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ABSTRACT Computer vision is widely used to detect anomalies in video processing systems for public
safety. Applying Deep Neural Networks (i.e., DNNs) in computer vision can achieve a high detection
accuracy but it requires a huge amount of computing power, storage space, and video data. Thus,
DNNs-based video analytics is mostly deployed in the cloudwith video data steaming from a set of stationary
cameras. There are mainly three issues in this setting. First, steaming a huge amount of video data from
cameras to cloud leads to high bandwidth consumption and latency. Second, when DNNs are deployed on
resource-limited devices like edge nodes to reduce communication costs, it is hard to achieve a high detection
accuracy. Third, stationary cameras can only collect a limited amount of video data that covers a small area,
so it barely satisfies the needs of the real-time analytics in applications like public safety. We propose a
mobile edge computing-based video stream processing platform, mVideo, which conducts video analytics
making full use of resources at the collaborative edge and cloud nodes. On the mVideo, a mechanism is
designed to partition a video analysis task based on available resources on the mobile edge node. Then,
the edge nodes pre-process video data using a lightweight DNNmodel and upload the results to cloud nodes
for further analysis. Thus mVideo not only collects video data that covers a large area, but also reduces
the communication costs. To validate the proposed platform, a face recognition application is deployed
on the mVideo prototype. Experimental results reveal that compared with the existing cloud computing
model, mVideo reduces video data volume transmitted to the cloud nodes and power consumption by up
to 99.5% and 96.2%, respectively. mVideo also improves the execution time by 90.0% to optimize mobile
video analytics performance.

INDEX TERMS Mobile video analytics, edge computing, mobile cameras, public safety.

I. INTRODUCTION
Recently, researchers payed more attention to video pro-
cessing in public safety [1]–[3]. A lot of object detection
approaches, such as face recognition [4], bio-metric recog-
nition [5], [6], gait detection [7], etc., are employed to mon-
itor and identify individuals. For example, face recognition,
action recognition, and license plate recognition are used in
video analytics for public safety because of their availability
and scalability [8]–[10]. Action recognition and license plate
recognition are also employed to detect public places and
traffic safety [8], [11], [12].
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DNN-based algorithms achieve a higher detection accu-
racy [13], [14] in video analytics compared with traditional
machine learning and image processing algorithms. To apply
DNNs for video analytics in public safety, there are three
models. The most popular approach is the cloud computing-
based model [15], which trains DNNs using powerful cloud
resources [4], [16], including GPU, FPGA, etc. This method
provides a high detection accuracy because of the computing
capability in the cloud with video data from a set of sta-
tionary cameras. There are some deficiencies in this model.
Video cameras with blind spots cannot monitor the whole
area. Besides, the important object information may not be
obtained due to various angles in cameras. A large amount
of video data from stationary cameras transfers to the cloud
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where the inference is executed, which burdens the network
bandwidth and prolongs the latency of video processing. The
large-scale video stream requires computing resources and
time to process video in the cloud. Second, the DNNs are
deployed on industrial personal computers (IPC) [4]. This
approach offers reconstructive models for object detection
and recognition for video analytics. However, the cost of
hardware platform makes it expensive to deploy DNNs in
a large-scale video processing system. Third, an embedded
application specific integrated circuits (ASICs) implements
the inference phase of the DNNs into the chip [17]. This
approach achieves a smaller latency than others, but it is not
only non-reconfigurable but also difficult for a wide deploy-
ment because of the inflexibility of hardware in ASICs.

To overcome these challenges, we propose a mobile video
stream processing platform named mVideo based on the
collaborative computing between the edge nodes and the
cloud. mVideo includes the mobile edge nodes with cameras,
the cloud, and the data transmission module. The video frame
can be captured by the mobile edge node. A lightweight
DNNs can be deployed between the edge nodes and the
cloud to pre-process video stream. The intermediate result
and status information in each node can be sent to the cloud
by the transmission module.

In our proposed mVideo, the performance improvement
are evaluated in terms of video data volume for the transmis-
sion, execution time, and power consumption. We conducted
extensive experiments on mVideo platform to compare the
performance of face detection and recognition in the cloud
computing and edge computing models. Experimental results
validate the benefits of mVideo in terms of the above three
metrics. In detail, mVideo reduces the video data volume
transmitted to the cloud nodes and power consumption by up
to 99.5% and 96.2%, respectively. mVideo also improves the
execution time by 90.0% to optimize mobile video analytics
performance.

The contributions of the paper are summarized as follows.
• mVideo, a mobile video stream processing platform,
is proposed to avoid blind spots and expand the monitor-
ing area in the densely populated places. It is composed
of a mobile edge computing unit with cameras and the
cloud, which makes full use of the computing resources
on the collaborative edge and cloud nodes.

• A framework that is designed based on the mVideo can
conduct the partitioned lightweight DNNs in each node
for video analytics. The intermediate result rather than
raw video data are transmitted among the edge and the
cloud nodes, It significantly reduces the communication
cost compared with the cloud model.

• We take face recognition as an example and perform
extensive experiments to validate the benefits of mVideo
in terms of transmission data volume, execution time,
and power consumption.

The rest of the paper is organized as follows. Section II
discusses the background andmotivation. Section III presents
the framework of mVideo. Evaluation environment and

experimental evaluation are revealed in Section IV. Section V
presents related work. Further work and conclusion on our
work are given in Section VI.

II. BACKGROUND AND MOTIVATION
A. BACKGROUND
In this section, we take the face recognition as an example
to compare the performance of face detection and recogni-
tion in the edge computing and cloud computing models on
our tested platform. This tested platform is composed of a
mobile edge node and a cloud server. The edge node captures
4,000 video frames from a mobile camera and sends them
to a cloud server via the Wi-Fi network. The frames vary
with zero, two, and four faces. An access point (i.e., AP)
is employed in the Wi-Fi network. Two types of network
bandwidth between the edge node and the cloud server
(i.e., high-bandwidth and low-delay network, and low-
bandwidth and high-delay network) are configured in this
experiment, the definition for these two types of network are
listed as:

1) HIGH-BANDWIDTH AND LOW-DELAY NETWORK (HBLD)
The network bandwidth between the edge node and the
cloud presents a high bandwidth and low delay for the video
transmission.

2) LOW-BANDWIDTH AND HIGH-DELAY NETWORK (LBHD)
The network bandwidth between the edge node and the
cloud presents a low bandwidth and high delay for the video
transmission.

The process of face detection and recognition includes two
sub-process, i.e., face detection and face recognition. Face
detection which is the first sub-processing in the recognition
process is used to detect the location of a face in an image.
Face recognition matches and extracts a person from the face
database and identifies who he/she is. In our test, the multi-
task cascaded convolutional networks (i.e., MTCCN) [18] is
for face detection to find candidates. Face recognition that
consumes computational resources is conducted using the
FaceNet [19].

Two types of computing models are employed in our test,
i.e., edge computing and cloud computing. In the cloud com-
puting model, the mobile edge node captures video stream
and sends to a cloud server through a transmission proto-
col (e.g., Zero-MQ [20]). Then, the MTCNN and FaceNet
are performed on the server. In the edge computing model,
MTCNN and FaceNet are deployed and conducted in the
mobile edge node. In addition, the cloud server collects the
results and the status of nodes.

B. MOTIVATION
We conducted extensive experiments to study the perfor-
mance of the cloud computing- and edge computing-based
models for face detection and recognition. In the cloud com-
puting model, a large amount of video data is transferred to
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FIGURE 1. Execution Time in the HBLD- and LBHD-based network and Different Resolutions of 4,000 Frames. The notation (640*480 : HBLD)
means the execution time of face recognition under the resolution 640*480 in the HBLD-based network. Cloud and Edge represents execution
time in the cloud computing- and edge computing-based model, respectively.

the cloud for face detection and face recognition, because the
mobile edge node cannot pre-process video data. This method
introduces a high overhead on the network bandwidth.
In the edge computing model, the MTCNN and FaceNet are
performed for face detection and face recognition at the edge
node, respectively. This method avoids the transmission of
large-scale video data between the edge node and the cloud
server. In addition, it must be noted that the size of video
data varies with its resolutions because different resolution
consumes various amounts of computing resources in video
analytics. Thus, the performance of face detection and recog-
nition varies in the cloud and at the edge node, respectively.
Three types of video resolution (i.e., 1280*720, 640*480,
and 320*240) are used in this test.

Fig. 1 presents the cloud- and edge-model execution time
under resolutions 320*240, 640*480, and 1280*720 in the
HBLD- and LBHD-based network. In the edge model, the
execution time is between 160 ms and 550 ms in the two
types of networks. In contrast, the execution time in the cloud
model is between 160 ms and 1200 ms. To some extent,
performance in the cloud model is more sensitive to network
conditions.

In the HBLD network, the execution time of the cloud
and edge-model is about 175.42 ms and 317.405 ms under
resolution 640*480 and four-face cases, respectively, see
Fig. 1(c). When network conditions get worse, the advan-
tages of the edge model becomes obvious. Under resolution
640*480 and four faces, the execution time of the cloudmodel
is approximately 1.2x of that in the HBLD-based network
while it is basically unchanged in the edge model in the
LBHD-based network, see Fig. 1(e). Meanwhile, under res-
olution 1280*720, the performance of the edge model is
always better than that of the cloud model.

Compared with the edge model, a large amount of video
data is sent to the cloud in the cloud model. The overhead of
the network is high, which hardly provides a real-time result.
In the edge model, face detection and recognition is offloaded
to the edge node. This method reduces the volume of video
streams that is sent to the cloud, and it can achieve better
performance than the cloud model in most cases. We find
that the edge model has obvious advantages over the cloud
model when the network condition is not ideal by reducing
network transmission. It motivates us to exploit an edge-cloud

FIGURE 2. Overview System of mVideo Framework.

collaboration for video analytics (e.g., face recognition) in
public safety where we can make full use of the computing
power of edge devices to reduce network bandwidth.

III. FRAMEWORK OF mVideo
In this section, we present the details of components of our
proposed mVideo platform and its implementation.

A. DESIGN OF mVideo
Our proposed mVideo is an edge computing-based platform
that includes the edge and cloud nodes. The video analyt-
ics can be conducted in real time on this platform. The
DNN models with various sizes and functions could be
deployed in these nodes to improve the performance of video
analytics. The overview of mVideo is shown in Fig. 2.

An edge node is composed of a mobile camera and an
edge computing unit. The edge computing unit that can be
an edge device (e.g., Raspberry Pi) captures video stream
from the connected mobile camera. Then, data stream can be
processed locally or directly transmitted to the cloud through
3G/4G/WiFi network for further video analysis.

The cloud nodes that are distributed on themVideo conduct
data processing. The function of a cloud node varies with
its computing resources for multi-level video analytic. Thus,
DNN models can be partitioned and offloaded to each node
to conduct video analytic based on its available computing
resources. The intermediate result from the edge level node
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can be processed locally. Then, the new result is sent to a
cloud node for being further processed. Meanwhile, each
node returns the analysis result to the edge and the cloud
nodes in real time.

In the cloud, there are four types of servers for data ana-
lytics including a training server, an inference server, a com-
puting server, and a profiler server. The training server can
train DNNmodels for various multi-level nodes at the offline
mode. The inference server conducts the models’ inference
for video processing. The computing servers partition and
offload DNN models to an appropriate edge or cloud node at
the onlinemode. The profiler server collects the status of each
node on themVideo platform, (e.g.,CPU usage, performance,
power consumption, bandwidth, etc.) and store them in a
server. Using these servers conducts, tasks of video analytics
can be dynamically distributed among collaborative nodes to
improve the system performance. Furthermore, the feedback
information in the cloud can also be processed and returned
to a node.

The mVideo supports several types of networks, e.g.,
Wi-Fi, 4G, etc. The transmission module in each node con-
ducts data compression and recovery. The processed video
stream is transmitted among nodes. The transmission proto-
col on the mVideo platform is critical for the performance of
data analytics. It is important to guarantee data transmission
reliability and real time.

B. mVideo IMPLEMENTATION
We present the implementation of the software stack on each
node of the mVideo in this section.

An edge node can pre-process video data by means of
computer vision algorithms and DNNmodels. It is composed
of four components including video acquisition, inference
engine, profiler, and message manager.

In the video acquisition module, a mobile camera connects
to the computing unit via the USB, Type-C, Bluetooth, etc.
The mobile camera follows a protocol and requires a uni-
versal driver to be installed in the computing unit. When an
application uses video data, the computing unit can capture
video streams from the camera for a preview. The infer-
ence engine of a lightweight DNN model conducts inference
on video streams at local. Generally, a lightweight DNN
model is deployed based on the resource on the edge node.
On themVideo, face detection is performed on captured video
streams using theMTCNNmodel. A profiler module can col-
lect the status of an edge node (e.g., CPU usage, bandwidth,
data volume, power consumption, etc.) and send status infor-
mation to the cloud node at intervals, see Fig. 4. Meanwhile,
it receives a database including objective face images for the
inference model from the cloud in the real time. The message
manager is responsible for the data receiving/sending at local.
The result (e.g., feedback message) is sent to a cloud node.

The video processing for face detection using the MTCNN
module is shown in Fig.3. The video pre-processing com-
ponent primarily reverses the format and size of frames
and configures the frequency of MTCNN on captured video

FIGURE 3. Video Pre-Processing at the Edge Node on the mVideo
Platform.

FIGURE 4. Two-type Data at the Edge Node for transmission.

FIGURE 5. Transmission Component on the mVideo platform.

images. The candidate images are processed by three cas-
caded lightweight CNNs in this module. The detected face
images and status (see Fig. 4) are packaged and uploaded
to the next node. The data transmission at the edge node is
shown in Fig.5.

The transmission component deployed at the edge and
cloud guarantees the availability and scalability for data trans-
mission among nodes on the mVideo, see Fig. 5. There are
two types of data transmission among nodes on the mVideo,
i.e., video data from a mobile camera and edge device sta-
tus, see Fig. 4. The process of data transmission mainly
includes serialization, packet encapsulation, transmission
(send/receive), packet parsing, deserialization. In the cloud
model, video streams is pushed to the cloud for processing.
However, mVideo distributes data processing on each node.
Thus, the communication among nodes becomes impor-
tant. First, the bandwidth and latency for data transmission
between two nodes determine different types of networks.
A mobile edge node can communicate with other nodes via
4G or Wi-Fi network. The performance of the whole sys-
tem is dependent on the quality of the network among two
nodes. Second, a scalability and high-performance network
transmission protocol is also important for mVideo. On the
mVideo, the Zero-MQ message protocol is employed in the
system according to requirements and scenarios in real-world
applications.

For the transfer data, the JavaScript Object Notation
(i.e., JSON) format is used for serialization. The transmitted
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FIGURE 6. JSON Message of an Image (Fig.6(a)). The Format of Message
in Transmission System (Fig. 6(b)).

messages are divided into two types, i.e., image data from the
mobile camera and edge device status. The latter includes
International Mobile Equipment Identity (i.e., IMEI),
IP address, and CPU cost, memory usage, etc. The format
of JSON that is used in our transmission system is listed
in Fig.6(a). The head of the format (see Fig.6(b)) is composed
of data size and the flag of the data type. The size area
represents the length of the message. For the message that
is no longer than 255 bytes, a byte is used to store metric and
eight bytes are used to store the size after setting 0xff. The
flag denotes the type of the data message, e.g., full or partial
data. The data body is set in the format of JSON string, which
ensures the range of the data package according to the data
size.

It must be noted that Zero-MQ has the following benefits
on themVideo comparingwith TCP. Zero-MQ sends/receives
data using the message unit rather than the byte-streammodel
in TCP protocol. The format of JSON serializes the data
transferred to the cloud from the edge device. Zero-MQ can
send messages by a middleware, which is conducive to the
expansion of the network. On the mVideo, the transmis-
sion data include face images and edge device status. Thus,
the Zero-MQ protocol that transmits data in the serialization
mode can achieve accurate data transmission. In addition,
mVideo can use the structure of the Zero-MQ protocol to
extend the scalability of the whole system.

The cloud node not onlymanages the nodes on themVideo
but also conducts the large-scale inference model due to
its huge of computing resources. DNN training, segmenta-
tion and offloading, inference engine, profiler, and message
manager exist in this component. The DNN training com-
ponent trains different models at an edge and a cloud node.
It integrates algorithms into a microprogram which can run
on each node on the mVideo. Due to the limited resources
at an edge node, a segmented inference model runs in the

FIGURE 7. Face recognition in the cloud node on the mVideo platform.

node. Thus, the DNN segmentation component partitions the
DNN model and trains it. It can configure various models for
each device according to its available resources. The DNN
offloading module updates DNN models and offloads them
to different edge nodes. In the cloud, the inference engine
component conducts the final processing for the DNN model
that requires the computing and storage resources. Taking
the face detection and recognition as an example, the edge
node can conduct the inference model for face detection.
The face recognition completes in a high-computing cloud
server. Fig.7 presents the face recognition using FaceNet
network in the cloud. This configurable component is com-
posed of face feature embedding and SVM classifier. For
face feature embedding, we convert the frame including face
image into the feature vector. The distance between the fea-
ture vectors of different face images represents the similarity.
In the SVM classifier, the feature vector of the face image is
set as input parameters of the trained SVMclassifier. to obtain
the category of the candidate face image.

In the cloud node, the message manager receives the result
from each device and performs real-time feedback to it. This
module also offloads the updated information of the library to
the edge node. When a suspicious face, vehicle, or abnormal
behavior is detected by video analytics, a warning is sent to
the edge node. It also updates the object features database on
edge nodes.

IV. EXPERIMENTAL EVALUATION
In this experiment, we exemplify a face detection and recog-
nition system on mVideo platform. A smart mobile phone
(computing unit) with a mobile camera is used as an edge
node. Meanwhile, we employ a cloud server as a cloud node.
A Wi-Fi router is applied as the components of the access
point on the mVideo platform. MTCNN and FaceNet mod-
els are employed for face detection and face recognition,
respectively. Both edge computing- and cloud computing-
based collaborative models are employed in this experiment.
It must be noted that the notation edge and cloud represent
edge-cloud collaborative computing and cloud computing for
short, respectively. We study the benefits of mVideo in terms
of video data volume for the transmission, execution time,
and power consumption as follows.

A. EXPERIMENTAL SETUP
In the cloud model, the mobile edge node captures video
data and sends it to the cloud without video pre-processing.
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FIGURE 8. Data Volume transmitted to the cloud from the edge in both HBLD and LBHD network under Different Resolutions. It must be noted that the
notation (640*480: HBLD) means the transmission data volume under resolution 640*480 in the HBLD network.

The face detection and recognition is conducted in the cloud.
We present the edge-cloud-based collaborative methods as
the following steps.

Step 1. A mobile edge computing unit connects the cam-
era to acquire video data and sends the face images to the
cloud. These candidate images from the mobile cameras are
obtained using the computing resources on the mobile com-
puting unit. After face detection in local, the high quality of
face image is determined according to the requirements for
an angle, posture, lighting, etc. Then, the pre-processed face
information is sent to the cloud node.

Step 2. In a cloud node, we use a server with a GPGPU
to conduct face recognition on images by means of FaceNet
model. The image with any face is sent by the edge node
to the cloud node. A profiler in the cloud node collects
the performance, status information, data transmission, and
power consumption during the process of face detection and
recognition.

Step 3. In the cloud, the offline and online modules are
implemented in a cloud node. The offline module trains the
models ofMTCNN and FaceNet for face detection and recog-
nition, respectively. The online collaborationmodule offloads
the MTCNN and FaceNet models to the mobile edge node
and the cloud server, respectively. The profiler in the cloud
collects the status information in terms of video data volume
for transmission, execution time, and power consumption
from the edge and cloud nodes on the mVideo platform.

Besides, two types of network (i.e., (1) the high-bandwidth
and low-delay network; (2) the low-bandwidth and high-
delay network) are configured in our test to study the impact
of the network bandwidth on the above metrics. Note that our
experiments focus on the performance of mVideo. Consid-
ering the wireless signal strength of the mobile edge node
from the Wi-Fi access point, we fix the location of the cloud
node and Wi-Fi access point and move the edge node in a
range. Two types of networks (please refer to Section II.A for
details) are used in this test.

B. PERFORMANCE EVALUATION
In the experiment, we present the performance of face detec-
tion and recognition on the mVideo in terms of video data
volume for transmission, execution time, and power con-
sumption. In this section, we refer edge computing- and

cloud computing-based face processing as the edge model
and cloud model, respectively.

1) DATA TRANSMISSION
Fig. 8 shows the data transmission volume between the cloud
and the edge under different networks. Notation Edge(2face)
(Cloud(2face)) in figures represents that there are two faces in
a candidate from the edge node (or cloud server) in the edge
(or cloud) mode, respectively.

In the case of zero face in an image, the data transmission
consumption mainly depends on the creation of the con-
nection between the edge node and the cloud server. Thus,
it is considered as the baseline in our experiment. The data
size varies with the number of faces in a candidate image.
We find that the data size of a frame with 0, 2, and 4 faces.
In Fig. 8, there is an obvious gap between the edge and
the cloud under three types of resolution and two types of
network. The transmission data volume in the cloud is much
more than that in the edge. In the HBLD-based network,
the amount of data for processing 4 faces in 8,000 frames
is about 7.34 MB in the edge under resolution 640*480, see
Fig. 8(b). However, the cloud-based data volume increases to
about 387.84 MB, which is 50x of that in the edge.

In Fig. 8(e), the results are close to that of the
HBLD-based network. The reason is that the face image in
a frame is extracted by the pre-processing module in the
edge node before it is sent to the cloud server. The edge-
based data transmission is significantly lower than that of the
cloud because all video stream that is captured by the mobile
camera is sent to the cloud node to conduct face detection
and recognition. With the same set of frames, the higher the
resolution is, the larger the amount of data will be transmitted
in the same network.

2) EXECUTION TIME
With the same set of frames, Fig. 9 shows the comparison
of execution time in the edge and the cloud under differ-
ent scenarios. Results reveal that the cloud-based execution
time is always higher than that of the edge when having
the same network, frames, and faces in a frame under dif-
ferent resolutions. In the HBLD-based network, the cloud-
based execution time of face detection and recognition is
similar to that in the edge under resolution 320*240 and
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FIGURE 9. Execution Time in HBLD and LBHD network under Different Resolutions. It must be noted that the notation (640*480 : HBLD) means the
execution time in the HBLD network and resolution 640*480.

FIGURE 10. Power Consumption in the HBLD- and LBHD-based network and Different Resolutions. It must be noted that the notation (640*480: HBLD)
means the power consumption in the HBLD-based network and under resolution 640*480.

640*480, respectively. In these cases, video data analytics
is processed in real time in both cloud and edge models.
The reason is that the amount of data transmitted is small in
the cloud. When the resolution increases, the cloud cannot
achieve the same tendency. In Fig. 9, the video processing
in the edge always achieves near real time. Under resolu-
tion 1280*720 in the HBLD-based network, the edge-based
execution time of 8,000 frames is about 319.77 ms, which
almost achieves real time, as illustrated in Fig. 9(c). In com-
parison, the cloud-based execution time is about 1172.11 ms,
nearly reaching 3.7x of that in the edge. In Fig. 9(d), 9(e),
and 9(f), the cloud-based execution time of 8,000 four-
face frames is 1117.84 ms, about 566.22 ms, and about
1172.11 ms under 320*240, 640*480 and 1280*720, respec-
tively. In the same case, the execution time of the edge model
is about 319.77 ms under resolution 320*240, 640*480 and
1280*720, respectively.

From the results, we can conclude that the execution time
is mostly consistent in the edge while it rises considerably
with the network bandwidth increment in the cloud, because
each frame is transmitted to the server in the cloud, which
significantly increases transmission time. However, the edge
model makes full use of the computing resources in the edge
node to perform face detection; and then, the face image is
transmitted to a server in the cloud. The average amount of
data transmission volume reduces under the same condition.

3) POWER CONSUMPTION
Fig. 10 shows the power consumption in the edge node
including the mobile camera and computing unit in the edge,
respectively. In Fig. 10(a), 10(b), and 10(c), the HBLD-based

results show the difference between edge and cloud in three
scenarios, respectively. The results based on the LBHD
are presented in Fig. 10(d), 10(e), and 10(f), respectively.
We can see that the power consumption in the edge is
less than 2.0%, which is lower than that in the cloud.
Take the resolution 640*480 in the HBLD-based network
as an example, the power consumption of the edge for pro-
cessing 8,000 frames with zero-, two-, and four-faces are
0.82%, 1.03%, and 1.22%, respectively. While the cloud-
based power consumption is 5.92%, 4.44%, and 6.85%,
which are much higher than that in the edge. In the
LBHD-based network, there is a similar result.

The result of power consumption is largely determined
by the transmission data and execution time mentioned
above. In summary, the edge has better performance in terms
of transmission data volume, execution time, and power
consumption.

V. RELATED WORK
As mentioned in the work of Shi [21], the emerging edge
computing is defined as ’the enabling technologies allowing
computation to be performed at the edge of the network,
on downstream data on behalf of cloud services and upstream
data on behalf of Internet of Everything service’. Edge com-
puting model is promising for the killer applications with
latency-sensitive requirements [22]. Edge computing-based
video processing system can perform video data analytics
at the edge node that is close to the cameras [23], [24].
Edge Video analytics can reduce video data transmis-
sion [25] on the network and improve the latency of video
processing [26].
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There aremostly two types of cameras, i.e., stationary cam-
eras and mobile cameras. The former is employed in building
and aside road in video surveillance systems [27]. Mobile
cameras can capture video stream at different locations [28].

For example, a project using Google Glass for paramedics
was launched in 2014, but GoogleGlass showed a lack of con-
nection stability and very short battery life [29].Wu et al. [30]
studied the application of wearable sensing, smart mobile
devices, and video technology. Then, they also proposed an
efficient, intelligent real-time emergency system for a pre-
hospital emergency medical services (EMS) to improve the
quality of EMS using live video streaming. Additionally,
some glass-enabled applications have been developed [28],
[31], [32], and the wearable mobile camera allows users to
keep working while performing a remote video.

Glasses-based cameras that can be used as an edge device
sends/receives video data through the WiFi network created
by the smartphone. The smart glasses are also connected to
the monitoring system and can display video. But the video
data cannot be used to perform video anlaytics in the mobile
smartphone or unit [33]. Then, the quality of the video is very
important for mobile applications to acquire accurate on-site
information.

Several deep learning frameworks, such as mxnet [34] and
caffe [35] are suitable for cloud computing-based face detec-
tion and recognition, which costs a huge amount of memory
and computing resources. Due to the limited resources in the
mobile devices, an alternative approach is to upload the video
data that is acquired from themobile camera to the cloud node
for detection and identification.

Currently, researcher [36] are motivated by edge comput-
ing to study the techniques that can conduct video analytics
on the mobile edge nodes. These approaches aims to design
lightweight target detection algorithms for mobile devices,
which aims to improve the quality of the mobile video stream,
especially in bad communication condition. In this work,
we proposed an edge-cloud collaborative computing-based
platform called mVideo for the mobile video processing.
mVideo timely partitions and offloads different DNN-based
video analytics tasks. Extensive experimental results validate
that our proposed platform can provide accuracy and real-
time data analytics in mobile video-based applications.

VI. DISCUSSION AND CONCLUSION
We design a new mobile video stream processing platform
i.e., mVideo, based on edge computing and exemplify with
face detection and recognition. A two-level system (i.e., the
edge node and the cloud node) is illustrated in our work.
During the mobile video processing, the face detection mod-
ule is conducted in the edge, which aims to pre-process the
image compacted from front-end cameras. Then, results are
sent to the cloud node to perform face recognition, which can
provide the who is to users. The cloud module is a profiler
to collect the status of nodes in the video processing system
and offloader to partition and offload different components of
face detection and recognition to edge node and cloud node.

The mVideo is featured with a good scalability when
several edge nodes are deployed in the system. In future
work, we will extend the mVideo to a distributed system by
adding several edge devices between edge nodes and cloud
services. Second, we plane to combine multiple detection and
recognition fusion methods for the mobile video processing
system in the city scale. Third, we will propose a model to
evaluate the edge computing framework for the collaborative
tasks processing.
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