band
in most evaluation methods [14].

Recently, the evaluation methods using the structural simi-
larity (SSIM) index [15] and the histogram structural similar-
ity (HSSIM) index [14] have been proposed and they enable
us to evaluate the model performance in each image band.
To evaluate topographic normalization methods, we need to
determine how similar the pixel values are in the sunlit and
sun-shaded areas. To utilize the SSIM index, we must need to
find pixels in a sunlit area that correspond to pixels in a sun-
shaded area. However, the corresponding pixels cannot be
found in the sun-shaded area. Thus, the SSIM index requires
a synthetic image that does not have topographic effect at all.
It is almost difficult to meet the requirement for the SSIM
evaluation, although the SSIM evaluation can provide a more
precise statistical value. On the other hand, the HSSIM eval-
uation does not require the topography-free synthetic image,
because it estimates from the histogram structural similarity
between the sun-shaded and sunlit slopes in an image [15].
The HSSIM index has an advantage that it can also consider
the topographic slope effect. However, the HSSIM evaluation
needs an assumption which the sun-shaded and sunlit slopes
have a similar condition. Since similar land covers can be
found in both the sun-shaded and sunlit slopes, it would not
be problematic in most cases.

The normalized difference vegetation index (NDVI) map
has been widely used for the vegetation monitoring and
assessment. Although the topographic effect of the NDVI
map is much lower than the reflectance image, it needs be
reduced for the forest typemonitoring and classification. Sev-
eral methods have been proposed to correct the topographic
effects of the NDVI map and they has also applied to other
ratio maps such as leaf area index (LAI), normalized burn
ratio (NBR) and normalized difference snow index (NDSI)
maps [2], [3], [16], [17]. In the researches, the ratio maps
such as NDVI, LAI, NBR, and NDSI were generated by
using one among the models such as the Cosine, C-correction
and Minnaert. However, as aforementioned, since the model
performance varies according to spectral band [1], [14], [15],
[18], [19], the best model can be different in each band image.
For example, Sola et al. [15] reported that the Minnaert +
SCS model was suitable for the normalization of the near-
infrared (NIR) and short-wavelength infrared (SWIR) bands
while the statistical-empirical model was suitable for the
red, green and blue bands in their study area. Consequently,

FIGURE 1. (a) False-color composite images (bands 5, 4 and 3) of test
image 1, (b) shaded relief map in study area, (c, d) zoomed false-color
images of the test image 1 and test image 2 from the box in Fig. 1(a).

the best model needs to be differently selected according to
spectral band for more precise topographic normalization of
the ratio maps.

In this study, we propose an efficient band-based best
model selection method for the topographic normalization
of NDVI maps. A key of the proposed method is to deter-
mine the best normalization model in each band using the
HSSIM evaluation approach. Two Landsat-8 operational land
imager (OLI) images were used to validate the performance
of the proposed method, which were obtained in the natural
vegetation area of northern Malaysia. Since the two images
were acquired in different two seasons, they had different
solar zenith and azimuth angles. From the test data, the reduc-
tion of the standard deviation in the sun-shaded and sunlit
areas was checked by using the original and normalized
NDVI maps and the similarity of the two different season
NDVI maps was compared before and after the topographic
normalization as well.

II. STUDY AREA AND DATASET
As shown in Fig. 1a, Landsat-8 OLI images in different two
seasons were used for this study. The images were obtained
with different solar zenith and azimuth angles. The red and
NIR images were selected for the NDVI map generation, and
used for the performance evaluation of the proposed method.
The atmospheric correction was first applied to the two
images by using the cosine of the solar zenith angle (COST)
model [20], and then the slope and aspect angles of the
ground surface were calculated from the space shuttle radar
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TABLE 1. Topographic normalization models used in this study.

topography mission (SRTM) digital elevation model (DEM)
having the spatial resolution of 30 m. From the topographic
slope and aspect angles, the local incidence angle were esti-
mated [21], [22]. Fig. 1b shows the shaded relief topographic
map created by the SRTM DEM.

The Landsat-8 images were obtained on December 12,
2014 (hereafter test image 1) and March 18, 2015 (here-
after test image 2). The temporal difference between the two
images is 96 days. The sun zenith and azimuth angles of the
test image 1 is about 37.4◦ and 141.3◦, and the test image 2 is
about 29.0◦ and 102.9◦, respectively. The world geodetic sys-
tem (WGS84) for geodetic datum and North-UTM47 for map
projection were used in this study. The study area is located
nearby Sik city in northern Malaysia, which is between
5◦40’N to 5◦60’N and 100◦39’E to 100◦55’E (Fig. 1a). The
mean altitude was approximately 234 m, ranging from 23 m
to 1,006 m. The maximum and mean slope angles calculated
from DEM were about 64.6◦ and 13.7◦, respectively. The
maximum and mean incidence angles were about 92.4◦ and
38.8◦ in the test image 1, respectively, and the maximum and
mean incidence angles were about 82.3◦ and 31.4◦ in the
test image 2, respectively. The images in the study area were
cloud free. The study area consists mainly of hill dipterocarp
forests, in which the trees of the family Dipterocarpaceae are
dominant species [23]. The area consisted of a similar forest
type, and hence it was suitable for the performance test of the
best model selection method.

The sun-shaded slope areas can be easily distinguished
because the reflectance values are lower than the sunlit slope
areas due to topographic effects, as seen in Figs. 1c and 1d.
Moreover, as seen in Figs. 1c and 1d, the contrast of the two
slopes is more pronounced in the test image 1 due to higher
incidence angle than in the test image 2. The test image 2 has
a lower contrast and more emphasis on red color because the
acquisition date was close to summer season. It also indicates
that the study area is suitable to the performance test of the
proposed method.

To evaluate the topographic normalization performance,
the sample data of 99,000 pixels in the sun-shaded slopes
and 87,000 pixels in the sunlit slopes were extracted from
the test image 1. And the sample data of 106,000 pixels and
84,000 pixels were also extracted from the sun-shaded and
sunlit slopes of the test image 2, respectively. The sample data
were used to calculate the HSSIM index values in sun-shaded
and sunlit slope areas in the test image 1 and 2.

III. METHODS
In this paper, an efficient approach is suggested to select
band-based best model for the topographic normalization of
NDVI maps. To validate the performance of the suggested
model selection, the following steps are applied: 1) Red
and NIR reflectance images are respectively normalized by
using several topographic normalization models; 2) Best
normalized red and NIR images are respectively selected
by using the HSSIM evaluation; 3) Topography-normalized
NDVI map is created from the best normalized red and NIR
images. Five topographic normalization models in this study
were SCS, Statistical-empirical, C-correction, Minnaert, and
Minnaert + SCS.

A. TOPOGRAPHIC NORMALIZATION
From the early 1980s to the present, many topographic nor-
malization models have been proposed to normalize topo-
graphic effects in mountainous areas. In this study, we just
selected five of the developed topographic normalization
models, as listed in Table 1, which are known to have a good
performance. The models include SCS, Statistical-empirical,
C-correction, Minnaert and Minnaert+ SCS [10], [12], [13].
The selected models can be categorized according to surface
reflection types and normalization approach as Lambertian,
non-Lambertian and empirical approaches [24].

In the C-correction model, the constant C is calculated
based on the fitting relationship between the reflectance
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values and the cosine of the solar incidence angle [11].

ρ = a+ bcosi, (1)

where a and b are the model parameters estimated by the
linear regression fitting. The constant C is calculated as:
C = a/b.
In theMinnaert model, the constant k is calculated by using

the log function as shown by Smith et al. [12]:

ln (ρ cos (θn)) = ln (ρh)+ kln (cos (i)× cos (θn)) , (2)

where ln (cos (i)× cos (θn)), ln (ρ cos (θn)) and ln (ρh) can
be replaced with x, y andm, respectively. Hence, this equation
can be expressed as y = kx + m. Then, the constant k can be
calculated by the linear regression method. The constant k ′

for the Minnaert + SCS model can be calculated in the same
way as constant k [13].

B. PERFORMANCE EVALUATION
The performance evaluation of normalization models can be
carried out by the HSSIM index [15]. The HSSIM index can
precisely evaluate the performance of the models. This index
quantitatively calculates the histogram similarities between
the sunlit and sun-shaded slopes for each band before and
after normalization. The histograms similarities include the
effect of the topographic slope gradients. The index is defined
by [15]:

HSSIM (x, y) = V (x, y) � R(x, y) (3)

where x and y are reflectance values in the sunlit and sun-
shaded slopes, respectively. V (x, y) and R(x, y) are the vari-
ation ratio and histogram structural similarity ratio between
the original and normalized images, respectively, in the x and
y data, as given by [15]:

V (x, y) =

(
σx � σy

)(
σx0 � σy0

) and (4)

R (x, y) =

(
1− rH(x)H (y)

)(
1− rH(x0)H (y0)

) , (5)

where σx0 , σy0 , σx and σy are the standard deviations in the
x and y data of the original and normalized images, respec-
tively. rH(x0)H (y0) and rH(x)H (y) are the correlation coefficient
between the x and y histogram data in the original and nor-
malized images, respectively.

If the topographic normalization is successful, 1) the stan-
dard deviation of the normalized image must be smaller than
that of the original image, and 2) the correlation coefficient
between the sunlit and sun-shaded slopes must be larger than
the original image [15]. Thus, if the topographic effect is
perfectly normalized, both, V (x, y) and R(x, y), are close to
zero, and hence the HSSIM index is close to 0. On the other
hand, if both, V (x, y) and R(x, y), show over-corrected values
(V (x, y) > 1 and R(x, y) > 1), then the HSSIM index is
unconditionally larger than 1 [15]. Thus, the HSSIM index
allows to evaluate the normalization performance of each
normalization model.

FIGURE 2. Comparison between the original and topography-normalized
images in the area of the test image 1 zoomed by the box in Fig. 1a:
(a) original image, and (b) SCS, (c) Statistical-empirical, (d) C-correction,
(e) Minnaert and (f) Minnaert + SCS topography-normalized images.

C. TOPOGRAPHIC NORMALIZED NDVI
As aforementioned, the best normalization model for each
band can be different. The optimal normalization model can
vary depending on the surface cover types and spectral wave-
length bands [1], [14], [15], [18], [19]. Thus, for an example,
the best topography-normalized NDVI image can be gen-
erated by using the red image corrected by the Statistical-
empirical model and the NIR image by the Minnaert +
SCS model. The best corrected NDVI image would be much
more useful in identifying and classifying land cover type
because the topographic effects can be minimized. The best
topography-normalized NDVI map (NDVITP) can written as
follows [2], [19]:

NDVITP =
ρ̂NIR − ρ̂RED

ρ̂NIR + ρ̂RED
, (6)

where ρ̂NIR and ρ̂RED are the NIR and RED reflectance
images, which are topography-normalized by the best optimal
models for NIR and RED images, respectively.
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FIGURE 3. Comparison of histograms between the original and normalized results in the test image 1. The grey and white
colors indicate the sun-shaded and sunlit slopes, respectively.

D. RESULTS
Fig. 2a shows the original image of the test image 1 zoomed
by the box seen in Fig. 1a. Figs. 2b to 2f show the
topography-normalized images processed by using the SCS,
statistical-empirical, C-correction, Minnaert, andMinnaert+
SCS models. The model parameters of the topographic
normalizationmodels were estimated by using pixels in forest
area. The result showed that most normalization models,
except the SCS model, mitigated the topographic effects
well. The Statistical-empirical, C-correction, Minnaert and
Minnaert + SCS models showed that the topographic effects
were normalized adequately. The results are very similar
visually too (Fig. 2c–f). However, the SCS model showed
severely over-corrected results due to the limitation of the
Lambertian approach (Fig. 2b). Many research papers have
reported 1) that the SCS model has a severe overcorrection
problem [19], [25] and 2) that non-Lambertian and empirical
approaches are better than the Lambertian approach [1], [18],
[19]. It means that the result is in overall agreement with the
researches [1], [2], [18], [19], [25]–[27].

Fig. 3 shows the histogram variations of the test image
1 before and after applying the normalization models for each
band. The grey- and white-colored histograms represent the
distribution of reflectance values in sun-shaded and sunlit
slopes, respectively. The histograms have been successfully
used to evaluate the normalized processing result [15]. In the
whole bands of the original image, the sun-shaded and

sunlit slopes are easily distinguishable because the
reflectance values of sun-shaded slope are lower than those
of the sunlit slope. If the performance of a normalization
model is almost perfect, the difference between the two
histograms should be close to zero. The result from the
statistical-empirical model in the NIR band is representative
in this study. It is difficult to find the difference between
both the histograms so that they show a greater similarity
than the other models. Most models with good performance
in visual analysis made the sunlit and sun-shade histograms
similar although the two histograms did not match perfectly.
On the other hand, the SCS model showed overcorrected
results in the RGB bands. The sun-shaded histogram had a
higher reflectance value than the sunlit slope. It means that
the similarity between the sunlit and sun-shaded histograms
is in good agreement with the normalization performance.

Table 2 summarizes the HSSIM index values calculated
from before and after the topographic normalization in the
test image 1 and 2. The HSSIM indexes of the SCS model
had a value of more than 1 to indicate the over-corrected
results in RGB bands. Most models have an index of less
than 1 in each band wavelength. In particular, the normal-
ization performance of the Statistical-empirical model in the
NIR band had an index value of about 0, indicating almost
perfect normalization. We can see that the normalization
performance of all the models depends on the wavelength
because themodel with the smallest index is different for each

4412 VOLUME 8, 2020



S.-H. Park, H.-S. Jung: Band-Based Best Model Selection for Topographic Normalization of NDVI Map

TABLE 2. Comparison among the model performances using the HSSIM index in the test image 1 and 2. The best model for each band is highlighted in
bold.

FIGURE 4. Comparison between NDVI maps of the test image 1 and 2: (a-c) original, Statistical-empirical, and
proposed NDVI maps of the test image 1(d-f) original, Statistical-empirical, and proposed NDVI maps of the test
image 2.

band. The models with the best normalization performance
in the Blue to SWIR-2 bands are C-correction, Minnaert
+ SCS, C-correction, Statistical-empirical, C-correction and
Minnaert + SCS, respectively, in the test image 1 and 2 as
listed in Table 2.

From the evaluation result, the best topography-normalized
image was generated by combining the best models in each
band. For example, to create a best normalized image in
case of the test image 1, the C-correction model can be used
for the blue, red and SWIR-1 bands, the Minnaert + SCS

model can be utilized to the green and SWIR-2 bands, and the
Statistical-empirical model can be used for the NIR band.
That is, the C-correction, Statistical-empirical and Minnaert
+ SCS models can be selected according to the perfor-
mance evaluation to make the best topography-normalized
image.

Fig. 4 presents the NDVI maps of the test image 1 and 2.
The original NDVI maps in the test image 1 and 2 are
respectively shown in Figs. 4a and 4d, the topography-
normalized NDVI maps with the statistical-empirical model
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FIGURE 5. NDVI maps of the test image 1 and 2 zoomed from the box of Fig. 1a. The blue arrow indicates an
improvement in vegetation cover identification: (a-c) NDVI maps of the test image 1 zoomed from the original,
Statistical-empirical, and proposed NDVI maps, (d-f) NDVI maps of the test image 2 zoomed from the original,
Statistical-empirical, and proposed NDVI maps.

are presented in Figs. 4b and 4e, respectively, and the
topography-normalized NDVI maps with the proposed best
selection model are presented in Figs. 4c and 4f, respectively.
All the NDVI maps represent the characteristics of NDVI
well, which has a high index value in the vegetation area and a
low index value in the water and urban areas [6]. However, the
NDVImaps calculated from the original image were different
from the other topography-normalized NDVI maps. As seen
in Figs. 4a and 4e, the original NDVI values in mountainous
areas were severely affected by the topography. Even though
the topographic effect was reduced by using the normalized
difference index, the relationship between NDVI value and
the topographic aspect and slope was very clear in Figs. 4a
and 4e. The separation between the forest area and the water
and urban areas can be easily applied to the original NDVI
map regardless of the topographic effect, but the topographic
effect makes it difficult to divide the forest types. This is the
reason why the topographic normalization process is required
in an NDVI map.

As shown in Figs. 4b and 4e, the topographic effect in
the NDVI maps, which were topography-normalized by the
Statistical-empirical model, was mitigated well, and hence
the NDVI values in the sunlit and sun-shaded areas became
similar. However, the normalized NDVI values still had the
weak topographic effect. Especially for the test image 2, there
was a problem of overcorrecting on the mountain ridges as
shown in Fig. 4e. The NDVI maps topography-normalized
by the proposed model selection method were remarkably
improved (see Figs. 4c and 4f). The topographic effect was

not severe in the NDVI maps, and the overcorrection problem
was not found in the NDVI map of Fig. 4e.

Fig. 5 shows the NDVI maps of test image 1 and 2
zoomed from the box in Fig. 1a to compare the topographic
normalization performance between the original, Statistical-
empirical normalized, and best model normalized NDVI
maps. As seen in the original NDVI maps (Figs. 5a and 5e),
most of the sun-shaded slope area had a relatively lower
NDVI value than the sunlit slope area.

As presented in the normalized NDVI maps with the
Statistical-empirical model, the topographic effect was
remarkably reduced when compared to the original NDVI
maps (Figs. 5b and 5e). However, some topographic effects
on the sun-shaded slopes remained in the NDVImaps (see the
blue arrow in Figs. 5b and 5e). This is because the Statistical-
empirical model performed well in the NIR band while it
was not carried out completely in the red band. The HSSIM
index in the red band was two times larger than the result of
the optimal model, i.e. the C-correction. Moreover, as seen
in Fig. 5e, overcorrected NDVI values were found in sunlit
areas.

The NDVI maps normalized by the proposed method were
shown in Figs. 5c and 5f. When the maps were visually com-
pared with the original and Statistical-empirical normalized
maps, it is clear that the NDVI maps of Figs. 5c and 5f were
the best topography-normalizedNDVImaps. The overcorrec-
tion problem in the Statistical-empirical model was not found
in the proposed method as well as the study area looked like
a flat surface. This result indicates that the proposed method
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FIGURE 6. NDVI values in the profile shown in Fig. 5a: (a) test image 1 and
(b) test image 2. The black, dotted blue and red lines indicate values from
the original, Statistical-empirical and proposed NDVI maps, respectively.

has a remarkable performance in normalizing the topographic
effect of an NDVI map.

Fig. 6a and 6b plot the NDVI values of the test
image 1 and 2 in the profile shown in Fig. 5a, respectively.
The profiles include both the sun-shaded and sunlit slope
areas. As seen in Fig. 6a, the original NDVI profile of the
test image 1 varied from 0.66 to 0.78 according to the slope
angle, although the study area consists of the same vegeta-
tion cover. The NDVI values from the Statistical-empirical
model showed a smaller range than the original NDVI. The
NDVI values from the proposed method ranged from 0.70 to
0.75. The NDVI values of the test image 2 had the ranges
of 0.71 to 0.78, 0.72 to 0.78, and 0.74 to 0.77 in the original,
Statistical-empirical and proposed NDVI maps, respectively.
Moreover, we could find the overcorrection problem in the
Statistical-empirical NDVI map of the test image 2 (blue dot
line in Fig. 6b). The standard deviations were calculated from
the profiles of the test image 1 and 2. The standard deviations
of the proposed NDVI maps were remarkably reduced from
0.032 to 0.015 and from 0.021 to 0.015 in the test image 1 and
2, respectively, which correspond to the reduction rates of
about 53.1% and 28.6%, respectively. This result shows that
the proposed method enables us to remarkably improve the
topographic normalization performance of the NDVI maps.

Fig. 7 shows the scattergrams of NDVI values between the
test image 1 and 2. The data used for the scattergrams was
obtained in mountainous areas with altitudes above 100m.
The coefficient of determination (R2) between the original
NDVI maps of the test image 1 and 2 was about 0.626 and
the root mean square difference (RMSD) was about 0.041
(Fig. 7a). As seen in Fig. 7a, the distribution of the NDVI val-
ues was larger than the other scattergrams of Figs. 7b and 7c.
Since the two test images were obtained at different solar

FIGURE 7. Scattergrams of NDVI values between the test image 1 and 2:
(a) the original, (b) Statistical-empirical and (c) proposed NDVI maps.

zenith and azimuth angles, the topographic effect appear-
ing on each image was different. When the NDVI val-
ues were topography-normalized by using the Statistical-
empirical model, R2 and RMSD were largely improved to
0.711 and 0.036, respectively. This result shows that the
topographic normalization processing must be applied to the
NDVI maps. And it is also consistent with the reason why
many researchers have applied the topographic normalization
model to generate an improved index map [2], [3], [16], [17].

Moreover, when the proposed method was applied to the
NDVI maps, the topographic normalization performance was
more improved (Fig. 7c). Our result showed R2 of about
0.759 and the RMSD of about 0.031. This result shows
the highest correlation among all scattergrams. Most of all,
the distribution of the scatter diagram from the proposed
method is much closer to a perfect ellipse. It shows that the
proposed method properly normalizes the topographic effect.

Further performance validation was performed by using
the correlation coefficient between cosi and NDVI. The
surface reflectance has a linear relationship with cosi, and
hence the correlation coefficient (r) between cosi and surface
reflectance enables us to estimate the performance of topo-
graphic normalization [28]. If the topographic normalization
was well applied, r will be close to zero. In this study, the
test was performed by using pixels acquired in mountainous
forest areas. The r in the test image 1 were about 0.575,
0.063 and 0.032 in the original, Statistical-empirical, and
proposed NDVI maps, respectively, and the r in the test
image 2 were about 0.303, 0.095 and 0.031 in the original,
Statistical-empirical, and proposed NDVI maps, respectively.
The r values of the proposed NDVI maps were about 2 to
3 times closer to zero than the Statistical-empirical NDVI
maps. Consequently, this result further validates that the
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proposed method normalizes the topographic effect of the
NDVI maps well.

In this study, the HSSIM index was used for evaluating the
topographic normalization performance. However, it could be
replaced by another appropriate evaluation method. In addi-
tion, five topographic normalization models were used in this
study, but other models can be used for the best model selec-
tion. If an existing DEM having a higher spatial resolution
than the multi-spectral (MS) bands of Landsat OLI images
can be used in the proposed method, the performance of
topographic normalization would be improved [18], [29].
Finally, it should be noted that the proposed method can be
applied to the topographic normalization of other index maps
such as NDSI, LAI, NBR, etc.

IV. CONCLUSION
In this paper, we proposed an efficient method to gener-
ate a topography-normalized NDVI map. The key of the
proposed method is to create the topography-normalized
NDVI map after selecting and applying the best topographic
normalization model for each band. For this, the HSSIM
index is used to evaluate the performance of the five topo-
graphic normalization models such as the SCS, Statistical-
empirical, C-correction, Minnaert and Minnaert + SCS. The
HSSIM index enables us quantitatively to evaluate the topo-
graphic normalization performance based on the similarity
between sun-shaded and sunlit slope areas. Two Landsat OLI
images acquired from the forest area of northern Malaysia
at two different seasons were used to validate the proposed
method.

The models were evaluated by using the HSSIM index.
Consequently, for the two test images, the C-correction, Min-
naert+SCS, C-correction, Statistical-empirical, C-correction
and Minnaert + SCS were selected as the best models in the
Blue, Green, Red, NIR, SWIR-1, and SWIR-2 bands, respec-
tively. To validate the performance of the proposed method,
three NDVI maps were created from the original image,
topography-normalized image by Statistical-empirical model
and topography-normalized image by the proposed method.
Although the topographic effect was remarkably reduced
in the Statistical-empirical NDVI map, some topographic
effects on the sun-shaded slopes remained in the NDVI maps
as well as the overcorrected NDVI values were found in
sunlit areas. The overcorrection problemwas also found in the
profile. The improvement by the Statistical-empirical model
were clear.

Further improvement could be found in the proposed
method. The undercorrection and overcorrection problems in
the Statistical-empirical NDVI map were not shown in the
proposedNDVImap. The scattergrams of the proposedNDVI
maps created from the two test data showed that R2 increased
from 0.626 to 0.759 and RMSD reduced from 0.041 to
0.031. Most of all, the distribution of the scatterdiagram from
the proposed method is much closer to a perfect ellipse.
The results show that the proposed method has a higher
performance.
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