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ABSTRACT Vehicle fog computing (VFC) is proposed as a solution that can significantly reduce the task
processing overload of base station during the peak time, where the vehicle as a fog node contributes idle
computing resource for task processing. However, there are still many challenges in the deployment of VFC,
such as the lack of specific incentives of resource contribution, high system complexity, and offloading
collisions between vehicles when the vehicles are offloading tasks simultaneously. In this paper, we first
propose a novel contract-based incentive mechanism that combines resource contribution and resource
utilization. Based on that, we propose to use distributed deep reinforcement learning to allocate resources
and reduce system complexity. Task offloading method based on the queuing model is also proposed to
avoid decision collisions in multi-vehicles task offloading. Numerical experiment results demonstrate that
our proposed scheme has achieved a significant improvement in task offloading and resource allocation
performance.

INDEX TERMS Vehicular fog computing, contract theory, deep reinforcement learning, resource allocation,
task offloading.

I. INTRODUCTION
With the rapid development of the Internet of Vehicles(IoV)
technology and 5G communication technology, more and
more functional technologies are applied to vehicles, such as
augmented reality(AR), real-time video streaming, automatic
driving(AD), etc. [1]–[3]. In these applications, some of them
need to transmit a large amount of data, others do not need
to transmit a lot of data, however, there would be rigorous
delay constraints to transmit them, so these applications have
a relatively large demand for the IoV resources, such as spec-
trum resources, storage space, etc. But local vehicle capabil-
ity is limited and vehicle would be too hard to accomplish
its task. Therefore, cloud computing with strong computing
capability has become a more efficient way to implement
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these applications [4]. The data that needs to be processed
by these applications is transmitted to the cloud server for
processing, and the cloud server sends the processing result
to the vehicle end to complete the task processing [5].

However, long-distance data transmissionmay create some
potential challenges, such as large data transmission delay
cannot guarantee the quality of service (QoS). Extending the
computation resources of the cloud computing to the mobile
edge computing (MEC) close to mobile users is proposed [6].
The MEC puts the cloud services to the radio access net-
work (RAN) and offers the cloud-computing capability in
close proximity to mobile users [7].

The research on MEC mainly focuses on how to optimize
the decision of task offloading and the strategy of resource
allocation to improve the performance of the IoV. In [8],
the author’s optimization goal is to minimize the overall
energy consumption of the system and the use of computation
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resources. The work in [9]–[15] is to minimize the delay for
all users and the energy consumption of them by proposing a
novel IoV systems and resource allocation mechanisms.

Although MEC has strong computing power, with the
increase of the number of vehicles, its limited computing
power is gradually overloaded, which makes the QoS of
some vehicles cannot be guaranteed. On the other hand, some
vehicles are equipped with processors with strong computing
power, but the processing unit of the vehicle is idle [16], [17].
Therefore, the use of idle computation resources of these
vehicles can significantly alleviate the load pressure of the
MEC without additional deployment of the MEC. In [18],
the parked vehicles can be used as a fog node and pro-
vide real-time computation resources. At the same time,
the vehicles can directly offload tasks to vehicles with idle
computation resources for task processing, improving task
processing efficiency. This method is called vehicle fog
computing (VFC) [19].

Neverthless, VFC still faces some challenges. In [20], vehi-
cles with idle computation resources unconditionally con-
tribute computation resources to the IoV. However, in actual
scenarios, vehicles are privately owned and require certain
incentives. The incentive vehicles contribute computation
resources, that is, the VFC gives incentives to vehicles that
contribute resources. These vehicles get these rewards so
that they can use the system resources (storage space, fre-
quency resource, etc.) of the IoV. The more resources the
vehicles contribute, the more rewards the vehicles would
obtain. In [21]–[23], an optimization algorithm for compu-
tation resource allocation and task unloading is proposed,
where the system gives certain rewards to vehicles that con-
tribute resources, but the article does not clearly indicate the
purpose of the reward. Therefore, it is necessary to design
a reasonable incentive mechanism to encourage vehicles to
contribute resources. At the meantime, vehicles can use these
rewards to exchange vehicle network system resources to
improve the system performance.

The employment of conventional computation offloading
and resource allocation in MEC and VFC makes the system
complex in [3], where the offloading decisions are taken
through game-theoretic approach and the resource allocation
is achieved by using the Lagrange multiplier method. In order
to reduce the system implementation complexity, more and
more researches have focused on the scenarios that use deep
reinforcement learning (DRL) algorithms, in which deep neu-
ral network (DNN) is introduced, which will be trained to
make offloading decisions and resource allocation instead of
using other methods, to optimize offloading decisions and
resource allocation to achieve system optimization goals in
recent years.

In [24], the method of DRL is used to meet different
resource requirements. A method based on DRL is studied
in [25], which simplifies the state of the system for dis-
tributed offloading. The author in [26] proposes a DRL
based transmission strategy by exploring trirelationships

among vehicles. In [27], the author constructs an intelli-
gent offloading system for vehicular edge computing by
leveraging DRL. In [28], the DRL is used to save energy
in RAN while meeting the needs of users. The author in
[29] proposes a new DRL algorithm for solving the higher
complexity joint resource management problem in the IoV.
In [30], reinforcement learning is used to solve the problem
of resource allocation in the vehicle cloud, in which resources
can be dynamically allocated to maximize long-term network
rewards and prevent myopic decisions.

In this paper, we propose a new contract theory that incents
vehicles contribute their computation resources and get the
rewards so that they can use them to exchange additional
resources from the IoV to improve the QoS of their appli-
cation, such as task processing delay, energy consumption,
etc. We also use DRL method to reduce the system imple-
mentation complexity, which based on our proposed contract
theory offloads the tasks of vehicles and reasonably allo-
cates system resources to achieve better system performance.
Our main contributions of this work are summarized as
follows:

• We propose an incentive mechanism based on contract
theory. While the vehicles contribute to the computa-
tion resources, the reward of the previous acquisition
can be used to exchange the resources of the system,
such as frequency resources, computation resources,
etc., to improve the QoS of the vehicles application.
When providing rewards and resources for the vehicles,
the roadside unit (RSU) can obtain the idle computation
resources of the vehicles to improve its own computing
power and the performance of the entire system when
the vehicles offload the task.

• We will use the DRL method based on incentive mech-
anism to reduce implementation complexity in VFC,
where offloading decisions could be generated faster
through DNN. Besides, in this new incentive mecha-
nism, since there are some vehicles using additional
resources, DRL can be used as an efficient method to
allocate these resources in a low complexity way.

• The DRL method we adopt is a distributed algorithm.
In order to avoid the task offloading conflict caused by
the simultaneous offloading decision, we introduce a
queuing model, which is sorted according to the accu-
mulated rewards of the vehicles. The vehicle that has
higher cumulative reward can obtain the priority of task
offloading, avoiding the task offloading conflict caused
by simultaneous decision.

The remaining parts of the paper are summarized as
follows. The system model is introduced in Section II.
In Section III, a new mechanism based contract theory is
presented. We describe a framework of DRL based task
offload and resource allocation in Section IV. In Section V,
the simulation presented. Conclusions and future work are
drawn in Section VI and Section VII, respectively.
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II. SYSTEM MODEL
In this paper, the IoV scenario is shown in Fig. 1. This
scenario consists of a RSUwith powerful computing capacity
and M vehicles denoted by M ∈ {1, 2, 3 . . .M} moving on
the road. The location of the RSU is p0, and the computing
capacity of the RSU is represented as C0. Vehicles are evenly
distributed on a dual carriagewaywith two lanes. The position
and velocity of the vehicle is denoted as pi and vi, respec-
tively, and the idle computation resources owned by vehicle
is denoted as Ci. In the k th time slot, the vehicle randomly
generate task

(
T ki , d

k
i

)
that need to be processed, where T ki

represents the size of the task generated by the vehicle in the
k th time slot, and dki represents the maximum tolerable delay
of the task.

FIGURE 1. The scenario of the internet of vehicles.

In this scenario, the vehicle can directly perform vehicle-
to-infrastructure (V2I) communication with the RSU, such
as vehicle A, and the vehicle can also perform vehicle-to-
vehicle (V2V) communication with other vehicles with the
assistance of RSU, such as vehicles B and C. Even if the
vehicle leaves the communication range of RSU but is within
the communication range of other vehicles, V2V communica-
tion can still bemaintained between vehicles, such as vehicles
D and E.

For each vehicle, they can handle the task by processing it
locally or offload the task to other place to process. In local
processing, the time tc required by the vehicle to process the
task in the k th time slot can be expressed as

tkci =
T ki
Ci
, (1)

when tkci < dki , it indicates that the vehicle’s own com-
puting capacity can meet the delay requirement of the pro-
cessing task, and the vehicle will process the task locally.
Conversely, when tkci > dki , it indicates that the vehi-
cle cannot complete the task, so the task needs to be
offloaded.

As the task is offloaded, the vehicle i can offload the task
to the vehicle j for processing and transmit task data through
the V2V link. In order to improve the spectral efficiency,
we assume that the allocated channels are orthogonal to each
other and do not interfere with each other.

In the wireless communication of the k th time slot, the sig-
nal noise ratio(SNR) of vehicle i is expressed as

Γ k
ij =

Pki hij
N0

, (2)

where Pki represents the wireless transmission power of the
vehicle i, hij represents the wireless channel gain between the
vehicle i and the vehicle j, and N0 represents the noise power
[31], [32]. The gain of the wireless channel can be expressed
as

hij = Pi + Gti − Lij + G
r
j , (3)

where Pi denotes the transmission power of the vehicle i, and
Gti ,G

r
j denote the transmission antenna gain of the vehicle i

and the reception antenna gain of the vehicle j, respectively.
Lij represents the transmission loss, which we assume is the
path loss of free space, and Lij is given by

Lij = 32.4+ 20 lgF + 20 lg σij, (4)

where F is the transmission frequency and σij is the distance
between the vehicles i and j

σij =
∣∣pi − pj∣∣ . (5)

Then the wireless transmission rate of vehicle i to vehicle
j denoted as

rkij = W log2
(
1+ Γ k

ij

)
, (6)

whereW is the transmission bandwidth [33]. The time taken
to transfer the task is shown as

tktij =
T ki
rkij
. (7)

The time taken by vehicle j to process the task is

tkcj =
T ki
Cj
. (8)

We assume that the size of computation result data fed
back from the vehicle j to the vehicle i is very small, so the
transmission delay of the transmission processing result is
negligible.

The total time taken by processing task by offloading the
task to vehicle j is expressed as

tkij = tktij + t
kc
j , (9)

when tkij < dki , it indicates that the vehicle i offloads the task
to the vehicle j and vehicle jcan complete the task processing
within dki . Conversely, when t

k
ij > dij, it illustrates that the

time taken by processing task exceeds the maximum tolerable
delay of the task. If the vehicle i cannot complete the task
processing by offloading the task to another vehicle, the task
needs to be offloaded to the RSU for processing.

The RSU has powerful computing capacity, but in order
to process more tasks offloaded to the RSU, we assume that
the total time taken for the task to be offloaded to the RSU
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(j = 0) is equal to the maximum tolerable delay of the task,
which can be represented as

tki0 = T kti0 + t
kc
0 = dki . (10)

The amount of computation resources that the task gener-
ated by vehicle i requires to process form the RSU is shown
as

Dki =
T ki
tkc0
=

T ki
dki − t

kt
i0

. (11)

Although the RSU has rich computation resources and
strong computing capacity, it is also limited in computation
resources. When the task of offloaded to the RSU exceeds the
total computation resources of the RSU, some tasks process-
ing would fail, which is denoted as

N∑
i=0

λi · Dki > C0, (12)

where λi = 1 indicates that the vehicle i offloads the task to
the RSU for processing, otherwise, λi = 0.
We assume that in the k th time slot, the channel conditions

of the vehicle remain unchanged, which the data transmission
rate does not change. In the k th + 1 time slot, the position of
the vehicle is expressed as

pk+1i = pki + t · vi, (13)

where t is the time interval of each time slot. At the same
time, the vehicle will also generate new tasks (T k+1i , dk+1i )
that needs to processing.

III. CONTRACT THEORY-BASED INCENTIVE MECHANISM
In this chapter, we propose a contract theory-based incen-
tive mechanism for the current IoV scenario to encour-
age vehicles to contribute their own idle computation
resources.

A. THE CONTRACT OF RESOURCE ALLOCATION
We assume that vehicles within the RSU communication
range are classified intoN types of vehicles according to their
shareable resources, each type corresponding to a contract
(ξn,R (ξn)), where ξn represents the type of resource contri-
bution of vehicles, which is given by

ξ1 < ξ1 < ξ1 · · · < ξn, n ∈ (1, 2, 3 · · ·N ) . (14)

And R (ξn) represents the bonus value corresponding to
the resource contribution ξn. The more vehicles contribute
the computation resources and the greater the probability that
the resource will be utilized by other vehicles, the higher the
reward value will be.

RSU will provide the corresponding contract according to
the type of each vehicle. The vehicle can choose to accept
or reject the contract, that is, decide whether to contribute its
own computation resources. When ξn = 0, it means that the
vehicle does not contribute resources, and the corresponding
reward value R (ξn) = 0. Next we will establish the utility

functions for the RSU and the vehicle and formulate our
optimization goals.

Due to the asymmetry of the information, the RSU only
knows that there are a total ofN types of vehicles, and it is not
clear the amount of resources that the vehicle can contribute.
Therefore, for vehicle i, the probability of belonging to the
n-type contract is ρn, and

∑N
n=1 ρn = 1.

1) UTILITY MODEL OF RSU
One purpose of vehicle contribution computation resources
is to ease the burden of RSU computing tasks, while
RSU is also responsible for resource scheduling. There-
fore, we assume that the RSU utility function can be
improved by reducing task processing latency, reducing the
energy consumed by task processing, increasing the task
completion ratio within the system, and reducing the uti-
lization of system frequency resources, which is denoted
as

URSU
i (ξn) = Iξn − R

C (ξn) , (15)

where I indicates the RSU performance improvement, which
means that the performance of the task offload to the vehicle
processing is compared with the performance of task offload
to the vehicle processing, and is given by

Iξn = ωE ·1E
c
+ ωt ·1tc, (16)

where E and t represent the change of energy and task pro-
cessing time when the task T is processed by the RSU and
the vehicle as

1Ec = (εRSU − εVeh) · T , (17)

1tc = t0 − ti, (18)

where ωRSU and ωVeh represent the energy consumed by the
task of processing the unit data amount on the RSU and the
vehicle i, respectively, while t0 and ti represent the total time
that the task is offloaded to the RSU and the vehicle i for
processing, respectively.

For N types ofM vehicles covered by the RSU communi-
cation range, the RSU utility function is as follows

URSU (ξn) =

M∑
i=1

N∑
n=1

ρnURSU
i (ξn) . (19)

2) UTILITY MODEL OF VEHICLE
For the vehicle, if the computation resources are contributed
and the resources are utilized by other vehicles, the reward
corresponding to contract of the type n,(ξn,R (ξn)) can be
obtained, the utility function of the vehicle i in the contract
of n is as follows

UVeh
i (ξn) = θnRC (ξn)− ξn, (20)

where θn represents the contract weight of type n, and a higher
type θn has a larger weight.
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B. THE CONTRACT OF RESOURCE UTILIZATION
For a vehicle with a task offloading requirement, assuming
that the accumulated reward value of the vehicle in the early
task processing is τ , the vehicle can exchange the wireless
transmission bandwidthw of the systemwith the accumulated
reward value τ . So we propose a second set of contracts(
RE
(
wg
)
,wg

)
, which has a total of G types, which means

that the vehicle uses the reward value RE
(
wg
)
in exchange

for additional wg bandwidth resources, which can reduce
the time spent on wireless transmission. For vehicles with
task offloading requirements, the probability of selecting a
contract of type g is ρg, and

∑G
g=1 ρg = 1.

For RSU, the utility function in the contract for resource
utilization is expressed as

URSU
i

(
wg
)
= IRSUwg − R

E (wg) , (21)

IRSUwg = f RSU − ωwwg, (22)

where f is a penalty value, indicating that if the task process-
ing fails to be completed, the penalty value of f is given as
f < 0, and if the task is successfully completed, f = 0.
Assuming that there are X vehicles with task offloading

requirements within the coverage of the RSU communication
range, the RSU utility function is as follows

URSU (wg) = M∑
i=1

G∑
g=1

ρgURSU
i

(
wg
)
. (23)

For the vehicle iwhich offloads the task, the bonus value is
exchanged for additional bandwidth resources, and the time
taken for the processing task can be reduced. So the utility
function is expressed as

UVeh
i

(
wg
)
= IVehwg − R

E (wg) , (24)

where I indicates the improvement of the task processing
performance of the vehicle after using the additional spectrum
resources, as shown below

IVehwg = ωtkt1t
kt
+ f Veh, (25)

where 1tkt represents the change value of the transmission
delay after using the additional transmission bandwidth. f is
a penalty value, indicating that if the task fails to complete
the task processing, the penalty value of f is given as f < 0,
and if the task is successfully completed, f = 0.
In summary, under the conditions of the two contracts,

the overall utility equation of the whole system can be
expressed as

US (ξn,wg) = URSU (ξn)+URSU (wg)+ M∑
i=1

UVeh
i

(
ξn,wg

)
,

(26)

UVeh
i

(
ξn,wg

)
=

N∑
n=1

ρnUVeh
i (ξn)+φ ·

G∑
g=1

ρgUVeh
i
(
wg
)
, (27)

where φ = 1 indicates that the vehicle i has a task offloading
requirement, otherwise φ = 0. So the corresponding opti-
mization problem is as follows

max
ξn,wg

US (ξn,wg)
s.t. C1 : θnRC (ξn)− ξn > 0,

C2 : θnRC (ξn)− ξn > θnRC (ξn′)− ξn′ ,

C3 : URSU
i

(
wg
)
> 0,

C4 : URSU
i

(
wg
)
> URSU

i
(
wg′
)
,

∀n, n′ ∈ N , n 6= n′,

∀g, g′ ∈ G, g 6= g′, (28)

where C1,C3 represent the IR constraint, and C2,C4 repre-
sent the IC constraint, of which means are shown as follows
• Individual rationality (IR) constraint: In C1, the type n
vehicle will get a nonnegative utility value if it selects
the contract item (ξn,R (ξn)), which is the same as that
in C3.

• Incentive compatibility (IC) constraint: In C2, the type
n vehicle will get the maximum utility value if and only
if it select the contract (ξn,R (ξn)) designed for its type,
which is the same as that in C4.

IV. DEEP REINFORCEMENT LEARNING FOR RESOURCE
MANAGEMENT
In this section, we will introduce a task offloading and
resource allocation mechanism based on DRL, and explain
the key parts of reinforcement learning and the architecture
of deep Q-networks (DQN) in detail.

A. REINFORCEMENT LEARNING

FIGURE 2. The architecture of reinforcement learning.

Fig. 2 shows the architecture of reinforcement learning,
which contains an agent and environment, which interact with
each other. In the IoV scenario, each vehicle is an agent, and
the environment includes all vehicles and RSUs in the IoV
scenario. In reinforcement learning, the agent maintains a Q
value table Q

(
si, aj

)
, where s represents the feature vector of

the current environment, a represents the action taken by the
agent, and Q value represents the action that can be obtained
by taking action a in state s value. The agent selects action
a∗ according to the Q value table and transmits it to the
environment.
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FIGURE 3. This is DQN framework for DRL. DNN outputs the Q values corresponding to all actions according
to the feature vector of the input state, determines the action a∗ that acts on the environment according to
the action selection strategy, and the Environment returns the reward and the next state to the Agent
according to the action a∗. The state, action, reward , and next state generated during the interaction
between the Agent and the Environment are stored in the replay memory, and data is periodically sampled
from it for training the DNN.

Environment feedbacks the reward value rk to the agent
according to the action a∗ and the current system state and
the next state sk+1 based on the action a∗, besides rk will
be used to update the Q value table in the agent. The update
equation is as follows

Qupdate

(
sk , at

)
= Q

(
sk , at

)
+α

[
r+β max

a∈A
Q
(
sk+1, a

)
−Q

(
sk, at

)]
,

(29)

where α is the learning rate and β is the attenuation factor.
During the interaction between the agent and the environ-
ment, the Q value table maintained by the agent is contin-
uously iteratively updated until the Q value in the Q value
table converges. The agent can select the action with the
greatest value to act on the environment according to the
greedy algorithm.

As we mentioned in the second section, at time slot
k , the state feature vector of the environment is com-
posed of the following parts: the vehicle speed v =

(v[1], v[2], v[3] . . . v[M ]), the vehicle position information
pk =

(
pk [0], pk [1], pk [2] . . . pk [M ]

)
, where pk [0] rep-

resents the position of the RSU. The vehicle comput-
ing capacity C = (C[0],C[1],C[2] . . .C[M ]), where
C[0] represents the computing capacity of RSU. The
tasks

(
T k , dk

)
generated by the vehicle, where T k =(

T k [1],T k [2],T k [3] . . . T k [M ]
)
, and dk =

(
dk [1], dk [2],

dk [3] . . . dk [M ]
)
, the cumulative reward value of the vehi-

cle Rkac =
(
Rkac[1],R

k
ac[2],R

k
ac[3] . . .R

k
ac[M ]

)
. Therefore,

the system status can be expressed as

sk =
{
v, pk ,C,T k , dk ,Rkac

}
, (30)

whenever a new system state is generated, the agent will
choose a suitable action ak to act on the environment accord-
ing to the current system state. The action ak contains the
following
• The amount of computation resources contributed by the
vehicle ξ k =

(
ξ k [1], ξ k [2], ξ k [3], . . . ξ k [M ]

)
, where

ξ k [i] = j represents the computation resources con-
tributed by the ith vehicle The amount is j.

• Offloading decision taken on the task Ok =
(
Ok [1],

Ok [2],Ok [3] . . .Ok [M ]
)
, whereOk [i] = jmeans vehi-

cle i offloads its own task to vehicle j for processing.
• Selection of additional transmission bandwidth W k

=(
W k [1],W k [2],W k [3] . . .W k [M ]

)
, where W k [i] = j

indicates that vehicle i selects additional j bandwidth for
task transmission.

• Selection of wireless transmission power Pk = (Pk [1],
Pk [2],Pk [3] . . .Pk [M ]), where Pk [i] = j indicates that
the wireless transmission power of the vehicle i trans-
mission task is j.

Therefore, the action ak can be expressed as

ak =
{
ξ k ,Ok ,W k ,Pk

}
. (31)

After the action ak is transmitted to the environment,
the environment will generate a reward value rk and feed it
back to the agent. The rk here can use the results discussed
in Section III as

rk = USk
(
ξ k ,W k

)
− ωPkT

kPk , (32)

where ωPkT
kPk represents the energy consumed by wireless

transmission. The greater the transmission power, the more
the energy consumed by wireless transmission, and the
smaller the corresponding reward value.
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Algorithm 1 Training Deep Q-Network of Computation
Resourcement Management

1 Initialize: Replay memory with a size of 9,
the mini-batch with size of ψ , ψ < 9, DNN network
weights θDNN , IoT Scenario Environment;

2 Initialize: k = 0;
3 while All of vehicles are in the communication range of
the RSU do

4 Input the state of environment sk ;
5 Select ε in range (0,1);
6 if ε < ε then
7 Select action ak randomly;
8 else
9 Select ak∗ = argmaxa∈AQ

(
sk , ak

)
;

10 end
11 Environment gengerates next state sk+1 and reward

rk based on the action of agent;
12 Save data items

(
sk , ak , rk , sk+1

)
into Replay

memory;
13 if i > ψ then
14 Sample mini-batch of data from Replay memory

randomly;
15 Train the DQN with mini-batch data and update

the DQN weights θDNN ;
16 end
17 Update the time index k = k + 1.
18 end

Because the state feature vector space of this scenario
increases with the number of vehicles in the environment,
the agent needs to maintain a large Q value table, and it takes
a lot of iterations to make the Q value converge, so we will
use DRL to get convergent Q values faster.

B. DEEP REINFORCEMENT LEARNING
We will use DQN framework for DRL, as shown in Fig. 3.

The Agent contains a DNN. The input of the neural net-
work is the state feature vector sk of the current environment,
and the output of the neural network is the Q value Q (s, a)
obtained from all the actions taken under the state sk . The
action a∗ is selected to act on the environment through the
action selection strategy π . Different from reinforcement
learning, on the one hand, DRL introduces a DNN instead
of the Q value table, and on the other hand, a reply memory
is set up to store parameters

(
sk , ak , rk , sk+1

)
during the

interactions between the agent and environment, periodically
sampling ω data from the reply memory for training the
DNN, and updating the weight parameter θDNN in the DNN
to minimize the loss function. The loss function is as follows

Loss (θDNN ) =
�∑
i=1

(
yki − Q

(
ski , a

k
i

))2
, (33)

yki = rki + γ max
a∈A

Q
(
sk+1i , a

)
. (34)

In order to be able to traverse the entire state space in
this state instead of just choosing the action that maximizes
the Q value, during the DNN training, our action selection
strategy π is defined as the ε-greedy method, ε represents the
action exploration rate, and ε-greedy method indicates that
the agent has a probability of 1−ε to choose the action a∗ that
maximizes Q (s, a), and has the probability of ε to randomly
choose the action a. As the number of iterations increases,
the value of ε gradually decreases, which accelerates the
convergence of the Q value.
In the DQN test process, we choose the strategy π as the

greedy method, that is, the action a∗ that maximizes the Q
value is selected as the output and acts on the environment.
The average performance of the feedback is used to measure
the system performance level after iteration.

The algorithm for training DQN is shown as in Algo-
rithm 1.

V. NUMERICAL EXPERIMENT
In this section, we will build a DRL simulation environment
based on tensorflow, and describe the simulation results of
system performance.

A. GENERAL SETUP
In the DQN architecture, we set up a four-layer neural net-
work, one of which is an input layer, one is an output layer,
and two hidden layers. The number of neurons in the two
hidden layers is 600, 300. We will use the ReLu function
as the activation function and ReLu function of this neural
network is as follows

fR(x) = max(0, x). (35)

At the same time, we will use the Adam optimizer to
optimize the Loss function in the neural network [34]. Other
detailed parameters about neural networks and default appli-
cation scenarios [28], [35], which are shown in Table 1.

TABLE 1. Simulation parameters.
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According to the setting of the scene and the construction
of the model, we will compare the system performance from
the following aspects:

• We modify the parameters in the model and compare
the differences in the performance of the system with
the modification of each parameter to obtain the optimal
model parameter settings.

• We compare the resource management model proposed
in this paper with conventional resource management
solutions. In conventional resource management solu-
tions, when the vehicle’s own tasks cannot be processed
locally, the tasks are directly offloaded to the RSU for
processing, and the system performance of the two solu-
tions is compared.

B. EXPERIMENT RESULT
1) EXPERIMENT 1
We implemented experimental simulations under different
parameters, such as the number of vehicles, the size of mini-
batch, the size of the reply memory, and the learning rate, and
compared and analyzed the simulation.

In actual application scenarios, the number of vehicles
will affect the number of samples obtained by the system at
the end of each episode. The larger the number of vehicles,
the more samples the system obtains after each episode, and
the earlier the optimization of the neural network and the
parameter update can be performed. As shown in Fig. 4, it is
a comparison of system performance under different vehicle
numbers [25, 50, 100, 150] in the same scene. The ordinate
represents the standardized system performance, which is
represented by the system delay, energy consumption, task
completion rate, and vehicle contribution resources. Through
the simulation graph, we can know that when the number
of vehicles in the environment is veh num = 25, the per-
formance curve starts to rise around episode = 10. As the
number of vehicles in the system increases, the performance
curve improves faster. When the number of vehicles veh

FIGURE 4. The normalized system performance versus different numbers
of vehicles.

num = 100, 150, the performance curve converges at the
same time. Therefore, when there are more vehicles in the
environment, it is more beneficial to the optimization of the
neural network in DQN.

As mentioned above, when there are more vehicles in the
system, more sample values can be obtained in an episode.
In our proposed model, when reply memory > mini-batch,
the neural network starts optimization. Therefore, we infer
that when the number of vehicles is fixed, as the number
of samples increases, the system performance will start to
converge later. We assume that the number of vehicles in
the current system is veh num = 25, and the number of
samples is mini-batch = [50, 100, 200, 300]. Fig. 5 shows
our experimental simulation results, which is consistent with
our inference, that is, as the mini-batch increases, the later the
system performance improves.

FIGURE 5. The normalized system performance versus different sizes of
mini-batch.

The size of the reply memory has been set in the model.
If the data stored in the reply memory is full, the older data
will be cleared to make room for new data to store. We infer
that if the size of the reply memory becomes larger, there will
be more old data in sample data, and it is less likely that new
data is sampled. In other words, the new data cannot be used
to train the neural network in time, delaying the improvement
of system performance. We assume that the current system
has veh num = 25, sample number mini-batch = 50, reply
memory = [500, 1000, 2000, 3000]. The simulation results
are shown in Fig. 6. When reply memory = [500, 1000]
The system performance is basically improved at the same
time. When reply-memory = [2000, 3000], the system per-
formance is relatively late.

We hope that the system model can pay attention to
long-term benefits rather than immediate benefits, which is
reflected in the gamma value in equation (34). A large gamma
value indicates that there is a large part of the value from the
next state in current Q-value, which means that the model
will consider more about the reward the next state will obtain.
As shown in Fig. 7, for a system model with a large gamma
value, its performance can also be quickly improved.
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FIGURE 6. The normalized system performance versus different sizes of
reply memory.

FIGURE 7. The normalized system performance versus different values of
gamma.

2) EXPERIMENT 2
We compare the performance of the proposed system model
with the conventional model. In the conventional model,
when the vehicle cannot complete the task within the max-
imum delay of the task, it will directly offload the task to the
RSU for processing. Although the RSU has relatively strong
computing power, it can smoothly handle all tasks offloaded
to the RSU in a scenario with a small number of vehicles.
However, as the number of vehicles increases, the number of
tasks offloaded to the RSU gradually increases, and the task
processing pressure on the RSU increases too. As the RSU is
in a full load state, the RSU has no free computation resources
for other offloaded tasks to utilize. Hence, these tasks will not
be processed successfully. Therefore, the larger the number of
vehicles, the higher the failure rate of task processing, and the
lower the performance level of the conventional offloading
policy. As shown in Fig. 8, with the increase in the number
of vehicles, the task offloading scheme proposed in this paper
can achieve performance improvement earlier, and the system

FIGURE 8. The normalized system performance versus different statrgies
of resource management.

performance has not received much impact, because with
the increase in the number of vehicles, the number of tasks
that vehicles offload to the RSU increases, but at the same
time, the number of vehicles with idle computation resources
also increases, so the computation resources contributed by
vehicles also increase. However, the performance of the con-
ventional offloadingmethod in Fig. 8 decreases as the number
of vehicles increases. Therefore, the resource management
scheme proposed in this paper can motivate vehicles to con-
tribute resources, and it is robust to the increase in the number
of vehicles. As the number of vehicles increases, the system
can maintain good performance.

VI. CONCLUSION
In this article, we first designed a resource management
scheme based on contract theory. The contract theory con-
tains two aspects of the contract. One is a resource contribu-
tion contract. The vehicle contributes resources and obtains a
reward value corresponding to the amount of resources it con-
tributes, which motivates vehicles to contribute computation
resources to the RSU. The other is a contract for resource uti-
lization. The vehicle uses its accumulated reward in exchange
for additional wireless transmission bandwidth to improve the
QoS of the vehicle application. For the entire system, while
improving the overall performance of the system (delay, task
completion rate, energy consumption), it is also necessary
to minimize the utilization of system resources (spectrum
resources). We use this as a basis to establish an optimization
function for system performance.

Secondly, we use the DRL method to implement the
proposed contract-based resource management and task
offloading scheme. We use the previously established system
performance optimization function as the reward in reinforce-
ment learning. We set a reply memory, and use the data
sampled from the reply memory to update the parameters in
the deep neural network to optimize resource management
policy and the decision of tasks offloading and improves
system performance.
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VII. FUTURE WORK
In the DRL model proposed in this paper, DQN outputs the
Q values of all actions corresponding to the state feature
vector. With the increase of the number of vehicles, the space
size of the action a for representing the offloading decision
and resource management will be very large, so the output
value space of the DQN network will be very large, which
will affect the implementation effect of the action selection
strategy.

Therefore, in future work, we can use other DRL methods
to improve the efficiency of the algorithm, such as Deep
Deterministic Policy Gradient (DDPG). This method is a
policy-based DRL algorithm, that is, in DDPG, a Action
network can directly generate corresponding output actions
based on the input state vector. A Critic network in DDPG
will evaluate the actions generated by the Action network
and continuously optimize the action selection strategy of the
Action network [36]–[38].

REFERENCES
[1] X. Ma, J. Zhao, Y. Gong, and X. Sun, ‘‘Carrier sense multiple access with

collision avoidance-aware connectivity quality of downlink broadcast in
vehicular relay networks,’’ IET Microw., Antennas Propag., vol. 13, no. 8,
pp. 1096–1103, Jul. 2019.

[2] Q. Li, J. Zhao, and Y. Gong, ‘‘Computation offloading and resource
allocation for mobile edge computing with multiple access points,’’ IET
Commun., vol. 13, no. 17, pp. 2668–2677, Oct. 2019.

[3] J. Zhao, Q. Li, Y. Gong, and K. Zhang, ‘‘Computation offloading and
resource allocation for cloud assisted mobile edge computing in vehicular
networks,’’ IEEE Trans. Veh. Technol., vol. 68, no. 8, pp. 7944–7956,
Aug. 2019.

[4] A. A. Alahmadi, A. Q. Lawey, T. E. H. El-Gorashi, and J. M. H.
Elmirghani, ‘‘Distributed processing in vehicular cloud networks,’’ in
Proc. 8th Int. Conf. Netw. Future (NOF), London, U.K., Nov. 2017,
pp. 22–26.

[5] M. Nabi, R. Benkoczi, S. Abdelhamid, and H. S. Hassanein, ‘‘Resource
assignment in vehicular clouds,’’ in Proc. IEEE Int. Conf. Commun. (ICC),
Paris, France, May 2017, pp. 1–6.

[6] X. Wei, S. Wang, A. Zhou, J. Xu, S. Su, S. Kumar, and F. Yang,
‘‘MVR: An architecture for computation offloading in mobile edge
computing,’’ in Proc. IEEE Int. Conf. Edge Comput. (EDGE), vol. 27,
Sep. 2017, pp. 89–95.

[7] Q. Li, J. Zhao, Y. Gong, and Q. Zhang, ‘‘Energy-efficient computation
offloading and resource allocation in fog computing for Internet of every-
thing,’’ China Commun., vol. 16, no. 3, pp. 32–41, Mar. 2019.

[8] J. Zhang, W. Xia, F. Yan, and L. Shen, ‘‘Joint computation offload-
ing and resource allocation optimization in heterogeneous networks
with mobile edge computing,’’ IEEE Access, vol. 6, pp. 19324–19337,
2018.

[9] C. You, K. Huang, H. Chae, and B.-H. Kim, ‘‘Energy–efficient resource
allocation for mobile–edge computation offloading,’’ IEEE Trans. Wireless
Commun., vol. 16, no. 3, pp. 1397–1411, Mar. 2017.

[10] L. Huang, S. Bi, and Y.-J. A. Zhang, ‘‘Deep reinforcement learn-
ing for online computation offloading in wireless powered mobile-
edge computing networks,’’ 2018, arXiv:1808.01977. [Online]. Available:
https://arxiv.org/abs/1808.01977

[11] P. Zhao, H. Tian, C. Qin, and G. Nie, ‘‘Energy–saving offloading by jointly
allocating radio and computational resources for mobile edge computing,’’
IEEE Access, vol. 5, pp. 11255–11268, 2017.

[12] Z. Ning, J. Huang, X. Wang, J. J. P. C. Rodrigues, and L. Guo,
‘‘Mobile edge computing–enabled Internet of vehicles: Toward energy–
efficient scheduling,’’ IEEE Netw., vol. 33, no. 5, pp. 198–205,
Sep. 2019.

[13] Z. Ning, J. Huang, and X. Wang, ‘‘Vehicular fog computing: Enabling
real–time traffic management for smart cities,’’ IEEE Wireless Commun.,
vol. 26, no. 1, pp. 87–93, Feb. 2019.

[14] X. Wang, Z. Ning, and L. Wang, ‘‘Offloading in Internet of vehicles:
A fog–enabled real–time traffic management system,’’ IEEE Trans. Ind.
Informat., vol. 14, no. 10, pp. 4568–4578, Oct. 2018.

[15] X. Wang, Z. Ning, X. Hu, L. Wang, L. Guo, B. Hu, and X. Wu, ‘‘Future
communications and energy management in the Internet of vehicles:
Toward intelligent energy–harvesting,’’ IEEE Wireless Commun., vol. 26,
no. 6, pp. 87–93, Dec. 2019, doi: 10.1109/mwc.001.1900009.

[16] Y. Lai, F. Yang, L. Zhang, and Z. Lin, ‘‘Distributed public vehicle sys-
tem based on fog nodes and vehicular sensing,’’ IEEE Access, vol. 6,
pp. 22011–22024, 2018.

[17] Q. Yuan, H. Zhou, J. Li, Z. Liu, F. Yang, and X. S. Shen, ‘‘Toward effi-
cient content delivery for automated driving services: An edge computing
solution,’’ IEEE Netw., vol. 32, no. 1, pp. 80–86, Jan. 2018.

[18] H. Zhang, Q. Zhang, and X. Du, ‘‘Toward vehicle–assisted cloud com-
puting for smartphones,’’ IEEE Trans. Veh. Technol., vol. 64, no. 12,
pp. 5610–5618, Dec. 2015.

[19] X. Hou, Y. Li, M. Chen, D. Wu, D. Jin, and S. Chen, ‘‘Vehicular fog
computing: A viewpoint of vehicles as the infrastructures,’’ IEEE Trans.
Veh. Technol., vol. 65, no. 6, pp. 3860–3873, Jun. 2016.

[20] H. Peng, D. Li, Q. Ye, K. Abboud, H. Zhao, W. Zhuang, and X. Shen,
‘‘Resource allocation for cellular-based inter-vehicle communications in
autonomous multiplatoons,’’ IEEE Trans. Veh. Technol., vol. 66, no. 12,
pp. 11249–11263, Dec. 2017.

[21] Z. Zhou, P. Liu, J. Feng, Y. Zhang, S. Mumtaz, and J. Rodriguez, ‘‘Com-
putation resource allocation and task assignment optimization in vehicular
fog computing: A contract–matching approach,’’ IEEE Trans. Veh. Tech-
nol., vol. 68, no. 4, pp. 3113–3125, Apr. 2019.

[22] Y. Zhang, M. Pan, L. Song, Z. Dawy, and Z. Han, ‘‘A survey of contract
theory–based incentive mechanism design in wireless networks,’’ IEEE
Wireless Commun., vol. 24, no. 3, pp. 80–85, Jun. 2017.

[23] Y. Zhang, L. Song, W. Saad, Z. Dawy, and Z. Han, ‘‘Contract–based
incentive mechanisms for device-to-device communications in cellular
networks,’’ IEEE J. Sel. Areas Commun., vol. 33, no. 10, pp. 2144–2155,
Oct. 2015.

[24] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, ‘‘Resource manage-
ment with deep reinforcement learning,’’ in Proc. 15th ACMWorkshop Hot
Topics Netw. HotNets, Nov. 2016, pp. 50–56.

[25] Z. Ning, Y. Li, P. Dong, X. Wang, M. S. Obaidat, X. Hu, L. Guo, Y. Guo,
J. Huang, and B. Hu, ‘‘When deep reinforcement learning meets
5G vehicular networks: A distributed offloading framework for traf-
fic big data,’’ IEEE Trans. Ind. Informat., to be published, doi:
10.1109/tii.2019.2937079.

[26] Z. Ning, Y. Feng, M. Collotta, X. Kong, X. Wang, L. Guo, X. Hu, and
B. Hu, ‘‘Deep learning in edge of vehicles: Exploring trirelationship
for data transmission,’’ IEEE Trans. Ind. Informat., vol. 15, no. 10,
pp. 5737–5746, Oct. 2019.

[27] Z. Ning, P. Dong, X. X. Wang, and J. Rodrigues, ‘‘Deep reinforcement
learning for vehicular edge computing: An intelligent offloading system,’’
ACM Trans. Intell. Syst. Technol., vol. 25, p. 1, May 2019.

[28] Z. Xu, Y.Wang, J. Tang, J.Wang, andM.C.Gursoy, ‘‘A deep reinforcement
learning based framework for power-efficient resource allocation in cloud
RANs,’’ in Proc. IEEE Int. Conf. Commun. (ICC), May 2017, pp. 1–6.

[29] M. A. Salahuddin, A. Al-Fuqaha, and M. Guizani, ‘‘Reinforcement learn-
ing for resource provisioning in the vehicular cloud,’’ IEEE Wireless
Commun., vol. 23, no. 4, pp. 128–135, Aug. 2016.

[30] Y. He, N. Zhao, and H. Yin, ‘‘Integrated networking, caching, and com-
puting for connected vehicles: A deep reinforcement learning approach,’’
IEEE Trans. Veh. Technol., vol. 67, no. 1, pp. 44–55, Jan. 2018.

[31] J. Zhao, X. Guan, and X. P. Li, ‘‘Power allocation based on genetic simu-
lated annealing algorithm in cognitive radio networks,’’ Chin. J. Electron.,
vol. 22, no. 1, pp. 177–180, Jan. 2013.

[32] J. Zhao, S. Ni, L. Yang, Z. Zhang, Y. Gong, and X. You, ‘‘Multiband
cooperation for 5G HetNets: A promising network paradigm,’’ IEEE Veh.
Technol. Mag., vol. 14, no. 4, pp. 85–93, Dec. 2019.

[33] Z. Junhui, Y. Tao, G. Yi, W. Jiao, and F. Lei, ‘‘Power control algorithm of
cognitive radio based on non-cooperative game theory,’’ China Commun.,
vol. 10, no. 11, pp. 143–154, Nov. 2013.

[34] H. Ye, G. Y. Li, and B.-H.-F. Juang, ‘‘Deep reinforcement learning based
resource allocation for V2V communications,’’ IEEE Trans. Veh. Technol.,
vol. 68, no. 4, pp. 3163–3173, Apr. 2019.

[35] X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, and M. Bennis, ‘‘Optimized
computation offloading performance in virtual edge computing systems
via deep reinforcement learning,’’ IEEE Internet Things J., vol. 6, no. 3,
pp. 4005–4018, Jun. 2019.

3328 VOLUME 8, 2020

http://dx.doi.org/10.1109/mwc.001.1900009
http://dx.doi.org/10.1109/tii.2019.2937079


J. Zhao et al.: Contract-Based Computing Resource Management via DRL in VFC

[36] C. Qiu, Y. Hu, Y. Chen, and B. Zeng, ‘‘Deep deterministic policy gradient
(DDPG)–based energy harvesting wireless communications,’’ IEEE Inter-
net Things J., vol. 6, no. 5, pp. 8577–8588, Oct. 2019.

[37] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, ‘‘Continuous control with deep reinforcement learning,’’
in Proc. ICLR, 2016.

[38] S.-C. Tseng, Z.-W. Liu, Y.-C. Chou, and C.-W. Huang, ‘‘Radio resource
scheduling for 5G NR via deep deterministic policy gradient,’’ in Proc.
IEEE Int. Conf. Commun. Workshops (ICC Workshops), May 2019,
pp. 1–6.

JUNHUI ZHAO (Senior Member, IEEE) received
the M.S. and Ph.D. degrees from Southeast Uni-
versity, Nanjing, China, in 1998 and 2004, respec-
tively. From 1998 to 1999, he was with the Nanjing
Institute of Engineers, ZTE Corporation. Then,
he was an Assistant Professor with the Faculty of
Information Technology, Macao University of Sci-
ence and Technology, in 2004, and continued there
as an Associate Professor, until 2007. In 2008,
he joined Beijing Jiaotong University as an Asso-

ciate Professor, where he is currently a Professor with the School of Elec-
tronics and Information Engineering. Meanwhile, he was also a short term
Visiting Scholar with Yonsei University, South Korea, in 2004, and a Visiting
Scholar with Nanyang Technological University, Singapore, from 2013 to
2014. Since 2016, he has been with the School of Information Engineering,
East China Jiaotong University. His current research interests include wire-
less and mobile communications and related applications that contain 5G
mobile communication technology, high-speed railway communications,
vehicle communication networks, wireless localization, and cognitive radios.

MING KONG received the B.Eng. degree in
electronic science and technology from Beijing
Jiaotong University, Beijing, China, in 2016,
where he is currently pursuing theM.S. degree. His
research interests include 5G vehicular networks
and resource allocation.

QIUPING LI received the B.Sc. degree in elec-
tronic information science and technology from
China West Normal University, China, in 2015.
She is currently pursuing the Ph.D. degree in
communication and information systems from
Beijing Jiaotong University, Beijing, China. Her
research interests include heterogeneous cellular
networks, vehicular networks, mobile edge com-
puting, resource allocation, and optimization tech-
niques.

XIAOKE SUN received the B.E. degree in elec-
tronic information science and technology from
Xiangtan University, China, in 2016. She is cur-
rently pursuing the Ph.D. degree in commu-
nication and information systems from Beijing
Jiaotong University, Beijing, China. Her research
interests include 5G vehicular networks, mobile
edge computing, resource allocation, and stochas-
tic optimization.

VOLUME 8, 2020 3329


	INTRODUCTION
	SYSTEM MODEL
	CONTRACT THEORY-BASED INCENTIVE MECHANISM
	THE CONTRACT OF RESOURCE ALLOCATION
	UTILITY MODEL OF RSU
	UTILITY MODEL OF VEHICLE

	THE CONTRACT OF RESOURCE UTILIZATION

	DEEP REINFORCEMENT LEARNING FOR RESOURCE MANAGEMENT
	REINFORCEMENT LEARNING
	DEEP REINFORCEMENT LEARNING

	NUMERICAL EXPERIMENT
	GENERAL SETUP
	EXPERIMENT RESULT
	EXPERIMENT 1
	EXPERIMENT 2


	CONCLUSION
	FUTURE WORK
	REFERENCES
	Biographies
	JUNHUI ZHAO
	MING KONG
	QIUPING LI
	XIAOKE SUN


