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ABSTRACT This paper deals with one of the possible ways to control multivariable (MIMO) control
loops. The suggested control design procedure uses the so-called primary controllers, auxiliary controllers,
and also correction members. Parameters of the primary controllers are determined for the optimal control
pairs using arbitrary single-variable synthesis methods; namely, the modulus optimummethod, the balanced
tuning method, and the desired model method. The optimal control pairs are determined using the so-called
relative gain array tool or the relative normalized gain array tool combined with other tools, as the condition
number or the Niederlinski index. The auxiliary feedback controllers serve for ensuring a control loop
decoupling. Invariance to load disturbance of a control loop is realized by using the correction members.
The novelty lies especially in the combination of the original inverted decoupling with disturbance rejection
and provided tuning methods. The proposed control design for a MIMO loop is verified by simulation for the
two-variable controlled plant of a quadruple-tank process and evaluated by using various criteria. Moreover,
a numerical comparison to some other methods is given to the reader.

INDEX TERMS Control loop decoupling and invariance, multivariable control, optimal control pairs,
quadruple-tank process, simulation.

I. INTRODUCTION
Controlled plants with one input variable and one output
variable are classified as single-input single-output (SISO),
or single-variable, ones. However, for a huge number of
controlled plants, more than one output variable is con-
trolled simultaneously via several input variables, i.e., input
variables influence not only their corresponding output vari-
ables. These controlled plants are known asmulti-inputmulti-
output (MMO), or multivariable, ones and can be found
in various areas of human activities, e.g. an air-condition
system [1], [2], a tubular chemical reactor [3], [4], a military
aircraft turbofan engine [5], a heating plant [6], a balance
platform [7], an autopilot system [8], a quadcopter [9], [10],
etc. The area of information technologies does not stand
aside, MIMO systems can also be found in cloud comput-
ing [11]. It follows that MIMO control loops are complex and
they consist of many mutually interconnected SISO control
loops. A SISO control loop is a special case of a MIMO
control loop [1], [12].
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It is not easy to decide whether a simple structure of the
control loop is sufficient to be used, or whether it is necessary
to use a more complex structure of the control loop to MIMO
plants. This means that it is desirable to know the structure
and constraints of the whole control loop, i.e. the controlled
plant, the controller, and the corresponding loop signals [13].

Decentralized control design represents one of possible
framework approaches to control theMIMOplants [14]–[17].
By using decentralized control, independent feedback con-
trollers are used to control a subset of input-output pairs [18].
The control problem is then separated into several indepen-
dent single-loop SISO systems and then conventional SISO
control is used on each of the loops [19], [20]. According
to [18], [21], [22], the benefits of the use of decentralized
controllers are, inter alia, as follows: easy implementation,
efficient maintenance, simple tuning procedure due to fewer
parameters to tune, or robustness to uncertainties.

A crucial step in the design of decentralized control sys-
tems is to determine input-output loop pairings (also called
the control configuration selection) that haveminimum cross-
interactions among individual loops [17], [22]–[24]. A good
closed-loop performance may not be achieved when an
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improper input-output pairing is selected, even in the case
of advanced and well-tuned controllers [25]. An unsuitable
selection may even lead to closed-loop instability. That is to
say, the input-output pairing yields a limitation of the loop
interaction effect. Therefore, various pairing criteria (also
called interaction measures) for a suitable control config-
uration selection were investigated during recent decades.
Bristol [26] proposed a jointly-conditioned relative measure
of input-output interactions called the relative gain array
(RGA) based on the static gain matrix, which is not affected
by scaling. In [27], its partially centralized block generaliza-
tion – the so-called block gain array – was proposed, which
gives better performance for highly interactive systems. For
a control configuration with unsatisfactory performance,
the partial RGA based on partially controlled feedback
was suggested [28]. However, using the steady-state gain
solely may lead to incorrect interaction measures [22]. Thus,
the dynamic relative gain array (DRGA) [29], [30], or its
extensions (the significant DRGA) [31] rather than RGA
was introduced. Selecting the control configuration based
on the DRGA magnitude may lead to a negative DRGA
value and, consequently, to an incorrect pairing. Therefore,
the effective RGA was proposed [32], combining the steady-
state gain and bandwidth of the process transfer function
element. To minimize overall loop interactions, the steady-
state-based relative interaction array (RIA) [33], representing
another interaction measure, was introduced. The normalized
RGA (NRGA) introduced in [34] removes the RGA ambigu-
ity of closeness to one. Based on the NRGA, He et al. [22]
proposed the normalized relative gain array (RNGA) com-
bining both the steady-state and the transient information
for control configuration selection given by the average res-
idence time. Balestrino et al. [35] designed the absolute
RGA for solving both integrity problems and robustness
to parameter variations and nonlinearity effects. Two input-
output pairing strategies based on linear quadratic Gaussian
control were suggested in [20], [36]. A mathematical pairing
approach for square MIMO systems larger than 2×2 was
proposed in [37]. An input-output pairing based on the solu-
tion of a multi-objective optimization problem was recently
proposed [38]; this approach enables a systematic analysis of
the conflict between the objectives and the performance of
a control system. Last but not least, Kadhim [39] proposed
a methodology combining RGA and RIA that determines
whether the effect of gain uncertainty would invalidate the
selected pairing. Besides the above-introduced results, many
other pairing methods primarily not intended to decoupling
control exist; for instance, those based on the Takagi-Sugeno
fuzzy model [40] or the mutual information rate [41].

Even if suitable input-output pairs within decentralized the
control configuration are selected, uncontrolled pairs are still
coupled in general yielding residual cross-interactions. The
idea of full decoupling control is that every single control
loop has no interaction with another one. Otherwise, it is a
partial coupling system [42], [43]. A MIMO control strat-
egy can effectively be realized either by SISO decentralized

controllers (with or without decouplers) or a centralized
MIMO controller with decouplers [44], [45]. Decoupling
algorithms can be divided into two categories: static decou-
pling and dynamic decoupling. A static decoupler can be
designed based on the steady-state gainmatrix [46]. Its imple-
mentation is generally simpler than that for a dynamic decou-
pler. However, it may not provide satisfactory decoupling
performance in a closed-loop without non-integrative open
loops. A dynamic decoupler, giving better performance in
general, can provide the ideal decoupling, or a simplified
decoupling, or it can be realized as an inverted decoupler [47].
The ideal (direct) decoupler attempts to obtain the open-loop
serial connection of the decoupler and the control system
diagonal with arbitrary transfer function matrix entries. Then,
the controller can be assumed as a set of independent SISO
controllers [48]. The ideal decoupling yields excellent per-
formance; however, it can be sensitive to model uncertain-
ties [49] and it has limited feasibility and applicability [50].
Simplified decoupling schemes provide less complex formu-
lae compared to the ideal decoupler (e.g., some decoupler
entries are set to one), which improves their applicability
in practice [51]. On the other hand, the open-loop serial
connection of the decoupler and the control system has a fixed
form not allowing its parameterization. Therefore, controller
tuning might not be easy [47]. A simple non-diagonal two-
input two-output (TITO) decoupler was used to temperature
control in [52]. Inverted decoupling [50], [53], [54], incorpo-
rating the decoupler or its part in a feedback-loop, has more
benefits compared with other dynamic decoupling schemes
(e.g., each decoupled loop can be kept away from acting as the
secondary of other control loops, manual/automatic modes
switching does not affect decoupling, easy construction of
anti-wind-up schemes, etc.) [45], [54]; however, it cannot be
used for non-minimum phase systems except for some spe-
cial cases [55]. Different possible configurations of inverted
decoupling strategy were proposed by Garrido et al. [56]. The
inverted decoupler has been benchmarked and redesigned
by many authors [57]–[59]. It was found that the systems
with simplified decoupling are nominally stable, yet those
with ideal and inverted decoupling are unstable, especially
for non-minimum phase controlled systems [54]. If particular
calculated decoupler elements are non-feasible or unstable,
they can be additionally equipped with delays, extra dynam-
ics or low-pass filters [60], [61]. Some authors proposed
the design of MIMO centralized controllers implicitly or
explicitly including the decoupling of control loops [58],
[62]–[64]. Note that special ad-hoc decoupling schemes for
systems with delays, nonlinear or complex systems, have also
been proposed, see, e.g., [65]–[67]. Other modern techniques
include, inter alia, bio-inspired [68], [69] adaptive [70], [71],
fuzzy [72], [73], or neural network [74] decoupling control.
The reader is referred to [45], [75] for further details.

Despite their simplicity, proportional-integral-derivative
(PID) controllers still enjoy very high popularity among
researchers and practitioners when designing a MIMO
control loop. PIDs have been combined, e.g., with the
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ideal [48], [76], a simplified [77], or an inverted [57] decou-
pling, a centralized control decoupler [62], [63], or decentral-
ized control with a decoupling scheme based on the inverse
Nyquist array [78].

The quadruple tank is another typical representative of
the MIMO process [13], [79]–[82]. Various centralized [83],
decentralized [60] control strategies or their comparisons [84]
were published; however, a simplified decoupler was mostly
used [60], [85]. Some researchers deservingly pointed out
that non-minimum phase controlled plant operating points
may occur here [81], [83], [85]. However, according to the
authors’ best knowledge, very few results introduced distur-
bances for this coupled-tank process and attempted to deal
with their rejection or attenuation [60].

This study is aimed at the design of an inverted decen-
tralized decoupling MIMO control strategy that, moreover,
provides the ideal or a partial disturbance rejection. Note that
it is assumed that the MIMO controlled plant has the same
number of input and output variables. The proposed method
utilizes selected tools that aid in determining the optimal
control pairs for the MIMO controlled plant. Namely, the
RGA and RNGA are used combined with the Niederlinski
index (NI) [86] that represents an additional pairing rule to
avoid a pairing yielding the feedback instability [20], [39].
In addition, the level of controllability is verified by using
the condition number (CN) [87] making a decision about
whether the controlled plant is ill-conditioned or not. The
combination of RNGA and NI represents a sufficient opti-
mal pairing condition in most cases [22], [88], and the
triplet (with CN) constitutes a novelty. A link to the inverted
decoupler [56] is discussed. As the proposed decoupling
scheme or the computation of the term ensuring disturbance
rejection (herein called as the correction members matrix)
can yield a non-feasible result, compensation principles [61]
are adopted to fix this issue. Once the decoupled controlled
system is obtained, the primary controller of the PID type
can be designed and tuned via an appropriate SISO synthesis
method [89]–[91]. A note to the robust stability is given to the
reader as well.

The second and also a substantial part of this study
deals with an extensive comparative numerical example
on control of a linearized model of the TITO four-tank
process. Besides the proposed control strategy employing
the optimal pairing, a non-optimal pairing, a simplified
decoupler [45], [60], the standard inverted decoupler [56],
an inverted fuzzy decoupler [73], a centralized inverted PI(D)
decoupling control [64], [58], and a polynomial centralized
coupled approach [92], [93] are compared by simulations.
The results are evaluated by various criteria including integral
ones; the designing specifics and limitations are assessed as
well. They prove a very good performance of the proposed
strategy, yet its deficiencies are discussed as well. Both a
minimum phase and a non-minimum phase operating points
are considered in the simulation example. The balanced tun-
ing method (BTM) [94]–[96] is used to tune primary PID
controllers for the minimum phase case, while the modulus

optimummethod (MOM) [97] is applied in the non-minimum
phase case. For both the controlled plant models, the desired
model method (DMM) [1] is used, in addition. Moreover, dis-
turbance inputs are introduced and attenuated (even for a non-
square transfer function matrices), which is widely neglected
in the literature for the model as indicated above. Despite the
fact that only the TITO model has been considered for the
demonstration, the proposed techniques can be extended to a
system with more variables, as discussed through the paper.

To sum up, the main contribution of this research lies in
the unique combination of the optimal control configuration
selection based on three indicators (which gives a sufficient
optimal solution in most cases), the use of a novel inverted
decoupler, the ideal (or a simplified) measurable disturbance
elimination, and the used SISO controller tuning techniques.
Moreover, the presented comprehensive numerical example
of the four-tank process model control can highly be bene-
ficial for the reader since it includes even a non-minimum
phase case and disturbances rejection, and presents results for
various control design principles.

II. ANALYSIS AND SYNTHESIS OF THE MULTI-VARIABLE
CONTROL LOOP
A MIMO controlled plant consists of n output variables and
m input variables; it is said that the plant is of n×m type. Note
that, in this paper, it is considered that the number of inputs
and outputs of the plant is the same, i.e.,m = n, which means
that it is of a square type.

A. BASIC DESCRIPTION OF THE MULTI-VARIABLE
CONTROL LOOP
Assume a modified MIMO control loop scheme with mea-
surable disturbance variables as in Fig. 1. In the figure, U(s)
[n × 1] represents the Laplace transform of the manipulated
variables vector, V(s) [m × 1] is the transformed vector of
measurable disturbance variables, W(s) [n × 1] stands for
the transformed vector of references (i.e., setpoints), and E(s)
[n×1] expresses the vector of control errors, i.e.,E(s)=W(s)
− Y(s). Matrices GSV (s), GS (s), GKC (s), GR(s), and GRP(s)
denote transfer function matrices of the disturbances to out-
puts, the controlled plant, the correction members, the pri-
mary controllers, and the auxiliary controllers, respectively.
These matrices are considered in the following forms

GS (s) =
[
Sij
]
n×n , Sij =

YS,i (s)
Uj (s)

(1)

GSV (s) =
[
SVij
]
n×m , SVij =

YSV ,i (s)
Vj (s)

(2)

GR (s) =
[
Rij
]
n×n , Rij =

UR,i (s)
Ej (s)

(3)

GKC (s) =
[
KCij

]
n×m , KCij =

UKC,i (s)
Vj (s)

(4)

GRP (s) =
[
RPij

]
n×n , RPij =

URP,i (s)
UD,j (s)

(5)
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FIGURE 1. Modified scheme of multi-variable control loop with
measurement of disturbance variables.

where i, j ∈ {1, 2, . . . , n} for (1), (3), (5), whereas i ∈
{1, 2, . . . , n} , j ∈ {1, 2, . . . ,m} , m ≤ n, for (2), (4).
Let us denote U(s) = [U1(s), U2(s), . . . ,Un(s)]T , Y(s) =

[Y1(s),Y2(s), . . . ,Yn(s)]T , [M]ij stands for the ijth element of
a matrixM, andMT is the matrix transpose.

B. DETERMINATION OF OPTIMAL CONTROL PAIRS
1) RELATIVE GAIN ARRAY (RGA)
The RGA represents the most common tool to determine
the optimal control pairs for MIMO controlled plants; hence,
it serves for the analysis of interactions between inputs and
outputs [18], [19], [26]. The particular input-output interac-
tion measure is represented by the value of the RGA matrix
entry λij

3 =
[
λij
]
i×j , i, j ∈ {1, 2, . . . , n} (6)

for which it holds that

λij =
λij,num

λij,den
=

(
∂Yi
∂Uj

)
Uk(

∂Yi
∂Uj

)
Yl

=
[GS (s)]ij

1[
G− 1
S (s)

]
ji

,

Uk = const., k ∈ {1, 2, .., n} 6= j,

Yl = const., l ∈ {1, 2, .., n} 6= i (7)

and
n∑
i=1

λij =

n∑
j=1

λij = 1,

i ∈ {1, 2, . . . , n} , j ∈ {1, 2, . . . , n} (8)

see [19]. In (7), λij,num expresses the ratio between the output
variable yi and input variable uj when all outputs are uncon-
trolled; i.e., it is the particular open-loop control gain (with all
control loops opened). The value of λij,den is the ratio between
the same output and input while all other output variables are
perfectly controlled; in other words, it is the corresponding
open-loop control gain with all other control loops closed.

The above description demonstrates the usefulness of the
control configuration selection (i.e., the loop pairing). That is,
if the feedback control of remaining outputs does not affect
the particular input-output gain, it means that no interactions
between loops are presented.

Elements of 3 can be determined as follows

3 = GS (s)⊗
(
G−1S (s)

)T
(9)

see [98], where ⊗ is the Schur product (or, the Hadamard
product, i.e., the element-by-element multiplication).
Although λij are frequency-dependent, they are usually cal-
culated for the zero frequency, i.e. the steady state, as follows

30 = GS (0)⊗
(
G−1S (0)

)T
= K ⊗ K (10)

where K = GS (0) =
[
kij
]
n×n. Note that individual elements

λij are dimensionless and unaffected by scaling.
Optimal pairing decision rules using the RGA tool are

recommended as follows [19], [20], [99]:
1) If 2/3 < λij < 3/2, the relation uj − yi is suitable for

pairing. Especially, the pairing is ideal (i.e., no interac-
tion between the loops is presented).

2) If λij < 0, the pair uj − yi is extremely difficult to be
controlled (i.e., it is highly undesirable).

3) If λij > 5, the pairing yi with uj should be avoided (the
interaction gets worse the larger λij is).

To sum up, pairs are primarily found to satisfy condition 1)
first. The remaining pairs are then determined such that they
do not meet 2) or 3).
Example 1: Consider the RGA matrix 3 for a 3×3 con-

trolled plant as

3 =

 2/13 4/13 7/13
11/13 5/13 −3/13
0/13 4/13 9/13

 (11)

where the optimal control pairs are determined as follows,
i.e., y2-u1, y3-u3, and y1-u2 (not y1-u3, even though it was the
best option because input signal u3 is already paired with the
output signal y3).

2) RELATIVE NORMALIZED GAIN ARRAY (RNGA)
The above mentioned RGA tool does not reflect the process
dynamics. If the transfer function has a very long time con-
stant compared to the others or large transport delays occur,
the RGA may yield an incorrect recommendation. Hence,
the RNGA tool can be used to determine the optimal control
pairs taking the influence of process dynamics into account,
rather than the RGA [22], [23].

The RNGA matrix 3N , for the MIMO controlled plant
GS (s) is considered in the form

3N =
[
λN ,ij

]
i×j , i, j ∈ {1, 2, . . . , n} (12)

and defined as follows

3N = (GS (s)� TAR)⊗ (GS (s)� TAR)−T (13)

where� denotes the element by element division and TAR =
[TAR,ij]n×n is the average residence time matrix, for which
holds that

TAR,ij =
1
kij

∣∣∣∣∣∣
∞∫
0

(
hij (∞)− hij (t)

)
dt

∣∣∣∣∣∣ (14)

where kij and hij(t) mean the static gain and the step response
of the particular entry Sij(s) of GS (s), respectively.
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If it is assumed that Sij(s) has, in general, the following
form

Sij (s) = kij

m∏
r=1

(
T̃ij,rs+ 1

)
n∏

r=1

(
Tij,rs+ 1

) e−Lijs, m < n (15)

The value of TAR,ij can be approximated as

TAR,ij =

∣∣∣∣∣
n∑

k=1

Tij,k −
m∑
k=1

T̃ij,k + Lij

∣∣∣∣∣ (16)

see [1], [96].
In practice, the matrix3N is calculated for the steady-state

case as

3N ,0 = (GS (0)� TAR)⊗ (GS (0)� TAR)−T

= (K � TAR)⊗ (K � TAR)−T

= KN ⊗ K−TN (17)

where KN = [kN ,ij]n×n is the normalized gain matrix,
in which

kN ,ij =
kij

TAR,ij
(18)

The optimal pairing decision rules are very close to those
for the RGA matrix, i.e., it is recommended to set the control
pair yi-uj for which λN ,ij ≈ 1 [100].
Example 2: Consider a MIMO controlled plant governed

by the transfer function matrix

GS (s) =


4 (2s+ 1)

(14s+ 1) (5s+ 1)
−1

3s+ 1
e−s

2
s+ 1

e−2s
3

(6s+ 1)2
e−10s

 (19)

Then, the RGA matrix 3 according to (10) has the form

K = GS (0) =
[
4 −1
2 3

]
→ 3 =

[
0.8571 0.1429
0.1429 0.8571

]
(20)

which implies that the recommended control pairs via the
RGA are y1-u1, y2-u2. However, the non-diagonal elements of
(20) give faster responses than the diagonal ones due to their
time constants. This fact is reflected by the RNGAmatrix3N

KN = K � TAR =
[
4 −1
2 3

]
�

[
17 4
3 22

]
=

[
0.2353 −0.2500
0.6667 0.1364

]
→ 3N ,0 =

[
0.1614 0.8386
0.8386 0.1614

]
(21)

see (17), i.e., the eventual optimal control pairs determined
via the RNGA are y1-u2, y2-u1.

3) NIEDERLINSKI INDEX AND CONDITION NUMBER
The NI [86] and CN [102] values represent addition rules
that can be used for the analysis of interactions in MIMO
controlled plants.

The NI is applied to analyze the stability of the proposed
control loop structure for the selected optimal control config-
uration. This value is calculated for an n× n controlled plant
GS (s) (in the steady state) by using the following formula

NI =
det (GS (0))

n∏
i=1

Sii (0)
=

det (K)
n∏
i=1

kii

(22)

where det (GS (0)) denotes the determinant of matrixGS (0).
A negative NI value indicates instability in the proposed

control structure. Then, the determined optimal input-output
pairs are to be reordered such that their corresponding ele-
ments lie on the diagonal of GS (s).
Remark 1: Example 2 refers to the advantage of using

RNGA rather than RGA. Moreover, it was shown that loop
paring based on the combination of RGA and NI criteria is
necessary and sufficient condition only for TITO systems and
it becomes (only) a necessary condition for higher dimen-
sional systems [88], [101]. This obstacle is overcome by the
use of RNGA plus NI control configuration selection [22].

The CN is a measure of the sensitivity of the matrix
properties to changes in its individual elements and it serves
to decide about the controllability of the MIMO plant. It is
defined as the ratio of the largest to the smallest gains of the
MIMO controlled plant. These gains cannot be determined
simply as particular SISO controlled plant gains because the
input and the output signals are vectors and do not have only
the size but also the direction. They depend on the frequency
and the direction of the input vector and are expressed by
means of singular values GS (s) as follows

CN =
σmax

(
[GS (s)]s=jω

)
σmin

(
[GS (s)]s=jω

) (23)

where

σi =

√
eig

((
[GS (s)]s=jω

)H ([GS (s)]s=jω)) (24)

for i = 1, 2, . . . , r , where r stands for the rank of(
[GS (s)]s=jω

)H ([GS (s)]s=jω), the superscript H denotes
Hermitian transpose, ωis a particular frequency, and
σmax, σmin are, respectively, maximum and minimum sin-
gular values of matrix [GS (s)]s=jω [87], [103].
Since ill-conditioned plants may be hard to control, it is of

importance to avoid control systems with large CN. Namely,
if CN < 10, the controlled plant can be decoupled, i.e., it is
possible to determine the optimal control pairs. Otherwise,
the plant is difficult to control due to the ill-conditioned
matrix [GS (s)]s=jω [51]. Moreover, the CN is closely related
to the RGA, see [101] for further details.

To sum up, the optimal control configuration selection
can be determined by using the mentioned tools or their
combinations (e.g., the CN with the RGA [87], the RGA,
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the RNGAwith the NI [100]). However, the final decision can
then be made not only via described tools but also based on
further physical reasoning and experience of the reader [102].
Due to Remark 1, we herein eventually use the RNGA
plus NI, supported by CN, which is a novel combination.

Hereinafter, we do let call Sij of (1) corresponding to the
optimally paired inputs and outputs as dominant.

C. ELIMINATION OF DISTURBANCE VARIABLES AND
LOOP INTERACTION EFFECTS IN A MULTI-VARIABLE
CONTROL LOOP
Except for reaching the stability of the MIMO control loop
and its performance, it is often necessary to satisfy the decou-
pling; i.e., to eliminate the control loops interactions. The
elimination or attenuation of the effect of measurable distur-
bances on controlled variables constitutes another possible
synthesis goal. Then, the control loop is called absolutely
invariant if the influence of the disturbance variables is com-
pletely (ideally) eliminated. Otherwise, the loop is approxi-
mately invariant (for instance, the invariance is asymptotic,
i.e. in a steady state).

Consider the control system as in Fig. 1. Then, the follow-
ing transfer function matrices can be assembled

GW/Y (s) =
[
I + GS (s) (I + GRP (s))−1 GR (s)

] −1
·GS (s) (I + GRP (s))−1GR (s) (25)

GV/Y (s) =
[
I + GS (s) (I + GRP (s))−1GR (s)

] −1
· [GSV (s)− GS (s)GKC (s)] (26)

for which it holds that

Y (s) = GW/Y (s)W (s)+ GV/Y (s)V (s) (27)

1) DECOUPLING
The auxiliaryMIMO feedback-loop controllerGRP (s) is used
to ensure the decoupling. The proposed decoupling scheme
is inspired by an analogy to the transition from open-loop
to feedback-loop control. Hence, instead of the use of an
open-loop decoupler (ideal or simplified one), we attempt
to use it in a feedback structure to enhance stability issues
and response to disturbances. A general inverse decoupler has
some other advantages, as reviewed in Introduction.
The goal of the proposed method is to achieve the resulting

controlled open loop H(s) of (25) with GRP (s) equal to GS
(s) in which all non-paired transfer functions are

H (s) = GS (s) (I + GRP (s))−1
!
=GS (s)⊗M (28)

where

[M]i,j = 1 for dominant Sij
[M]i,j = 0 for non-dominant Sij (29)

Conditions (28), (29) are satisfied by applying the follow-
ing relations

RPij =
Skj
S̃ki
6= 0 for i 6= j,

RPij = 0 for i = j, i, j, k ∈ {1, 2, . . . , n} (30)

where Skj represent the non-dominant (unpaired) entries of
GS (s), whereas S̃ki are the dominant (paired) ones in the
k-th row.
Remark 2: For a given i in (30), the formula requires to

search for the dominant element of GS (s) in its i-th column,
which gives rise to the particular k-th row. It is worth not-
ing that conditions (30) have been derived by the Symbolic
toolbox in Matlab up to the 5×5 MIMO system. A proof for
a system with an arbitrary dimension is a matter of future
research. The solution of (28) reads

RPij =
Skj
S̃ki
(1+ RPii) for i 6= j, (31)

Hence, we do let set RPii to zero for simplicity, which
yields (30). Example 3 elucidates the calculation of GRP (s)
for a general 3×3 system.
Example 3: Consider a MIMO controlled plant governed

by the transfer function matrix

GS (s) =

 S11 S12 S13
S21 S22 S23
S31 S32 S33

 (32)

Let S̃12 = S12, S̃23 = S23, S̃31 = S31, then (30) gives

GRP (s) =


0

S32
S̃31

S33
S̃31

S11
S̃12

0
S13
S̃12

S21
S̃23

S22
S̃23

0


(33)

One can verify that

H (s) = GS (s) (I + GRP (s))−1

= GS (s)⊗

 0 1 0
0 0 1
1 0 0

 =
 0 S12 0

0 0 S23
S31 0 0


(34)

which enables us to set three independent SISO controllers
for the optimal pairs y1-u2, y2-u3, y3-u1.

If fractions in (30) give some unstable or non-feasible
elements of GRP (s) – e.g., due to input-output delays or a
negative relative order – one can adopt the following recom-
mendation [61] that uses a compensation element

RPij → RPij · Cij

Cij = e−αs
n∏
i=1

(s− si)ni

(−s− si)ni
1

f (s)
(35)

where α > 0 (to compensate for a negative delay), si
stands for a right-half plane (RHP) pole of RPij with the
multiplicity of ni, and f (s) is an appropriate polynomial
acting as the inverse of a low-pass filter to get a non-negative
relative degree of RPij. Note that the question of feasibil-
ity or stability of systems with delays in its dynamics [104]
goes far beyond this work and it is to be solved within the
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FIGURE 2. The classic inverted decoupling scheme [56].

future research. However, the use of (35) destroys the ideal
decoupling.
Remark 3: The independently proposed inverse decou-

pler resembles the classic inverse decoupler [56] depicted in
Fig. 2. However, there are some essential differences between
the approaches. The proposed method gives a unique explicit
computational formula (30) with a single feedback element.
On the other hand, an implicit expression is primarily pro-
vided by [56], the solution of which is, moreover, not straight-
forward due to the existence of multiple solutions and it
requires the user’s erudition and experience. In more detail,
the transfer function matrix of the serial link of the inverted
decoupler and the controlled system reads

GS (s) Dd (s) (I − Do (s)Dd (s))−1 (36)

The goal is to set (36) equal to the desired transfer function
matrix of the apparent processHa (s) , which gives rise to the
implicit condition

D−1d (s)− Do (s) = H−1a (s)GS (s) (37)

Assume the same condition as in (28), i.e., Ha (s) =
GS (s) ⊗ M . Then, in the case of a TITO process with the
diagonal M (s), (37) has two solutions denoted as 1-2 and
2-1 configurations, given by (38) and (39), respectively.

Dd,1−2 (s) = I, Do,1−2 (s) =

 0 −
S12
S11

−
S21
S22

0

 (38)

Dd,2−1 (s) =

 0 −
S22
S21

−
S11
S12

0

 , Do,2−1 (s) = I (39)

Note that ifM (s) is off-diagonal, then 1-2 and 2-1 config-
urations read, respectively,

Dd,1−2 (s) = I, Do,1−2 (s) =

 0 −
S22
S21

−
S11
S12

0

 (40)

Dd,2−1 (s) =

 0 −
S12
S11

−
S21
S22

0

 , Do,2−1 (s) = I (41)

By comparison of Fig. 1 with Fig. 2 and (30) with (38), it
can easily be deduced that the proposed inverted decoupler
agrees with the 1-2 configuration and

GRP (s) = −Do,1−2 (s) (42)

FIGURE 3. Proposed modified (nested) inverted decoupler.

The question is how to identify the proposed scheme with
the 2-1 configuration. The solution is suggested in the follow-
ing proposition.
Proposition 1: Let the proposed decoupling scheme be

modified as in Fig. 3 with decoupler ḠRP (s). Then, this
scheme agrees with the 2-1 configuration as follows

ḠRP (s) = −
(
Dd,2−1 + Do,2−1

)
(43)

Proof: According to Fig. 3, one can write the following
transfer function matrix of the modified inverted (nested)
decoupler (

I +
(
I + ḠRP (s)

)−1)−1
(44)

By comparison of (44) with (36)

Dd (s) (I − Do (s)Dd (s))−1 =
(
I +

(
I + ḠRP (s)

)−1)−1
(I − Do (s)Dd (s))D−1d (s) = I +

(
I + ḠRP (s)

)−1
(45)

Due to (38) and (42), one gets

I + GRP (s) = I +
(
I + ḠRP (s)

)−1
GRP (s) =

(
I + ḠRP (s)

)−1
⇒ ḠRP (s) = G−1RP (s)− I (46)

Yet, from (38), (39) and (42), it can be deduced that

G−1RP (s) = −D
−1
o,1−2 (s) = −Do,2−1 (s) (47)

which, eventually, yields (43). The derivation of (43) for (40)
and (41) can be done analogously. �
The nested decoupler (or, equivalently the 2-1 configura-

tion) can be used whenever the originally proposed inverted
decoupler (or, the 1-2 configuration) gives some non-feasible
decoupler entries. However, even if such a case can be par-
tially solved by (35), the solution then provides a non-ideal
decoupling.
Once the decoupling procedure is finished, individual

entries Rij of GR(s) can be then determined. If the decoupling
is ideal, i.e. if (28) holds, the primary controllers can be
calculated solely based on the corresponding optimally paired
(i.e., dominant) elements of GS (s). In this case, let us denote
a modified open loop H̄ (s) = Ha (s) = GS (s) ⊗ M .
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FIGURE 4. Single-variable branched control loops with disturbance
variables measurement for approximate invariance.

Otherwise, the modified open-loop controlled system has to
be determined via

H̄ (s) = H (s)⊗M = GS (s) (I + GRP (s))−1 ⊗M (48)

Then, the primary controllers are calculated as follows

Rij 6= 0 for non-zero entries of
[
H̄ (s)

]
ji ,

Rij = 0 for zero entries of
[
H̄ (s)

]
ji ,

i, j ∈ {1, 2, . . . , n} (49)

2) INVARIANCE
Absolute invariance (or, the ideal disturbance rejection) of
the MIMO control loop is satisfied if the disturbance transfer
function matrix GV/Y (s) (26) is equal to zero matrix, i.e., if
the following relation holds

GKC (s) = G−1S (s) GSV (s) (50)

Formula (50) can also be formulated using entries of GKC (s)
as

KCij =
1

det (GS (s))

n∑
k=1

ski · SV ,kj,

det (GS (s)) 6= 0, i ∈ {1, 2, . . . , n} ,

j ∈ {1, 2, . . . ,m} , m ≤ n (51)

where det(GS (s)) denotes the determinant of GS (s), SV ,kj
are particular entries of GSV (s), and ski represent cofactors
(algebraic adjuncts) of GS (s).
Regarding approximate (non-ideal) invariance of the

MIMO control loop, SISO branched control loops with dis-
turbance variables measurement can be used, see Fig. 4 [1].
CorrectionmembersKCij are then determined solely by using
the dominant (optimally paired) entries ofGS (s) andGSV (s).
The influence of the remaining (i.e., non-dominant) entries of
GS (s) and GSV (s) is omitted. As a result, the optimal pairs
vj-yk are rejected only. Note that techniques introduced in
Subsection II.B are used to verify the influence of individual
elements of GSV (s).

The designing rules are

KCij =
S̃V ,kj
S̃ki

i, k ∈ {1, 2, . . . , n} , j ∈ {1, 2, . . . ,m} ,

m ≤ n,

KCij = 0 for remaining correction members of GKC (s)

(52)

where S̃V ,kj and S̃ki represent, respectively, the dominant
elements of GSV (s) and GS (s) in the k-th row.
It holds again that if (50) or (52) yields some non-feasible

transfer functions, compensator (35) can be utilized.

D. ROBUST STABILITY ANALYSIS
We do let concisely provide the reader with a general pos-
sibility of how to verify the robust stability of the proposed
MIMO control loop in this subsection. Robustness analysis is
an important aspect of the control system due to unmodeled
process dynamics in real-world systems.

Consider the input and the output multiplicative uncertain-
ties of the controlled plant, respectively,

_

GS,in (s) = GS (s) (I +1in (s))
_

GS,out (s) = (I +1out (s))
_

GS (s) (53)

where GS (s) stands for the nominal model, whereas
_

GS,in (s) ,
_

GS,out (s) represent perturbed ones. The control
system is robustly stable according to the small gain theorem
and the spectral radius stability [102] if the following con-
straints conditions hold

‖T in (s)1in (s)‖∞ < 1 ⇔ ρ (−T in (jω)1in (jω)) < 1,

ω ∈ [0,∞)

‖Tout (s)1out (s)‖∞ < 1 ⇔ ρ (−Tout (jω)1out (jω)) < 1,

ω ∈ [0,∞) (54)

where, respectively,

T in (s) = − (I + GRP (s))−1 GR (s)

·

[
I + GS (s) (I + GRP (s))−1 GR (s)

] −1
GS (s)

Tout (s) = −GS (s) (I + GRP (s))−1GR (s)

·

[
I + GS (s) (I + GRP (s))−1 GR (s)

] −1
(55)

The above-introduced conditions (54) can also be
expressed graphically by identifying whether particular the
magnitude plots go below 1 for some frequency value.
Thus, one can determine the multiplicative uncertainties

for the controlled plant and then use (54) to decide about the
robust stability. It is worth noting that perturbations inGSV (s)
do not affect the robust stability.

E. MULTI-VARIABLE CONTROL LOOP SYNTHESIS
SUMMARY
The herein proposed approach to control the MIMO loops is
summarized in this subsection. The basic design steps are as
follows:
1) The optimal control pairs are determined by using the

analysis of the interactions between inputs and outputs
in the given MIMO controlled plant, as described in
Subsection II.B.

2) The auxiliary controllers RPij in GRP(s) are set accord-
ing to (30) and (35) (if needed) to get the decoupled
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FIGURE 5. Schematic diagram of (two-variable) quadruple-tank
controlled plant.

MIMO control loop. Note that for a TITO case, setting
(43) can alternatively be used.

3) Parameters of the primary controllers Rij in GR(s) are
calculated in accordance to (49) via an arbitrary SISO
synthesis method.

4) The correction members KCij in GKC (s) are set
using (50) or (52) to get the absolute or an approximate
invariance to disturbances, respectively.

Hereinafter, it is considered that matricesGS (s) andGSV (s)
are of the TITO (i.e., 2×2) type

GS (s) =
[
S11 S12
S21 S22

]
, GSV (s) =

[
SV11 SV12
SV21 SV22

]
(56)

for which holds that

Y (s) = GS (s)U (s)+ GSV (s)V (s) (57)

III. SIMULATION EXAMPLE: A QUADRUPLE TANK
A. QUADRUPLE-TANK PROCESS DESCRIPTION AND
MODEL
Examples of MIMO control plants can also be found in the
reign of hydraulic systems and processes [87], [102]. The
quadruple tank (the schematic diagram of which is displayed
in Fig. 5) is a widely used representative of such systems [13],
[60], [79]–[85], that can be described by a TITO model with
two disturbance variables.

In Fig. 5, h1 to h4 are water levels of the corresponding
tanks, γ1, γ2 represent ratios of mass flows through the
corresponding valves, and q1 to q4 are mass flows through
the corresponding pumps. These physical quantities of the
process represent general input/output variables of a MIMO
system as in Fig. 1. Namely, manipulated variables (ui) are
represented by q1, q2, controlled variables (yi) are represented
by h1, h2, and disturbance variables (vi) are represented
by q3, q4.

TABLE 1. Parameter values of the quadruple tank appliance.

1) MATHEMATICAL MODEL OF THE PROCESS
Mass balances and Bernoulli’s law yield a nonlinear
mathematical model of the controlled plant described by the
following differential equations

dh1 (t)
dt

= −
a1
A1

√
2gh1 (t)+

a3
A1

√
2gh3 (t)+

γ1

A1
q1 (t)

dh2 (t)
dt

= −
a2
A2

√
2gh2 (t)+

a4
A2

√
2gh4 (t)+

γ2

A2
q2 (t)

dh3 (t)
dt

= −
a3
A3

√
2gh3 (t)+

(1− γ2)
A3

q2 (t)+
1
A3
q3 (t)

dh4 (t)
dt

= −
a4
A4

√
2gh4 (t)+

(1− γ1)
A4

q1 (t)+
1
A4
q4 (t)

(58)

where Ai and ai are cross-section areas of the ith tank and
its outlet hole, respectively, and g denotes the gravitational
acceleration. It is considered the height of each tank is 20cm,
a capacity of pumps 1, 2 is about 40cm3 s−1 and pumps 3, 4
about 10 cm3s−1. Other physical values of these parameters
for the laboratory appliance are given in Table 1 [13].

2) MODEL LINEARIZATION
The first-order Taylor expansion applied to model (58) can
generally be expressed as

fk
(
hi, qj

)
(t) =

dhk (t)
dt
= ḣk (t)

≈ fk (h0i , q
0
j )+

4∑
i=1

∂fk
(
hi, qj

)
(t)

∂hi(t)

∣∣∣∣∣
hi=h 0i

1hi(t)

+

4∑
j=1

∂fk
(
hi, qj

)
(t)

∂qj (t)

∣∣∣∣∣
qj=q0j

1qj(t) (59)

where i, j, k ∈ {1, 2, 3, 4}, the doublet
{
h0i , q

0
j

}
represents a

stationary operating point of (59), 1hi (t) = hi (t)− h0i , and
1qj (t) = qj (t) − q0j . Then, particular linearized equations
read

1ḣ1 (t) = −
a1
A1

√
g

2h01
1h1 (t)+

a3
A1

√
g

2h03
1h3 (t)

+
γ1

A1
1q1 (t)

1ḣ2 (t) = −
a2
A2

√
g

2h02
1h2 (t)

a4
A2

√
g

2h04
1h4 (t)

+
γ2

A2
1q2 (t)
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1ḣ3 (t) = −
a3
A3

√
g

2h03
1h3 (t)+

(1− γ2)
A3

1q2 (t)

+
1
A3
1q3 (t)

1ḣ4 (t) = −
a4
A4

√
g

2h04
1h4 (t)+

(1− γ1)
A4

1q1 (t)

+
1
A4
1q4 (t) (60)

Equations (60) can be rewritten into a more suitable form
by introducing relative (dimensionless) values with respect to
the operating point as

ϕχ (t) =
1χ (t)
χ0 → 1χ (t) = ϕχ (t) · χ0 (61)

giving rise to (62) where time constants read Ti =

Ai
ai

√
2h0i
g , i ∈ {1, 2, 3, 4}.

ϕ̇h 1 (t) = −
1
T1
ϕh 1 (t)+

A3
A1

h03
h01

1
T3
ϕh3 (t)+

γ1

A1

q01
h01
ϕq1 (t)

ϕ̇h 2 (t) = −
1
T2
ϕh 2 (t)+

A4
A2

h04
h02

1
T4
ϕh4 (t)+

γ2

A2

q02
h02
ϕq2 (t)

ϕ̇h 3 (t) = −
1
T3
ϕh 3 (t)+

(1− γ2)
A3

q02
h03
ϕq2 (t)+

1
A3

q03
h03
ϕq3 (t)

ϕ̇h 4 (t) = −
1
T4
ϕh 4 (t)+

(1− γ1)
A4

q01
h04
ϕq1 (t)+

1
A4

q04
h04
ϕq4 (t)

(62)

The state-space (matrix) form of (62) is


ϕ̇h1 (t)
ϕ̇h2 (t)
ϕ̇h3 (t)
ϕ̇h4 (t)

 =



−
1
T1

0
A3h03
A1h01

1
T3

0

0 −
1
T2

0
A4h04
A2h02

1
T4

0 0 −
1
T3

0

0 0 0 −
1
T4



×


ϕh1 (t)
ϕh2 (t)
ϕh3 (t)
ϕh4 (t)

+



γ1q01
A1h01

0

0
γ2q02
A2h02

0
(1− γ2) q02

A3h03
(1− γ1) q01

A4h04
0



×

[
ϕq1 (t)
ϕq2 (t)

]
+



0 0
0 0
q03
A3h03

0

0
q04
A4h04


[
ϕq3 (t)
ϕq4 (t)

]

TABLE 2. The values of nominal parameters in two operating points.

[
ϕh1 (t)
ϕh2 (t)

]
=

[
1 0 0 0
0 1 0 0

]
× [ ϕh1 (t) ϕh2 (t) ϕh3 (t) ϕh4 (t) ]

T (63)

where ϕh 1 (t) to ϕh 4 (t) are state variables, ϕh 1 (t) = y1 (t),
ϕh 2 (t) = y2 (t) represent outputs, ϕq1 (t) = u1 (t), ϕq2 (t) =
u2 (t) are manipulated variables (i.e., inputs) and ϕq3 (t) =
v3 (t), ϕq4 (t) = v4 (t) stand for measurable disturbances.

By applying the Laplace transform to (63) and taking
relation (57) into account, one can obtain transfer
function matrices GS (s) and GSV (s) in the following
forms

GS (s) =


γ1q01c1
T1s+ 1

(1− γ2) q02c1
(T1s+ 1) (T3s+ 1)

(1− γ1) q01c2
(T2s+ 1) (T4s+ 1)

γ2q02c2
T2s+ 1


(64)

GSV (s) =


q03c1

(T1s+ 1) (T3s+ 1)
0

0
q04c2

(T2s+ 1) (T4s+ 1)


(65)

where ci =
Ti
Aih0i

, i = 1, 2.

3) NOMINAL MODELS AT OPERATING POINTS
Two distinct settings of parameters γ1 and γ2 are considered,
giving rise to two corresponding operating points P1 and P2
provided to the reader in Table 2.

If 1 < γ1 + γ2 < 2, then a minimum phase MIMO
controlled plant (64) is obtained; whereas, whenever 0 <

γ1 + γ2 < 1, then the plant is non-minimum phase, i.e., at
least one root of the numerator of det(GS (s)) lies in the RHP
[13], [58], [105], [106]. Illustration of computation zeros of
MIMO controlled plants can be found, e.g., in [105], [106].
On the other hand, some authors understand the notion of
non-minimum phase systems differently [60].

The following transfer functionmatrices for the two chosen
operating points P1 and P2 can be determined

GP1S (s)

=


1.2429

58.32s+1
0.4660

(58.32s+1) (22.08 s+1)
0.3678

(87.35s+1) (31.12s+1)
1.2874

87.35s+1


(66)
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FIGURE 6. Step response of the controlled plant transfer function
matrix (66).

GP1SV (s)

=


0.2913

(58.32s+1) (22.08 s+1)
0

0
0.3448

(87.35s+1) (31.12s+1)


(67)

GP2S (s)

=


0.6990

58.32s+1
1.0097

(58.32s+1) (37.94 s+1)
1.0115

(87.35s+1) (59.24s+1)
0.6437

87.35s+1


(68)

GP2SV (s)

=


0.2913

(58.32s+1) (37.94 s+1)
0

0
0.3448

(87.35s+1) (59.24s+1)


(69)

Step responses of GP1S (s) , GP2S (s) (66), (68) and those of
GP1SV (s) , G

P2
SV (s) (67), (69) are displayed in Figs. 6 to 9.

As mentioned above, it is possible to determine whether
the MIMO controlled plant GS (s) - for the chosen operating
points P1 (66) and P2 (68) - is minimum phase or non-
minimum phase by calculating zeros of the numerator of
det(GS (s)). Thus, for the chosen operating point P1, the roots
are−0.0528,−0.0246, i.e., the MIMO controlled plantGS (s)
(66) is minimum phase. In the contrary, for the selected
operating point P2, the zeros are −0.0538, +0.0105, i.e., the
plant (68) is non-minimum phase.

The comparison of responses of the original (nonlinear)
and linearized plant models GS (s) in the chosen operating
points P1 and P2 are shown in Figs. 10 and 11. In Fig. 10,
the input signal vector is u(t) = [0.15, 0.15]T while the
disturbances are set to zero. It is apparent that the responses
of y1, y2 for the operating point P2 do not correspond to the
typical non-minimum phase behavior. In fact, a response of
a MIMO controlled plant depends on both the size and the
direction of the input signal vector u(t) = [u1, u2]T.

FIGURE 7. Step response of the controlled plant transfer function
matrix (68).

FIGURE 8. Step response of the measurable disturbance variables
transfer function matrix (67).

FIGURE 9. Step response of the measurable disturbance variables
transfer function matrix (69).

It can be deduced from the figures that errors of the output
signal responses y1 (t) , y2 (t) (i.e., ϕh1 (t) , ϕh2 (t)), of the
nonlinear vs. the linearized mathematical model vary from
−2% to +6% in their steady states, for the chosen step
changes of the manipulated inputs and disturbances.

On the contrary, u(t) = [−0.1, 0.1]T in Fig. 11 and both
the outputs for the operating point P2 show a typical non-
minimum phase behavior.
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FIGURE 10. Comparison of nonlinear (solid line) and linearized
mathematical model (dashed line) responses related to operating points
P1 (top) and P2 (bottom) for input signals u1 = u2 = 0.15 (i.e., 1q1 = 1

q2 = 1.2 cm3 · s−1) and v1 = v2 = 0.

FIGURE 11. Comparison of nonlinear (solid line) and linearized
mathematical model (dashed line) responses related to operating points
P1 (top) and P2 (bottom) for input signals u1 = −0.1, u2 = 0.1
(i.e., 1q1 = −0.8, 1q2 = 0.8 cm3 · s−1) and v1 = v2 = 0.

FIGURE 12. Comparison of nonlinear (solid line) and linearized
mathematical model (dashed line) responses related to operating points
P1 (top) and P2 (bottom) for input signals u1 = u2 = 0 and v1 = v2 =
0.5 (i.e., 1q3 = 1q4 = 0.75 cm3 · s−1).

In Fig. 12, output responses for P1 and P2 are displayed
when the manipulated inputs are set to zero, while the vector
of input disturbances reads v(t) = [0.5, 0.5]T.

B. SYNTHESIS OF THE TWO-VARIABLE CONTROL LOOP
FOR THE QUADRUPLE-TANK PROCESS
The control design procedure summarized in Subsection II.E
is applied to the two-variable control system of the quadruple-
tank process.

1) OPTIMAL CONTROL PAIRS DETERMINATION
Tools and techniques introduced in Subsection II.B are used
now to determine the optimal control pairs for the controlled
plant transfer function matricesGP1S (s) (66) andGP2S (s) (68).
The eventual results are as follows.

1) RGA (10):

3
P1
0 = KP1 ⊗

(
KP1

)−T
=

[
1.120 −0.120
−0.120 1.120

]
3
P2
0 = KP2 ⊗

(
KP2

)−T
=

[
−0.788 1.788
1.7885 −0.788

]
(70)

where

KP1 = GP1S (0) =
[
1.243 0.466
0.368 1.287

]
,

KP2 = GP2S (0) =
[
0.699 1.010
1.012 0.644

]
2) RNGA (16)–(18):

3
P1
N ,0 = KP1

N ⊗

(
KP1
N

)−T
=

[
1.061 −0.061
−0.061 1.061

]
3
P2
N ,0 = KP2

N ⊗

(
KP2
N

)−T
=

[
5.539 −4.539
−4.539 5.539

]
(71)

where

KP1
N = GP1S (0)� TP1AR =

[
0.0213 0.0058
0.0031 0.0147

]
,

KP2
N = GP2S (0)� TP2AR =

[
0.0120 0.0105
0.0069 0.0074

]
,

TP1AR =
[
58.32 80.40
118.47 87.35

]
,

TP2AR =
[
58.32 96.26
146.59 87.35

]
3) CN (23), (24):

CNP1
1 =

σmax
(
KP1

)
σmin

(
KP1

) = 1.984,

CNP 1
2 =

σmax

(
KP1
N

)
σmin

(
KP1
N

) = 1.882

CNP2
1 =

σmax
(
KP2

)
σmin

(
KP2

) = 4.954,

CNP2
2 =

σmax

(
KP2
N

)
σmin

(
KP2
N

) = 22.255 (72)
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a: OPERATING POINT P1
Regarding result (72) for operating point P1, condition num-

bers CNP1
1 < 10 (for K) and CNP1

2 < 10 (for KN ) indicate
that the controlled plant can be decoupled; i.e., it is possible to
determine the optimal control pairs. These optimal pairs are
y1-u1 (i.e., ϕh 1 − ϕq 1 ) and y2-u2 (i.e., ϕh2 − ϕq2 ), according
to (70) and (71), and they correspond to transfer functions
(i.e., dominant elements of GP1S (s) (66)) SP111 and SP122 . Then,
by following (30), one can denote S̃P111 = SP111 , S̃

P1
22 = SP122 .

The stability of the resulting control structure, i.e., the con-
trol loop that uses determined optimal control pairs, can be
verified by using the NI value (22). The eventual values given
in (73) indicates (for P1) that the determined control pairs
y1-u1 and y2-u2 should yield the stability of the feedback
control loop.

NIP1 =
det

(
GP1S (0)

)
n∏
i=1

SP1ii (0)
=

det
(
KP1

)
n∏
i=1

kP1ii

=

det
[

1.120 −0.120
−0.120 1.120

]
1.120 · 1.120

=
1.240
1.254

= 0.989 > 0 (73)

b: OPERATING POINT P2
Values of CN for P2 provided to the reader in (72) indicate
that the MIMO controlled plant can be decoupled when using
the RGA tool (CNP2

1 < 10); however, condition number
CNP2

2 > 10 resulting from the RNGA yields that the MIMO
controlled plant might be ill-conditioned and, hence, difficult
to be controlled, which has also been verified by simulation
experiments. Therefore, eventual optimal control pairs are
determined based on only the RGA tool but not the RNGA
one. Then, result (71) gives rise to the dominant pairing
y1-u2 and y2-u1 with the corresponding transfer functions S

P2
12

and SP221 , respectively, i.e., S̃
P2
12 = SP212 , S̃

P2
12 = SP212 , see (30).

The NI value (22) is

NIP2 =
det

(
GP2S (0)

)
n∏
i=1

SP2ii (0)
=

det
(
KP2

)
n∏
i=1

kP2ii

=

det
[

1.788 −0.788
−0.788 1.788

]
1.788 · 1.788

=
2.575
3.195

= 0.388 > 0 (74)

which implies that the determined control pairs y1-u2 and
y2-u1 should ensure the stability of the control loop.

Optimal disturbance control pairs yi-vj for operating points
P1 and P2 can be determined using the transfer function
matrices GP1SV (s) (67) and G

P2
SV (s) (69). In these cases, it is

obvious that optimal control pairs for operating points P1 and
P2 are y1-v1 (i.e., ϕh 1 − ϕq 3 ) and y2-v2 (ϕh2 − ϕq4 ). The
corresponding transfer functions SP1V ,11 and SP1V ,22 represent

dominant entries ofGP1SV (s) forP1, i.e. S̃
P1
V ,11 = SP1V ,11, S̃

P1
V ,22 =

SP1V ,22. For operating point P2, one gets corresponding transfer
functions S̃P2V ,11 = SP2V ,11 and S̃

P2
V ,22 = SP2V ,22.

2) PARAMETERS DETERMINATION FOR AUXILIARY
CONTROLLERS, PRIMARY CONTROLLERS,
AND CORRECTION MEMBERS
a: OPERATING POINT P1
Auxiliary controllers RPP1 for operating point P1 are
determined by using (30). Recall that the dominant ele-
ments of GP1S (s) have been determined as S̃P111 , S̃

P1
22 (see

Subsection III.B.1), whereas the remaining elements are non-
dominant. Then, transfer function matrix of the auxiliary
controllers GP1RP(s) is gained in the form

GP1RP (s) =

[
0 RPP112

RPP121 0

]

RPP112 =
SP112
S̃P111
=

0.0170
s+ 0.0453

RPP121 =
SP121
S̃P122
=

0.00918
s+ 0.0321

(75)

As indicated in Section I, we intend provide the reader with
a rich comparative study to demonstrate the performance of
the proposed method. First, the reason for using the optimal
control pairs is demonstrated by the comparison with the non-
optimal (i.e., the off-diagonal) pairing. Since (30) yields non-
feasible controllers, in this case, the following low-pass filter
with the time constant TF , in accordance with (35), is used

C12 = C21 =
1

TF s+ 1
(76)

Let us set TF = 1, which gives rise to

GP1RP (s) =

 0
108.9s+ 3.5

s+ 1
58.89s+ 2.667

s+ 1
0

 (77)

Intuitively, a higher value of TF in (76) should result in
a slower response (since the open-loop dynamics is affected
more significantly) yet it improves the feasibility. To verify
this issue, let us select TF = 10 in addition, which yields

GP1RP (s) =

 0
108.9s+ 3.5

10s+ 1
58.89s+ 2.667

10s+ 1
0

 (78)

In addition, a simplified decoupler [45], [60], the standard
inverted decoupler [56], an inverted fuzzy decoupler [73],
a centralized inverted PI(D) decoupling control [64], [58],
and a polynomial centralized coupled approach [92], [93]
are considered for the comparisons. The fuzzy decoupler is
characterized by fuzzy rules that cannot be expressed by
transfer functions. Due to Remark 3, the standard inverted
decoupler agrees with (75). The centralized inverted PI(D)
decoupling control does not include the explicit decoupler but
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FIGURE 13. Step response of the open-loop transfer function matrix H (s)
with (66) and (77).

the primary controller itself should ensure this feature. The
polynomial approach does not intend to decouple the control
loops. Finally, the simplified decoupler results in

GP1RP (s) =

 1
−0.3749

22.0799s+ 1
0.2857

31.1236s+ 1
1

 (79)

Regarding primary controllers, the proposed optimal pair-
ings with auxiliary controller transfer function matrix (75)
give the ideal decoupling according to (28). The use of
rule (49) empowers RP111 and RP122 (corresponding to SP111
and SP122 , respectively) as the primary controllers for GP1S (s).
These SISO controllers are to be appropriately tuned. The
MOM [89], [97] is herein used for integral controllers and
the BTM [94]–[96] for proportional-integral (PI) controllers.
These methods give rise to the eventual controller transfer
functions.

1) MOM:

GP1R (s) =

 1
144.918 s

0

0
1

224.909 s

 (80)

2) BTM:

GP1R (s) =

0.8046s+0.0138
s

0

0
0.7768s+0.00889

s


(81)

Note that besides the above-mentioned methods, other
SISO synthesis methods can be used by the reader.

The use of GP1RP(s) as in (77) and (78) for the non-optimal
pairs results in a non-ideal decoupling. However, the loops
are decoupled asymptotically. It can be seen from the step
response of the open-loop transfer function matrix H (s)
which is displayed in Fig. 13; i.e., the diagonal elements are
non-zero, except for the zero frequency.

Then, primary controllers (82) and (83) can be obtained by
using (48), (49) and by the BTM tuning rules for TF = 1 and
TF = 10, respectively.

GP1R (s) =

 0
1.745s+ 0.02588

s
2.224s+ 0.02223

s
0


(82)

GP1R (s) =

 0
1.361s+ 0.01772

s
1.663s+ 0.01537

s
0


(83)

When using the fuzzy decoupler, the primary con-
troller (81) is used.

For the simplified decoupler (79), the BTM technique gives

GP1R (s) =

 0.9011s+ 0.01744
s

0

0
0.8699s+ 0.01071

s


(84)

Note that even if no loop interactions appear for (79),
relation (28) cannot be used since the open-loop trans-
fer function matrix does not equal to GP1S (s). Hence,
controllers (84) have to be calculated based on (48).

The centralized inverted decoupling control design yields
the primary controller matrix

GP1R (s)

=

 0.780s+ 0.01502
s

−0.3201s− 0.005436
s

−0.08932s− 0.004291
s

1.174s+ 0.0145
s


(85)

where the gain stability margins are set to Am1 = Am2 = 3
for the critical frequencies ωc1 = ωc2 = 0.05 rad · s−1, see
further details, e.g. in [58].

Finally, the centralized polynomial approach results in

GP1R (s) =

[
RP111 RP112

RP121 RP122

]

RP111 =
0.568s3 + 0.05372s2 + 0.001581s+ 1.417 · 10−5

s3 + 0.0732s2 + 0.001282s

RP112 =
−1.067s3 − 0.08863s2 − 0.002229s− 1.551 · 10−5

s3 + 0.0732s2 + 0.001282s

RP121 =
−0.0923s3−0.01203s2−0.0004632s−4.87 · 10−6

s3 + 0.0732s2 + 0.001282s

RP122 =
1.406s3 + 0.1249s2 + 0.003291s+ 2.342 · 10−5

s3 + 0.0732s2 + 0.001282s
(86)

where the closed-loop poles are set equal to the poles of the
controlled plant model (66). Notice that PI controllers are no
longer possible to be obtained here.
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Correction members KCP1 are determined by using (50),
(51) (for absolute invariance) and (52) (for approximate
invariance). For the former case, one gets

GP1KC (s)

=


0.0106s+ 0.000341
s2 + 0.0774s+ 0.0013

−0.000146
s2 + 0.0774s+ 0.0013

−9.743 · 10−5

s2 + 0.0774s+ 0.0013
0.00861s+ 0.000390
s2 + 0.0774s+ 0.0013


(87)

Regarding the latter case, dominant elements of GP1SV (s)
(67) are determined as S̃P1V ,11, S̃

P1
V ,22. Thus, correction mem-

bers KCP1 ensuring approximate invariance have forms

GP1KC (s) =

[
KCP1

11 0
0 KCP1

22

]

KCP1
11 =

S̃P1V ,11
S̃P111
=
SP1V ,11
SP111
=

0.0106
s+ 0.0453

KCP1
22 =

S̃P1V ,22
S̃P122
=
SP1V ,22
SP122
=

0.00861
s+ 0.0321

(88)

b: OPERATING POINT P2
The use of (30) for the operating point P2 (governed by the
non-minimum phase MIMO controlled plant GP2S (s) (68))
results in non-feasible auxiliary controllers RPP2 of nega-
tive relative degrees. Hence, there are two possibilities here.
Namely, one can abandon the endeavor to cancel interactions
between control loops or to utilize the compensator (35).
Assume the following two options: Either the low-pass filter
is as in (76) or

C12 =
1

TF s+ 1
, C21 = −C12 (89)

When using (76), it was observed by simulations that low
values of TF ≈ (0, 30] result in unstable open-loop H (s),
high values TF > 55 yield a periodic control response.
We eventually set TF = 35 giving rise to

GP2RP (s) =

 0
37.7s+ 0.6364

35s+ 1
26.26s+ 0.6923

35s+ 1
0

 (90)

In this case, the open-loop model H (s) is not ideally yet
asymptotically decoupled, as clear from its step response
displayed in Fig. 14.

If compensator (89) is applied, low values of TF ≈ (0, 5]
give very slow control responses. On the other hand, high
values TF > 30 produce controlled output oscillations as
well. The chosen setting TF = 10 then yields the decoupler

GP2RP (s) =

 0
37.7s+ 0.6364

10s+ 1

−
26.26s+ 0.6923

10s+ 1
0

 (91)

It is worth noting that H (s) with (91) is not decoupled,
even for the zero frequency (see Fig. 15).

FIGURE 14. Step response of the open-loop transfer function matrix H (s)
with (68) and (90).

FIGURE 15. Step response of the open-loop transfer function matrix H (s)
with (68) and (91).

The standard inverted decoupler according to Proposition 1
(43) and (41) reads

Ḡ
P2
RP (s) =

 −1
1.4445

37.94 s+ 1
1.571

59.24s+ 1
−1

 (92)

The simplified decoupler is

GP2RP (s) =

 −1.4446
37.9363s+ 1

1

1
−1.5717

59.2417s+ 1

 (93)

Recall that the remaining herein compared methods do not
expose decoupler explicitly or do not attempt to break loop
interactions.

Now, let us determine the controllers and correction mem-
bers for operating point P2. Optimal control pairs for GP2S (s)
are RP212 and R

P2
21 that correspond to S

P2
21 and SP212 , respectively.

Assume initially the decoupling as if it was ideal, in accor-
dance with (28). Then, the use of the MOM and the DMM [1]
for PI controllers gives, respectively
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1) MOM:

GP2R (s) =

 0
0.729s+ 0.00835

s
0.761s+ 0.0131

s
0


(94)

2) DMM:

GP2R (s) =

 0
1.085s+ 0.00935

s
1.256s+ 0.0163

s
0


(95)

Note that the ideal decoupling is reached when using the
standard inverted decoupler in the 2-1 configuration (41)
or via the proposedmodified (nested) inverted decoupler (92).

If filtered decouplers (90) and (91) are applied, the primary
controllers tuned by the DDM for the open-loop transfer
function matrices H (s) (or, more precisely, for H̄ (s) given
by (48)) read, respectively,

GP2R (s) =

 0
0.6443s+ 0.01001

s
0.7964s+ 0.007333

s
0


(96)

GP2R (s) =

 0
0.7437s+ 0.01027

s
1.182s+ 0.01005

s
0


(97)

The use of the simplified decoupler (93) by using (48), (49)
gives rise to

GP2R (s)

=

 0
−0.3729s− 0.003838

s
−0.4512s− 0.003814

s
0


(98)

We use controller (95) for numerical comparative study in
the case of using the fuzzy controller [73].

The centralized inverted PI decoupling controller [64], [58]
(for the same settings as in the operating point P1) reads

GP2R (s)

=

 −0.1649s− 0.003947
s

0.2034s+ 0.006192
s

−0.1084s+ 0.006203
s

−0.3035s− 0.004287
s


(99)

Finally, the polynomial centralized coupled controller
design [92], [93] gives rise to the primary controller

GP2R (s) =

[
RP111 RP112

RP121 RP122

]

RP211 =
−3.019s3 − 0.179s2 − 0.003699s− 2.603 · 10−5

s3 + 0.2057s2 + 0.00772s

RP212 =
12.35s3 + 1.136s2 + 0.0247s+ 1.524 · 10−4

s3 + 0.2057s2 + 0.00772s

RP221 =
2.608s3 + 0.3125s2 + 0.009551s+ 8.503 · 10−5

s3 + 0.2057s2 + 0.00772s

RP222 =
−3.983s3−0.1807s2−0.002666s−1.282 · 10−5

s3 + 0.2057s2 + 0.00772s
(100)

Again, the closed-loop poles are set equal to the poles of
the controlled plant model (68).

Correction members (as entries of GP2KC (s)) calculated by
using (50), (51) for (68) and (69) to get absolute invariance
are unstable. This nuisance is caused by the inversion of
det (GS (s)), as clear from (51); i.e., the RHP zeros of GP2S (s)
become the RPH poles of GP2KC (s). To overcome this issue,
one can use the correction term

Cij =
s− s0
−s− s0

, i, j ∈ {1, 2} (101)

where s0 = 0.105 is the RHP zero of GP2S (s), in the sense
of (35). Then, the modified GP2KC (s) reads, (102), as shown at
the bottom of the next page.

Another option is to use formula (52) to get approximate
invariance of the MIMO control loop, at least. Recall that
dominant elements of GP2S (s) (68) and GP2SV (s) (69) have
been found as S̃P212 = SP212 , S̃

P2
21 = SP221 and S̃P2V ,11 = SP2V ,11,

S̃P2V ,22 = SP2V ,22, respectively. Thus, (52) yields

GP2KC (s) =

[
0 KCP2

12
KCP2

21 0

]

KCP2
12 =

S̃P2V ,22
S̃P221
=
SP2V ,22
SP221
= 0.341

KCP2
21 =

S̃P2V ,11
S̃P212
=
SP2V ,11
SP212
= 0.289 (103)

C. SIMULATION RESULTS
Computational and simulation MATLAB/SIMULINK soft-
ware is used to verify the proposed control design for the
TITO control loop by simulations. In addition, selected
numerical results for other benchmarked approaches are pro-
vided to the reader. The used block simulation scheme for the
proposed method is shown in Fig. 16, while Fig. 17 displays
its element-by-elements structure.

a: OPERATING POINT P1
Control responses of the TITO control loop for the quadru-
ple tank in the operating point P1, using the proposed
method and the selected SISO synthesis methods, are shown
in Figs. 18 to 23.

Additional simulations are made to compare these results
with those obtained by other selected methods. Namely,
results for the proposed (and also the standard) decoupling
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FIGURE 16. Simulation block scheme of TITO control loop created via
MATLAB/SIMULINK software.

FIGURE 17. Element-by-element formulation of the general modified
TITO branched control loop with disturbance variables measurement.

scheme with the non-optimal pairings governed by (77), (78),
(82) and (83) are displayed in Figs. 24 and 25. Control
responses when using the simplified decoupler (79) with
the primary controller (84) are given in Fig. 26. The fuzzy
decoupler combined with the primary controller (81) yields
responses as in Fig. 27. Simulation results for the centralized
inverted PI decoupling controller (85) are provided in Fig. 28.
Finally, the use of the centralized polynomial approach with
the primary controller transfer function matrix (86) gives
responses shown in Fig. 29. Note that for all these compar-
ative results, the ideal correction member (87) is considered.

The following parameters have been set in the
figures: the time vector of step-wise setpoint changes is

FIGURE 18. Control responses for operating point P1 when using primary
controller (80) tuned by the MOM only, i.e., without auxiliary controllers
RP and correction members KC.

FIGURE 19. Control responses for operating point P1 when using primary
controller (81) tuned by the BTM only, i.e., without auxiliary controllers RP
and correction members KC.

[tw1, tw2]T = [100, 2600]T s with the corresponding vector of
step-wise setpoints [w1,w2]T = [0.15, 0.15]T; the time vector
of step-wise disturbance changes equals [tv1, tv2]T = [1300,
3800]T s with the corresponding vector of disturbances [v1,
v2]T = [0.25, 0.25]T; the time step size is k = 0.1 s, and the
total time of simulation reads ts = 5000 s.

Recall again that the corresponding notation of variables
in the control-response simulations for the quadruple-tank
process (see Fig. 5) are as follows: controlled variables
y1 (t) → ϕh1 (t), y2 (t) → ϕh2 (t), manipulated variables
u1 (t) → ϕq1 (t) , u2 (t) → ϕq2 (t), reference values
w1 (t)→ ϕh1 (t) , w2 → ϕh2 (t), and disturbance variables
v1 (t)→ ϕq3 (t), v2 (t)→ ϕq4 (t).

GP2KC (s) =


−0.01098s− 1.854 · 10−4

s2 + 0.06427s+ 5.651 · 10−4
3.444 · 10−4

s2 + 0.06427s+ 5.651 · 10−4
2.914 · 10−4

s2 + 0.06427s+ 5.651 · 10−4
−0.09044s− 2.384 · 10−4

s2 + 0.06427s+ 5.651 · 10−4

 (102)
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FIGURE 20. Control responses for operating point P1 when using primary
controller (80) tuned by the MOM, without auxiliary controllers RP yet
with correction members KC (88) providing approximate invariance of the
control loop.

FIGURE 21. Control responses for operating point P1 when using primary
controller (81) tuned by the BTM, without auxiliary controllers RP yet with
correction members KC (88) providing approximate invariance of the
control loop.

FIGURE 22. Control responses for operating point P1 when using primary
controller (80) tuned by the MOM, with auxiliary controllers RP (75) and
correction members KC (87) providing absolute invariance of the control
loop.

b: OPERATING POINT P2
In Figs. 30 – 39, control responses for the operating point
P2 when using the proposed method are displayed. None

FIGURE 23. Control responses for operating point P1 when using primary
controller (81) tuned by the BTM, with auxiliary controllers RP (75) and
correction members KC (87) providing absolute invariance of the control
loop.

FIGURE 24. Control responses for operating point P1 when using primary
controller (82) tuned by the BTM, with filtered decoupler (77) ( TF = 1)
and correction members KC (87) providing absolute invariance of the
control loop.

FIGURE 25. Control responses for operating point P1 when using primary
controller (83) tuned by the BTM, with filtered decoupler (78) (TF = 10)
and correction members KC (87) providing absolute invariance of the
control loop.

decouplers, primary controllers (94), (95), and none or only
approximate correction members are assumed in Figs 30-33.
In Figs 34-36, filtered decoupler (90) and primary
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FIGURE 26. Control responses for operating point P1 when using primary
controller (84) tuned by the BTM, with simplified decoupler (79) and
correction members KC (87) providing absolute invariance of the control
loop.

FIGURE 27. Control responses for operating point P1 when using primary
controller (81) tuned by the BTM, with fuzzy decoupler and correction
members KC (87) providing absolute invariance of the control loop.

FIGURE 28. Control responses for operating point P1 when using
centralized inverted PI decoupling controller (85), with correction
members KC (87) providing absolute invariance of the control loop.

controller (96) are combined with variousGKC (s). Similarly,
another filtered decoupler (91) followed by controller (97) is
applied for Figs. 37-39.

FIGURE 29. Control responses for operating point P1 when using
centralized controller (86) obtained via the polynomial design approach,
with correction members KC (87) providing absolute invariance of the
control loop.

FIGURE 30. Control responses for operating point P2 when using only
primary controller (94) tuned by the MOM, i.e., without auxiliary
controllers RP and correction members KC.

However, the use of the standard inverted decoupler (92)
within the 2-1 configuration (or equivalently, the proposed
modified inverted decoupler according to the Proposition 1)
and primary controller (95) gives stable output responses,
whereas the control action is unstable. This issue is discussed
in Subsection III.D.

Control responses for simplified decoupler (93) with the
primary controller (98) are given in Figs. 40 and 41. The
fuzzy decoupler combined with the primary controller (95)
yields responses as in Figs. 42 and 43. Simulation results
for the centralized inverted PI decoupling controller (99)
are provided in Figs. 44 and 45. Finally, the use of the
centralized polynomial approach with the primary con-
troller transfer function matrix (100) gives responses shown
in Figs. 46 and 47.

Note that for all the above-introduced comparative results,
the compensated and approximate correction members (102)
and (103), respectively, are used.
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FIGURE 31. Control responses for operating point P2 when using only
primary controller (95) tuned by the DMM, i.e., without auxiliary
controllers RP and correction members KC.

FIGURE 32. Control responses for operating point P2 when using primary
controller (94) tuned by the MOM, without auxiliary controllers RP yet
with correction members KC (103) providing approximate invariance of
the control loop.

D. SIMULATIONS EVALUATION AND DISCUSSION
The Integral Square Error (ISE) (104) and the Integral Time
Absolute Error ITAE (105) criteria are used to evaluate sim-
ulation results provided to the reader in Figs. 18 to 47.

JISE =

∞∫
0

e2 (t) dt ≈

tS∫
0

e2 (t) dt (104)

JITAE =

∞∫
0

t · |e (t)| dt ≈

tS∫
0

t · |e (t)| dt (105)

In (104) and (105), e(t) = w(t) − y(t) is the control error
and ts expresses the total simulation time (see Fig. 48). In
addition, the control performance is measured by means of
the control (settling) time tr and via error peak values emax,w
and emax,d as well which mean the maximum absolute value
of e(t) (i.e., the peak overshoot) due to setpoint change

TABLE 3. Performance of simulated control responses for two-variable
control loop and operating point P1.

and disturbance entrance (even cross-interconnected ones),
respectively. The value of δ is set to 2%.
It cannot be simply deduced what parameters give the

optimal controller adjustment since there are contradictory
requirements (integral criteria, shortest time criterion, over-
shoots) in the tables. Hence, a compromise between these
multiple requirements ought to be found in practice.

The corresponding computed criteria values and other per-
formance measures for P1 and P2 are displayed in Table 3 and
Table 4, respectively. Note that the subscript number means
the number of the output variable.

a: OPERATING POINT P1
We do let evaluate the proposed method based on Table 3
(for operating point P1) and compare it to the results of other
methods.

Regarding the proposed method (or, the standard inverted
decoupler), the beneficial effect of the use of auxiliary con-
trollers (decouplers) and correction members can be deduced
from Figs. 18-23. Overshoots caused by disturbances are
reduced when using correction members. On the contrary,
when only primary controllers are included in the control loop
(Figs. 18 and 19), rather high overshoots are detected. The use
of the BTM seems to be better options than the tuning based
on the MOM.

Figs. 24 and 25 demonstrate the effect of non-optimal pair-
ings to control response performance. All the performance
criteria in Table 3 get worse. Moreover, as filtered decouplers
have to be used here, control loops are partially coupled.
The selected change of TF does not influence responses
significantly.
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TABLE 4. Performance of simulated control responses for two-variable
control loop and operating point P2.

The use of the simplified decoupler (see Fig. 26) provides
almost the worst decoupling for P1; nevertheless, the invari-
ance remains excellent.

The design of the fuzzy decoupler requires a priori knowl-
edge of the range of the manipulated input values and the
fuzzy rules setting is the matter of experience and erudition.
Moreover, onlymean criteria values are obtained (see Fig. 27)
with a low level of loop interaction reduction.

Very good results are obtained by using the centralized
inverted PI decoupling controller (see Fig. 28), offering
a little less performance for y1 (yet a slightly better one
for y2) compared to the proposed method. However, a partial
coupling appears here.

Finally, the centralized polynomial approach gives an
excellent result for y2; however, those for y1 are below-
average. In addition, strong interactions between loops
remain.

b: OPERATING POINT P2
The assessment of the considered approaches for P2 (giv-
ing rise to a non-minimum phase system) based on data

FIGURE 33. Control responses for operating point P2 when using primary
controller (95) tuned by the DMM, without auxiliary controllers RP yet
with correction members KC (103) providing approximate invariance of
the control loop.

FIGURE 34. Control responses for operating point P2 when using primary
controller (96) tuned by the DMM, with filtered decoupler (90) yet
without correction members KC.

FIGURE 35. Control responses for operating point P2 when using primary
controller (96) tuned by the DMM, with filtered decoupler (90) and
compensated correction members KC (102).

in Table 4 is not so straightforward. The effect of vari-
ous disturbance invariance strategies has to be evaluated as
well.
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FIGURE 36. Control responses for operating point P2 when using primary
controller (96) tuned by the DMM, with filtered decoupler (90) and
correction members KC (103) providing approximate invariance of the
control loop.

FIGURE 37. Control responses for operating point P2 when using primary
controller (97) tuned by the DMM, with filtered decoupler (91) yet without
correction members KC.

FIGURE 38. Control responses when operating point P2 when using
primary controller (97) tuned by the DMM, with filtered decoupler (91)
and compensated correction members KC (102).

As mentioned in the preceding section, the use of
the proposed ideal decoupler (or, the standard inverted
decoupler) results in the unstable control action. This issue

FIGURE 39. Control responses for operating point P2 when using primary
controller (97) tuned by the DMM, with filtered decoupler (91) and
correction members KC (103) providing approximate invariance of the
control loop.

FIGURE 40. Control responses for operating point P2 when using primary
controller (98) tuned by the DMM, with simplified decoupler (93) and
compensated correction members KC (102).

can be explained in the light of transfer function matrix
GW/U (s) of the reference signal to the manipulated input

GW/U (s) = GS (s)−1
[
I+GS (s)(I+GRP(s))−1 GR(s)

] −1
·GS (s) (I + GRP (s))−1GR (s) (106)

Hence, as the controlled system is non-minimum phase
(i.e., polynomial det (GS (s))) has some its roots in the RHP),
the inverse of GS (s) yields instability of (106).

In Figs. 30-33, the decoupler is not used and correction
members are absent or they only ensure an approximate
invariance. Surprisingly, the use of such correction members
does not enhance disturbance responses. It can also be stated
that primary controllers tuned via the DDM yields better
performance than the use of the MOM.

Non-feasibility of the ideal decoupler and instability of the
correction members for absolute invariance can be solved in
the sense of compensator (35). The effect of such a solution
is obvious from Figs. 34-39. Almost all the criteria displayed
in Table 4 get worse, except for the y2 response when using
the filter with opposite gain signs (see Fig. 37-39). The con-
trol action is very high for decoupler (90). Moreover, the use
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FIGURE 41. Control responses for operating point P2 when using primary
controller (98) tuned by the DMM, with simplified decoupler (93) and
correction members KC (103) providing approximate invariance of the
control loop.

FIGURE 42. Control responses for operating point P2 when using primary
controller (95) tuned by the DMM, with fuzzy decoupler and compensated
correction members KC (102).

FIGURE 43. Control responses for operating point P2 when using primary
controller (95) tuned by the DMM, with fuzzy decoupler and correction
members KC (103) providing approximate invariance of the control loop.

of correction members compared to their cancellation does
not result in better disturbance responses, surprisingly.

The use of the simplified decoupler and correction mem-
bers with unstable pole compensation gives a satisfactory
disturbance attenuation only for non-crossed interactions

FIGURE 44. Control responses for operating point P2 when using
centralized inverted PI decoupling controller (99) and compensated
correction members KC (102).

FIGURE 45. Control responses for operating point P2 when using
centralized inverted PI decoupling controller (99) and correction
members KC (103) providing approximate invariance of the control loop.

FIGURE 46. Control responses for operating point P2 when using
centralized controller (100) obtained via the polynomial design approach
and compensated correction members KC (102).

(see Figs. 40 and 41). The crossed interactions yield poor
invariance. Moreover, the settling time is long. Contrariwise,
the level of decoupling is excellent.

Despite an obscure initial response, the use of the fuzzy
decoupler results in very good integral performance measure
values (Figs. 42 and 43).
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FIGURE 47. Control responses for operating point P2 when using
centralized controller (100) obtained via the polynomial design approach
and correction members KC (103) providing approximate invariance of
the control loop.

FIGURE 48. Control (output) response with the control time ( tr ) and the
simulation time (tS ).

The centralized inverted PI decoupling controller
(see Figs. 44 and 45) gives a very slow control response,
which implies only mediocre ITAE criteria values; however,
the loop interactions are attenuated very well. On the other
hand, the reaction to disturbances is poor.

Control responses due to the polynomial approach suffer
from inherently very poor decoupling and very high control
action, see Figs. 46 and 47, which may lead to the wind-
up effect and unreal fast actuator action, in practice. This
effect can be overcome by different feedback-poles selection.
However, the control action is then fast with good integral
criteria values (see Table 4).

Thus, the general recommendation for the proposed
technique is to abandon the use of compensator (35) when
decoupler entries or correction members are unstable or non-
feasible. On the contrary, other benchmarked methods
indicate the beneficial effect of compensated correction
members.

To sum up, based on the general description of the pro-
posed method and numerical results given above, the follow-
ing advantages of the method can be formulated.

1) It provides the original combination of control structure
selection techniques, inverted decoupler, disturbance
rejection or attenuation, and primary control design.

2) It is simple and provides explicit formulae to design
auxiliary controllers and correction members.

3) Despite the TITO simulation example, it has been ver-
ified up to the 5×5 dimension.

4) Simulation experiments have verified a very good per-
formance compared to some other MIMO control tech-
niques and non-optimal pairings.

Contrariwise, the disadvantages can be summarized as
follows.

1) The direct application of the method to non-minimum
phase or delayed systems brings about the necessity of
the use of the compensation of unstable poles or non-
feasible transfer function elements.

2) As indicated above, the use of modified decoupler and
simplified or compensated correction members may
yield worse control performance in some cases.

3) The method is applicable to only square MIMO sys-
tems (with a possibly non-square disturbance-to-output
transfer function matrix) and it has been proved to the
dimension 5×5 or less.

4) It cannot be used to nonlinear or discrete-time mul-
tivariable systems (e.g., multi-agent systems [107],
[108]).

IV. CONCLUSION
This work has been aimed at the description of a control
design method for MIMO control loops. It utilizes several
tools and their combinations to determine dominant (i.e.,
optimally paired) elements of the controlled plant transfer
matrix GS (s); namely, the RGA, the RNGA, the NI tool, and
the CN tool. These techniques are used to get the optimal
control configuration selection for measurable disturbance
variables transfer function GSV (s) as well.

Once the optimal pairs are determined, entries of the pro-
posed inverted decoupler, represented by the auxiliary con-
troller transfer matrix GRP(s), are appropriately set. Besides
transition from the open-loop to closed-loop control system
and advantage of a generally inverted decoupler, the intro-
duction of the proposed decoupling scheme has also been
motivated by an analogy to correction members for an
approximate invariance (see Fig. 4 and equation (52)). In fact,
the correction members take care of the cancellation of the
effect of dominant disturbance pairs. Then, the effect of non-
optimal pairs in the control loop can be reduced by using
GRP(s) analogously, as they were disturbance-output pairs.

Any SISO synthesis method can be then applied to design
the parameters of entries of GR(s) for the corresponding
dominant elementsGS (s). Moreover, absolute or approximate
invariance to disturbances in a MIMO control loop can be
satisfied by the setting of individual entries (correction mem-
bers) ofGKC (s). Whenever some of the calculated controllers
are unstable or non-feasible (e.g., due to time delays), a com-
pensation technique is suggested to overcome these issues.

The advantage of the proposed method is that a change of
parameters in individual elements of the primary controller
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transfer function matrix GR(s) (e.g., due to the use of another
SISO tuning method) does not influence entries of the auxil-
iary controller transfer function matrixGRP(s) and correction
members GKC (s).

The reader has also been provided with a detailed numer-
ical example of control of the two-variable quadruple-tank
process to verify theoretical assumptions. A rich comparative
study with selected MIMO system control methods has been
made as well. The results are evaluated via several criteria.
The advantages and disadvantages of the proposed method
have been formulated based on its general properties and
also on these numerical results. It can be stated that the
method gives better (or at least comparable) results than the
benchmarked ones.

The extension of the proposed method to non-square or
arbitrary-dimensionMIMO systems constitutes a challenging
task for future research.
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