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ABSTRACT Flow clustering is one of the most important data mining methods for the analysis of
origin-destination (OD) flow data, and it may reveal the underlying mechanisms responsible for the spatial
distributions and temporal dynamics of geographical phenomena. Existing flow clustering approaches are
based mainly on the extension of traditional clustering methods to points by redefining basic concepts or
some spatial association indictors of flows and the implementation of classic clustering processes, such as
aggregating, collecting or searching. However, current techniques still suffer from two main problems: poor
identification accuracy and complicated parameter selection processes. To resolve these problems, a new
clustering method is proposed in this study for arbitrarily shaped flow clusters based on the density domain
decomposition of flows. Simulation experiments based on our method and existing methods show that our
method outperforms the three most commonly used methods in terms of the overall identification rate and
almost all F1 measures, and it does not require any manual adjustments during the parameter selection
process. Finally, a case study is conducted on taxi trip data from Beijing. Several flow clusters are identified
to represent different types of residents’ travel behaviors, including daily commuting, return travel, tourism
and behaviors on special days.

INDEX TERMS Origin-destination (OD) flow, flow space, flow clustering, density domain decomposition,
point process.

I. INTRODUCTION
The movement of a geographical object between two loca-
tions (e.g., the daily commute from dwelling toworkplace [1],
immigration between states [2] or delivery services in a
city [3]) can be presented as an origin-destination (OD)
flow [4], [5]. Such flows, which include human, commodity,
information, capital and relationship flows, can be thought of
as interactions or relationships between two georeferenced
places and may reflect the underlying mechanisms respon-
sible for the spatial distributions and temporal dynamics of
geographical phenomena [6]–[8].

In recent years, with the emergence of different kinds of
mobile devices, large amounts of ODflowdata have emerged,
including mobile phone signal data [9], GPS trajectories [10],
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footprints [11], WiFi positioning trace data [12], logis-
tics records [13], and transaction records [14]. Therefore,
many spatial analysis and geodata mining methods, such
as abnormal flow detection [15], flow cluster identifica-
tion [6], [16], [17], and flow estimation or prediction tech-
niques [18]–[20], have been developed to discover patterns
in these OD flow data. Among these methods, flow clus-
tering is commonly used to discover the distribution char-
acteristics of flows. In early years, it was mainly used to
evaluate the global roles of cities in transportation [21] or
improve our understanding of the geographical patterns in
residents’ mobility [22], [23]. However, in recent years, this
method has been extended to detect malaria hotspots in
the epidemiology field [24], to analyze saving propensities
and wealth distributions [25], to understand the interdisci-
plinary nature of knowledge absorption [26], and many other
fields [27], [28].
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The main principle of generating a flow clustering algo-
rithm is to extend the traditional point clustering algorithms
by redefining some basic concepts (such as distance, den-
sity and reachability) or some spatial association indic-
tors. On this basis, current flow clustering methods can
be grouped into three categories: hierarchical-based cluster-
ing, density-based clustering and statistics-based clustering.
In hierarchical clustering methods for flow data, the dis-
tance of an OD flow should be defined according to the
OD locations [29], [30] and, sometimes, the attributes of the
flows [6], [31]; furthermore, an agglomerative or divisive
strategy should be used to organize each flow into a hier-
archy [32], [33]. These methods can identify flow clusters
at different spatial scales, and they are usually proposed to
solve problems associated with flow cluster identification,
generalization and visualization [34]–[37]. In density-based
clustering methods for flow data, the main aspiration is to
find high-density subsets of flow data [38]–[40]; accordingly,
the definition of the local density of an OD flow should
also be defined based on the quantity or reachability of each
flow. Then, a traditional algorithm such as DBSCAN [41] or
OPTICS [42] can be extended to identify flow clusters based
on a density-connected process. Moreover, these methods are
insensitive to outlier flows because unnecessary noise can be
eliminated since not all flow data need to be clustered [43].
Finally, in statistics-based clustering methods, the definitions
of spatial association indictors or other statistic measures,
such as Moran’s I [29], [44], Getis-Ord’s G [8], Ripley’s
K-function [6], and the log-likelihood ratio [30], can be
extended to describe the local aggregative characteristics of
the flow subsets. The objective of these methods is usually to
find the subset of flows with the optimal values of statistical
measures. These methods can usually create a significant
description of spatial homogeneity, thereby providing a stan-
dard measure for comparing flow clusters [45]–[47].

Although many flow clustering methods have been pro-
posed in recent years, some problems remain unsolved. First
and foremost is the identification rate for arbitrarily shaped
flow clusters. Most of the above methods are very useful
at identifying certain types of flow clusters. However, when
encountering some irregularly shaped flow clusters, these
methods may not be as effective [30]. Second, in most cases,
the parameters need to be manually selected, which is often
difficult. Determination of an unknown number of flow clus-
ters is always a troublesome problem, and some other scale
parameters, such as distance threshold and neighborhood
range, are hard to set in clustering algorithms.

To solve these problems, in this study, we propose a clus-
tering method for arbitrarily shaped flow clusters based on
the density domain decomposition of flows. In our method,
a flow dataset is assumed to be composed of clusters
with high-density flows and noise with low-density flows.
A mixed probability density model of k-th nearest neighbor
distances is used to separate clusters and noise. The model
parameters can be estimated through an EM algorithm, and
thus, flow clusters can be determined. Thismethod is believed

to automatically identify arbitrarily shaped flow clusters with
high accuracy.

The remainder of this paper is arranged as follows.
Section II introduces some basic concepts about flows.
Section III describes the proposed method in detail.
Section IV presents the simulation experiment and compares
our method with popular methods presented in previous stud-
ies. Section V presents a case study involving taxi trip data
in Beijing. Finally, Section VI provides the conclusions and
future work.

II. BASIC CONCEPTS ABOUT FLOWS
Before we describe the details of our method, several basic
concepts about OD flows must be introduced.
Definition 1 (OD Flow and Flow Space): An OD flow is

defined as two tuples consisting of a 2-D origin point and
a 2-D destination point in flow space. An OD flow can be
expressed as f =< xO, xD >, where xO = (xO, yO) and
xD = (xD, yD) denote the coordinates of the origin point and
destination point, respectively. Therefore, the flow space is a
metric space that is expressed as the Cartesian product of two
2-D planes (R2

× R2), and each flow can be seen as a 4-D
point in this flow space.
Definition 2 (Flow Distance): The flow distance is the

fundamental measurement ρ in the flow space. Two types of
distance measurements in flow space are defined as follows:
Chebyshev Distance:

ρc(fi, fj) = max(ρO, ρD) = max(|xOi − xOj |, |x
D
i − xDj |) (1)

Manhattan Distance:

ρm(fi, fj) = ρO + ρD = |xOi − xOj | + |x
D
i − xDj | (2)

where ρO (or ρD) represents distance between origin points
(or destination points).
Definition 3 (ε-Neighborhood of Flow): The

ε-neighborhood of flow, denotedNε(f ), is defined byNε(f ) =
{f ′|ρ(f , f ′) ≤ ε}. This ε-neighborhood can be expressed as a
flow sphere with center f and radius ε in the flow space. The
volume of this sphere, denoted VNε(f ), can be calculated as
follows:

VNε(f ) =
∫ ∫
Nε(f )

ρOρDdρOdρD
∫∫

dθOdθD (3)

where (ρO, θO) and (ρD, θD) are the polar coordinates of
the 2-D origin plane and the 2-D destination plane, respec-
tively. Based on the above two definitions of the flow dis-
tance, the volumes are π2ε4 for the Chebyshev distance
and π2ε4/6 for the Manhattan distance. Figure 1 shows the
ε-neighborhood of flow based on both types of distances.
Definition 4 (Flow Density): The flow density, denoted λ,

is the number of flows per unit volume. For a flow zone (a
subset of the flow space) z ⊂ R2

×R2, the flow density λ(z)
can be calculated as λ(z) = nz/VZ, where nz = |{f |f ∈ z}|
is the number of flows in z and Vz is the volume of z. For a
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FIGURE 1. ε-Neighborhood of flow f∗ based on two types of distance (the
yellow part). The blue areas in O plane are the projected ε-Neighborhood
of flow f∗ in 2D-plane. The red dash arrows (f∗, f1, f2) are flows in flow
space and the blue solid arrows (f ′∗, f ′1, f ′2) are the projected flows
in 2D-plane. ρO (or ρD) represents distance between origin points (or
destination points). In this figure, ρO

1,∗ and ρD
1,∗ are both larger than ε,

and therefore, f1 is not in the ε-neighborhood of flow f∗. ρO
2,∗ and ρD

2,∗
are both smaller than ε, and therefore, based on the Chebyshev distance,
f2 is in the ε-neighborhood of flow f∗. However, based on the Manhattan
distance, f2 is not in the ε-neighborhood of flow f ∗ for ρO

2,∗ + ρ
D
2,∗ > ε.

single flow, the local flow density λ(f ) can be calculated as
follows:

λ(f ) = lim
ε→0

nNε(f )
VNε(f )

(4)

III. METHOD
Based on the concepts defined above, a density domain
decomposition model of flows is proposed as an extension
of the point process decomposition model [48] to identify
flow clusters. This method can be divided into four steps,
as shown in Figure 2. First, we determine whether the flow
set is homogeneous by using several quantitative indices
proposed in our previous work (such as NLH∗, A-w) [47].
If the flow set is not homogeneous, we proceed to the second
step. Otherwise, the flow set is considered homogeneous and
cannot be decomposed. Second, a mixed probability den-
sity function (pdf) of the k-th nearest distances of flows is
generated to describe the density domain model of the flow
set. Third, the parameters of this pdf are evaluated by an

FIGURE 2. Density domain decomposition model of flows.

expectation-maximization (EM) algorithm, and all the flows
are decomposed into two components with different densities
that correspond either to dense flows or sparse flows. Each
sparse flow is seen as noise, while each dense flow can be
generated into flow clusters based on the density-connected
clustering concept [36] in the final step. Since our previous
work [47] provides the details of the first step, we introduce
only the remaining three steps.

A. MIXED PDF OF THE K-TH DISTANCES OF FLOWS
For one homogeneous flow set, where the flow density is
λ(f ) ≡ λ, the probability distribution of the k-th nearest
flow distances FDk can be acquired by traversing the pdf that
includes 0, 1, 2, . . . , k-1 flows within the Dk -neighborhood:

FDk (ε) = 1− P(Dk ≥ ε) = 1− P(nNε ≤ k) (5)

where k is the ordinal number of nearest neighbors and nNε
is the number of flows in the ε-neighborhood. In this case,
P(nNε = k) follows a Poisson distribution and is expressed
as P(nNε = k) = e−λVNε (λVNε )

k/k!, and the pdf fDk (ε) is the
derivative of FDk (ε):

fDk (ε) =
dFDk (ε)

dε
= λ

e−λVNε (λVNε )
k−1

(k − 1)!
dVNε
dε

(6)

Therefore, the mixed pdf of the k-th nearest flow distances
of the two homogeneous flow sets with different densities,
for example, λ1 and λ2 (λ1 > λ2), can be expressed as
follows:

Dk (ε) = pfDk (ε|k, λ1π )+ (1− p)fDk (ε|k, λ2π ) (7)

where p is the proportion rate of flow clusters, λ1 is the
density of the flow cluster and λ2 is the density of noise. Since
a flow set can be seen as a mixture of flow clusters and noise,
equation (7) can be used to describe the density domainmodel
of flows.
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FIGURE 3. Histogram of the k-th nearest flow distances for distinguishing
dense flows from sparse flows. The yellow curve represents the fitted
curve of the histogram. The red line is the boundary that divides dense
flows from spare flows, where the probability δ̂t+1

i equals 0.5.

B. PARAMETER EVALUATION FOR DECOMPOSING FLOWS
OF DIFFERENT DENSITIES
Once the density domainmodel of flows is generated, the next
step is to evaluate the parameters and decomposing flows of
different densities. In this process, an EM algorithm [49],
[50] is applied to evaluate the parameters (λ1, λ2, p) based
on the histogram of the observed k-th nearest flow dis-
tances (Fig. 3). A summary of the algorithm can be seen as
follows:
E-Step:

E(δ̂t+1i ) =
p̂t fDk (εi|k, λ̂

t
1)

p̂t fDk (εi|k, λ̂
t
1)+ (1− p̂t )fDk (εi|k, λ̂

t
2)

(8)

M-Step:

λ̂t+11 =
k
∑n

i=1 δ̂
t+1
i

π2
∑n

i=1 ε
4
i δ̂
t+1
i ,

λ̂t+12 =
k
∑n

i=1 (1− δ̂
t+1
i )

π2
∑n

i=1 ε
4
i (1− δ̂

t+1
i )

,

pt+1 =

n∑
i=1
δ̂t+1i

n
(9)

where n is the number of flows and t is the iteration time.
δ̂t+1i is the probability that flow fi belongs to a dense flow.
If δ̂t+1i ≥ 0.5, flow fi can be marked as a dense flow;
otherwise, it is marked as a sparse flow. In this step, param-
eters λ1, λ2 and p can be estimated by the iteration process,
and parameter k can be selected by the fitting accuracy of
Dk (ε). Therefore, the density domain model of flows can be
determined, and flows can be decomposed into a dense part
and a sparse part.

C. IDENTIFYING FLOW CLUSTERS BASED ON DENSITY
-CONNECTED CLUSTERING
After decomposing process, we can filter out noise (sparse
flows) from the flow set and obtain candidate features (dense
flows) that can be collected into flow clusters. In this pro-
cess, the classic DBSCAN algorithm can be improved for

FIGURE 4. Simulated dataset consisting of noise and three flow clusters.
The flow space is described as a ‘‘box’’ in the left figure, in which the
bottom plane stands for the ‘‘O plane’’ and the top plane stands for the
‘‘D plane’’. The origin points (black points) and destination points
(magenta points) of the flows are all limited to [0,1]2 2-D planes. Noise is
presented as gray lines, and C-1 (138 flows), C-2 (163 flows), and C-3
(376 flows) are presented as red lines, yellow lines and blue lines,
respectively. The density of noise is approximately 103, and the density of
clusters is approximately 105.

identification of flow clusters by modifying the density-
connected concept of flows [41]. Here, we present the def-
inition that flow fp is density-connected to flow fq with
respect to (wrt) Eps and MinPts if there is a chain of flows
fp1 , fp2 , . . . , fpn , p1 = q, pn = p such that |Neps(fpi )| ≥
MinPts(i = 2, 3, . . . , n − 1) and fpi−1 ∈ NEps(fpi ), (i =
2, 3, . . . , n). On this basis, a flow cluster can be identified as a
set in which all features are density-connected to each other.
Parameter MinPts is equal to k, and parameter Eps can be
estimated by the following formula:

pfDk (eps|k, λ1π ) = (1− p)fDk (eps|k, λ2π ) (10)

Then:

eps =

(
ln 1−p

p + k ln
λ2
λ1

π2(λ2 − λ1)

)1/4

(11)

IV. SIMULATION EXPERIMENTS
In this section, we design and analyze a Monte Carlo sim-
ulation experiment with 100 sets of simulated flow data to
validate our method. Each dataset is composed of noise and
three clusters with different shapes (i.e., bar-strip, ‘‘S’’-‘‘C’’
and ‘‘O’’-‘‘+’’), coded as C-1, C-2 and C-3, respectively.
The density of each flow cluster is much higher than that of
the noise (100 times greater). An example of the simulated
dataset is displayed in Figure 4. In this experiment, each
dataset is processed by our method, and a significance test is
designed to validate all the identified flow clusters. Through
the test, the A-w statistic of flow clusters [47] is used to test
whether the density of flow clusters is different from that of
noise clusters.

These simulated datasets are also evaluated by three other
flow clustering methods for comparison: a hierarchical clus-
tering method, a density-based clustering method and a spa-
tial statistics-based clustering method. For the hierarchical
clustering method, we use the algorithm proposed by Guo
in 2014 [7]. This algorithm iteratively merges flows to form
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TABLE 1. Experimental settings for three methods.

a hierarchy of flow clusters and is believed to be effec-
tive at aggregating spatial flows and simplifying flow sets
into groups [37]. The only parameter k is set to ensure
that, on average, each flow has five flow neighbors. For
the density-based clustering method, we apply the classic
trajectory clustering technique proposed in 2006 [39]. This
method takes each flow as a trajectory with only two points
and adopts an improved OPTICS algorithm to identify the
flow clustering structure. Parameter MinPts is empirically
set as and parameter Eps is set as average k-th distance of
flows. For the statistics-based clustering method, we use a
local version of the L-function (the L-function is the nor-
malization of Ripley’s K-function) to identify flow clusters
within the simulated dataset. This algorithm first identifies
the aggregation scale parameter (maxL) based on the global
L-function and then calculates the local L values using this
scale. Finally, flows with top 1% local L values are merged
as the dominant cluster. This approach has been shown to be
useful for detecting spatial clustering patterns in flow data
[6], [31]. These experimental settings are listed in TABLE I.

Since all methods can successfully identify significant flow
clusters, we analyze the average identification rates shown in
TABLE 2 for comparison. From these results, we can see that
our method outperforms the other methods in terms of the
overall identification rate and almost all F1 measures. The
other three methods have good recall rates, but, in general,
their precisions are unsatisfactory (less than 90%). It is worth
noting that the precision of our method is much higher than
those of other methods, especially for the ‘‘S’’-‘‘C’’-shaped
flow cluster, and the shape of the identified flow cluster
is reconstructed very well (Fig. 5). To identify irregularly
shaped flow clusters, higher precision means that the original
shape of the flow cluster can be better maintained. Thus,
despite a few defects in the recall rate, we believe that our
method is generally superior at identifying irregularly shaped
flow clusters.

V. CASE STUDY
A. DATA DESCRIPTION
We apply our flow clustering method to taxi trip data in
Beijing to identify different flow cluster patterns of daily
traffic. Our dataset contains records of GPS trajectories from
more than 25,000 taxis (more than 1/3 of all taxis in Beijing).
Each record is described by five fields:<taxi ID, current time,
longitude, latitude, status>. Thus, the OD flows from each
taxi can be extracted according to changes in status.

TABLE 2. Comparison among the flow cluster results from our method
and other methods.

FIGURE 5. Examples of different methods for the identification of
‘‘S’’-‘‘C’’-shaped flow clusters. The black circles imply the origin points of
the identified flows, and the magenta crosses imply the destination
points of the identified flows. (a) Our method; (b) hierarchical-based
method; (c) density-based method; (d) statistics-based method.

Here, we choose six region pairs as study areas within
Beijing during different periods to discover different flow
patterns of residents’ travel behaviors in Beijing (Figure 6).
The first two region pairs, A and B, are two main commuter
flows with short distances distributed between the east and
west districts of Beijing, respectively. Next, two region pairs,
C and D, are return flows from certain transportation hubs,
e.g., an airport (C) and Beijing South Railway Station (D).
The last two region pairs, E and F, are traffic flows on two spe-
cial days, e.g., National Day (E) and Qingming Festival (F).
TABLE 3 shows the study areas and descriptions of the data
used in our case study.

B. FLOW CLUSTER RESULTS
The flow cluster results are shown in Figure 7. In the
morning peak commuter flows of Wangjing, flow clusters
from three different residential communities to the Taiyang-
gong subway station are identified (Fig. 7a). The origins
of these flow clusters include school district communities
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FIGURE 6. Study areas and OD flows.

TABLE 3. Study area 2 and data description.

along the Wangjing North Road (Wangxin Garden and
Shangjing New Route, blue flow clusters in Fig. 7a), resi-
dential communities in Wangjingxiyuayan (yellow flow clus-
ters in Fig. 7a) and business-living buildings in the Huajiadi
community. The Taiyanggong subway station (subway line
10) is commonly used by residents in the Wangjing area.
For commuter flows from the university area to Zhongguan-
cun, only one flow cluster is identified, from Wudaokou
to Zhongguancun (Fig. 7b). The origins of this flow clus-
ter are mainly distributed throughout the Dongsheng Sci-
ence and Technology Park and Wudaokou commercial
district, whereas the destinations are relatively dispersed,
mainly distributed in the commercial center and residen-
tial communities in Zhongguancun. These results reflect the
daily commuting behaviors in northwestern and northeastern
Beijing.

FIGURE 7. OD flow clusters in six different study areas of Beijing.

Figures 7c and 7d show the return flows from two trans-
portation hubs at night on theweekdays. Twoflow clusters are
identified from the airport to areas outside the East 3rd Ring
Road (Fig. 7c). The destinations are distributed in the residen-
tial communities near the Sihui Bridge (red arrows in Fig. 7c)
and Chaoyang Joy City, including the Yuanyangguoji com-
munity, Ciyunli community and Pearl Rome Jiayuan commu-
nity. For the return flows fromBeijing South Railway Station,
three flow clusters are identified; the destinations of these
flow clusters are mainly distributed in Beijing West Railway
Station, the communities around theGuangqumenBridge and
the Panjiayuan community. From these results, we can see
that the return flows from the airport are more concentrated
than the flows from a railway transportation hub.

Figures 7e and 7f show the flow clusters on two special
days. Flows from the 3rd Ring Road to the 2nd Ring Road are
composed of three flow clusters in Figure 7e. The red flow
cluster and yellow flow cluster are morning tourist flows from
residential communities along the East and West 3rd Ring
Roads to Tiananmen, respectively, whereas the blue flow
cluster may represent travel flows from the Sanyuan Bridge
to Beijing Railway Station. The flows in Figure 7f mainly
represent trips to Babaoshan for those seeking to sweep
graves during the Qingming Festival. The origins of these
flow clusters are mainly distributed in several communities
near Wukesong and Beijing West Railway Station, including
the Mingrijiayuan, Jiujiefang, and Muxidinanli communities.
These results reflect purposeful travel behaviors on special
days.

VI. CONCLUSION AND FUTURE WORK
In this study, we propose a method for flow clustering based
on the density domain decomposition of flows. This method
identifies arbitrarily shaped flow clusters with high accuracy
and does not need any parameters in the clustering process.
Simulation experiments show that our method outperforms
three commonly used methods in terms of the overall identifi-
cation rate and almost all F1 measures. The proposed method
is applied to different taxi data in Beijing as a case study, and
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it can also be easily extended to other OD flow data such as
resident travel paths and migration and logistics data, which
may help to provide information for urban management and
region planning.

However, this method has some limitations. First, the
parameter estimation process is very time consuming because
we must traverse all possible parameters and then choose the
optimal one for decomposing the flow set. Second, in our
method, the flow set is assumed to be composed of two
components, features and noise. Thus, some OD flows with
different densities may not be separated because they are
all considered features. Future research will focus on the
analysis of superposed flow sets, which may contain more
than two homogeneous flow sets with different densities, and
on improving the calculation efficiency.
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