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ABSTRACT Gas source localization (including gas source declaration) is critical for environmental
monitoring, pollution control and chemical safety. In this paper we approach the gas source declaration
problem by constructing a tetrahedron, each vertex of which consists of a gas sensor and a three-dimensional
(3D) anemometer. With this setup, the space sampled around a gas source can be divided into two categories,
i.e. inside (‘‘source in’’) and outside (‘‘source out’’) the tetrahedron, posing gas source declaration as a
classification problem. For the declaration of the ‘‘source in’’ or ‘‘source out’’ cases, we propose to directly
take raw gas concentration and wind measurement data as features, and apply a median value filtering
based extreme learning machine (M-ELM) method. Our experimental results show the efficacy of the
proposed method, yielding accuracies of 93.2% and 100% for gas source declaration in the regular and
irregular tetrahedron experiments, respectively. These results are better than that of the ELM-MFC (mass
flux criterion) and other variants of ELM algorithms.

INDEX TERMS Gas source declaration, tetrahedron, gas concentration measurement, wind information,
extreme learning machine, median value filtering.

I. INTRODUCTION
Localization (including declaration) of hazardous or
flammable gas leakages is of great significance in
environmental monitoring, security of large factory ware-
houses, investigation of fire sources, inspection of prohib-
ited items such as drugs, and search and rescue of disaster
survivors [1]–[5].

Gas sources can be localized using manually collected
gas measurements [6]. However, for reasons of person-
nel safety, locating (including declaring) the gas source by
search teams is in many cases not a viable solution [7].
Accordingly, a quickly deployable, unmanned measurement
device is needed. Researchers started to study robots for
gas source localization (including declaration) in the early
1990s [8]–[11]. At present, much source localization (includ-
ing declaration) research based on two-dimensional (2D)
platforms, e.g., gas sensor networks [12]–[26] and 2D robot
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active olfaction (RAO) [27]–[39], have achieved good results.
Given that gas diffusion is actually three-dimensional (3D),
it is important to study 3D gas source localization (including
declaration) [40]–[43]. Ishida et al. [44] developed a robotic
system based on a blimp to track a gas/odor plume three-
dimensionally and to search for its source. The large balloon
of the blimp was employed as part of a gas sensing system by
placing an array of gas sensors distributed over the balloon
surface. The sensors facing toward the gas source exhibit
‘‘active’’ responses whereas the sensors behind the large bal-
loon body show ‘‘quiet’’ responses. However, blimps have an
unfavorable size-to-payload ratio and are heavily affected by
wind. Rather than a blimp, an unmanned aerial vehicle (UAV)
was adopted by Kuroki et al. [45]. An expert system for
contaminant mapping based on a genetic algorithm was pre-
sented [45]. This method was tested by simulations using a
Gaussian plume/puff model. Neumann et al. [46], [47] used a
gas sensitive microdrone to obtain a gas distribution map and
localize gas sources. Luo et al. [48] designed a flying odor
compass that can be used for gas plume tracking (a step of gas
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source localization). The compass was built on a quadrotor
helicopter and contains three gas sensors. Considering the
practical application, this paper focuses on gas source dec-
laration in 3D environment.

To declare a gas source efficiently, it is essential to collect
wind measurements [49]. In fact, wind vector estimation,
including wind speed and direction, is very important as it
can provide valuable information for estimating the direc-
tion towards the gas source. In a 2D environment, in gen-
eral, accurate wind information can be obtained by using
anemometers [36], [50]. However, the weight of anemome-
ters reduces the available payload and the flight time of the
flying robots drastically [48]. That is, due to the limited
payloads, anemometers are not applicable for flying robots
such as UAVs, microdrones and quadrotor helicopters. For
this reason some authors have proposed to estimate wind
information without anemometers. Neumann et al. [46] pro-
posed a method to derive an estimate of air flow without a
dedicated anemometer. That was using the UAV controller
to compensate for air flow. To track the gas source precisely
in a windy environment, Wei et al. [6] arranged three gas
sensors in a regular triangle. Based on this sensor placement
method, a scale-space method used for obtaining the feature
information of multi-time scale, a feature-point matching
algorithm to calculate time series of the sensor data and a
graphical statistical method to estimate the direction of the
gas source were presented. Luo et al. [48] combined the con-
tinuous wavelet with modulus maxima algorithm to estimate
the direction which the gas comes from.

In summary, for gas source declaration, it is important and
necessary to study the 3D gas source declaration problem,
and it is useful to obtain accurate gas concentration and wind
information. Regarding the declaration of 3D gas sources,
many types of flying robots have been adopted or designed.
However, when these flying robots are used in practice, they
face a number of difficulties such as the large disturbance of
the rapidly rotating rotors to the surrounding airflow, the lim-
ited accuracy of wind estimation and their short endurance.
The airflow will be affected by the flying robots, especially
the gas flow field near the flying robots will be seriously
disturbed, which affects the judgement of gas concentration
and impedes flying robots for real-time applications. Further,
the wind information obtained by the estimation algorithms
is far less accurate than that measured by an anemometer, and
the robustness of alternative wind estimation methods is not
clearly described in the literature. Last but not the least, flying
robots require sufficient power, while it is difficult to provide
long-term battery life. Therefore, an alternative gas source
declaration strategy that can be used in 3D environments is
required.

In this paper, the aforementioned limitations of flying
robots are taken into consideration and a 3D gas source
declaration approach is proposed using a tetrahedral sen-
sor structure without using a flying robot. Each tetrahedral
vertex is composed of a gas sensor and a 3D anemometer.
From sequences of measurements with this tetrahedral sensor

structure we aim to distinguish two cases corresponding to
the situation where a gas source is inside the tetrahedron
(‘‘source in’’) or not (‘‘source out’’). In order to use all avail-
able information, including the gas concentration and wind
information, we propose to use the rawmeasured gas concen-
tration and wind data to classify ‘‘source in’’ against ‘‘source
out’’ cases. For this classification, we present in this paper
a median value filtering based extreme learning machine
(M-ELM) method. The remainder of this paper is organized
as follows. Section II describes the tetrahedral arrangement
of sensor nodes. Section III introduces the hardware setup.
Section IV details the M-ELM based gas source declaration
method. In Section V, the experimental results are presented.
Section VI concludes the paper, and Section VII looks ahead
to future works.

II. TETRAHEDRON MODEL
A. TETRAHEDRON-BASED GAS SOURCE DECLARATION
The purpose of gas source declaration is to determine whether
a gas source is in the immediate vicinity [28] or determine the
certainty that the source has been found [32], [33]. By con-
structing a tetrahedron of sensor nodes (see Figs. 1 and 2 (b)),
which can be irregular, the gas source declaration problem
can be converted to a two-class classification whether the
gas source is inside (‘‘source in’’ case) or outside (‘‘source
out’’ case) the tetrahedron. The reason we choose the tetra-
hedron is that it requires the least number of gas sensors and
anemometers among all the 3D structures, which is the most
economical and practical approach.

B. TWO WAYS FOR TETRAHEDRON CONSTRUCTING
Constructing a tetrahedron from four sensor nodes is the hard-
ware basis for the proposed gas source declaration method.
Here, two theoretical ways for tetrahedron construction are
presented. One is based on a fixed sensor node structure (each
sensor node consists of a gas sensor and a 3D anemometer),
and another one is based on a mobile sensor node structure.

1) FIXED SENSOR NODE STRUCTURE
Tetrahedral sensor node structures using fixed sensor nodes
are shown in Fig. 1. Each tetrahedron works independently,
so multiple gas sources can be detected simultaneously by the
designed multi-tetrahedral structure.

2) MOBILE SENSOR NODE STRUCTURE
To reduce the number of sensor nodes and reduce installation
and calibration issues in a space with obstacles, a structure
with mobile sensor nodes was designed, which needs only
four sensor nodes. Its schematic diagram is shown in Fig. 2.

The hardware of our tetrahedral sensing structure is com-
posed of several sensor nodes represented by black balls,
moved along square grid guide rails installed on the roof with
pulleys and ropes. Each pulley is installed in a movement
device (as shown in Fig 2(b)) and connected to one end of
a rope. The other end of the rope is connected to a sensor
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FIGURE 1. Tetrahedral constructions with fixed sensor node structure.

FIGURE 2. Tetrahedral constructions with a mobile sensor node structure. (a) and (b) represent the gas detection stage and the tetrahedral
construction stage, respectively.

FIGURE 3. Through rotation of a movement device, its direction on the rails can
be changed.

node composed of a gas sensor and a 3D wind anemometer.
The height of a sensor node can be controlled through driving
the pulley by the corresponding movement device. As shown

in Fig. 3, there is also a rotating device that can be rotated
within 360 degrees at every grid intersection. In this way,
the movement device can change its direction.
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FIGURE 4. Positional relation between the tetrahedron and the gas source. The gas sensors were attached to a quadrotor
helicopter and the quadrotor helicopter was placed on top of an anemometer. The panels show the case where a gas source is
inside (a) or outside (b) the tetrahedron.

With the device shown in Fig. 3, 3D movements of the
sensor nodes can be realized. In real-world applications,
to effectively construct a tetrahedron, an obstacle map and
a feasible 3D path planning strategy including 2D path plan-
ning and height adjustment of the sensor nodes are needed.
The proposed 3D path planning strategy is illustrated in the
Supporting Information.

III. EXPERIMENTAL SETUP
In the current research stage, the tetrahedron-based gas source
declaration method was experimentally verified, and a 3D
path planning strategy (as shown in the Supporting Infor-
mation) is verified by simulation. Our experimental setup is
shown in Fig. 4. Four modules, each consisting of a wireless
gas sensor and a 3D anemometer, were used as vertices to
construct a tetrahedral structure. The gas sensor model used
was a MiCS-5521, and among four anemometers, three of
them were a Young 81000 model and the fourth was a Gill
R3-50 model.

The gas sensors and the anemometers were used to collect
alcohol volatile, i.e., gas concentrations and wind vectors,
respectively. The gas sensors were calibrated in a container
which was filled with ethanol vapor of a controlled concen-
tration. Before the experiment, the baseline voltage Vbase of
each gas sensor was measured in clean air. The gas response
voltage Vres indicating the measured gas concentration was
then calculated as Vres = Vsen−Vbase, where Vsen represents
the detected sensor voltage. As gas source we used a cup
containing pure ethanol, which was heated to accelerate the
evaporation process. The gas concentration data was mea-
sured with a frequency of 20 Hz, and the anemometer data
was down-sampled to 20 Hz because of the anemometers’
higher output rates. For each tetrahedral vertex, four values,
i.e., a gas sensor response voltage and three wind speed values

FIGURE 5. Gas detection and source declaration procedure.

along the x, y, and z directions can be obtained at the same
time. In this way, for the four tetrahedral vertices, 16 values
can be obtained at the same time, which we use directly as
16 feature values of one sample.

IV. M-ELM RECOGNITION ALGORITHM
The tetrahedron-based gas source declaration procedure is
illustrated in Fig. 5. The proposed gas source declaration
methods are described in detail in this section.

As a classic learning framework, extreme learning
machine (ELM) has been extended to different research fields
and gained great progresses. An incremental ELM (I-ELM)
was proposed in the following [51], where the hidden nodes
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FIGURE 6. Principle of the MELM algorithm.

were randomly generated and the output weights were ana-
lytically calculated. In the case of online sequential learning,
an online sequential extreme learning algorithm (OS-ELM)
was developed [52], [53]. With the OS-ELM, data can be
learned one-by-one or chunk-by-chunk with fixed or varying
chunk size and the input data can be processed sequentially.
Huang et al. [54] extended ELM for both semisupervised
and unsupervised tasks based on the manifold regularization,
and the unlabeled or partially labeled samples are clustered
using ELM. To obtain satisfactory feature learning perfor-
mance, in which the original ELM and/or the aforementioned
variants may not achieve, a multilayer learning architecture
using ELM-based autoencoder as basic building block, was
developed in the following [55]. The original inputs were
decomposed into multiple hidden layers, and the outputs
of the previous layer were used as the inputs of the cur-
rent one. Recently, to improve on the I-ELM, bidirectional
extreme learning machines (B-ELMs) were developed in
the following [56]. The B-ELM separates the odd and even
learning steps. At the odd learning step, a hidden node was
added like I-ELM. At the even learning step, a new hid-
den node was added via a formula based on the formerly
added node results. However, some of the hidden nodes
generated by the I-ELM may play a minor role; thus, the
increase in network complexity due to the B-ELM may
be unnecessary. To avoid this issue, an enhanced B-ELM
method (referred to as EB-ELM) was proposed in the fol-
lowing [57]. Several hidden nodes were randomly generated
at each odd learning step, however, only the nodes with the
largest residual error reduction would be added to the existing
network.

The main characteristic of ELM and the above improved
algorithms is that the networkweights are random [58].When

such algorithms are used for classification, the results are
also somewhat random. To reduce the randomness of the
results, we propose to use 50 ELM algorithms at the same
time and find the median average value of the 50 ELM output
results, termed median value filtering based extreme learning
machine (M-ELM).

In this study, the rawmeasurements at one instance in time,
including four gas sensor response voltages and twelve wind
speed values, are fed into the median value filtering based
extreme learning machine (M-ELM) classifying the sixteen
features as ‘‘source in’’ or ‘‘source out’’.

Figure 6 shows the principle of the M-ELM algorithm,
which is a simple neural network algorithm containing three
layers, namely, input layer, hidden layer and output layer.
A detailed explanation of the M-ELM follows.

(1) Input layer: x is the feature vector which is taken as the
inputs of the M-ELM algorithm.

x =[ x1 . . . xd ]
T
d×n (1)

d is the total number of samples for training or testing.
xi is the feature vector of the ith sample, and n (n = 16 in
this paper) is the feature dimension.

(2) Hidden layer: The hidden layer contains a number of L
neurons (L =20 in this paper) and is fully connected to the
input layer, see Eq. (2).

G =

 g(w1.x1 + b1) . . . g(wL .x1 + bL)
. . . . . . . . .

g(w1.xd + b1) . . . g(wL .xd + bL)

 . (2)

As shown in Fig. 6, wi and bi are the input weight and
threshold of the ith neuron of the hidden layer, respectively.
The activation function g(·) is a sigmoid function.
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(3) Output layer: The output layer is fully connected to the
hidden layer, see Eq. (3),

Gβ = S, (3)

where

β =

βT1
. . .

βTL


L×m

, (4)

S =

 ST1
. . .

STL


d×m

. (5)

m = 2 is the class number, β is the transformation matrix
between the hidden layer and the output layer, and S is an
transition matrix of the target recognition results.

When the M-ELM algorithm is used for training, S is
determined by the training samples:

Sjl =

{
1 correct class label
0 wrong class label

, l = 1, 2, . . . ,m. (6)

Sjl is the class label of the lth position of the jth training
sample in the matrix S.
When the M-ELM algorithm is used for testing, S is a

matrix to be solved. For each sample, two values of Sj1
and Sj2 corresponding to the ‘‘source in’’ and ‘‘source out’’
are obtained in one recognition process. According to [58],
the recognition accuracy tended to be stable when the number
of ELM classifiers [61]–[63] was larger than 50. Consider-
ing the computational complexity and the stability, 50 ELM
recognitions were performed in theM-ELMmethod, and then
50 Sj1 and Sj2 combinations (recorded as S1j1,S

2
j1, . . . ,S

50
j1 and

S1j2,S
2
j2, . . . ,S

50
j2 ) corresponding to 50 ELMs can be obtained.

Taking the jth testing sample as an example, writ-
ing for simplicity, S1j1,S

2
j1, . . . ,S

50
j1 and S1j2,S

2
j2, . . . ,S

50
j2 are

re-expressed as vectors o1 =
[
o11,o

1
2, . . . ,o

1
50

]T
and o2 =[

o21,o
2
2, . . . ,o

2
50

]T
, respectively. The calculation process of

the recognition result vector c is described in Eqs. (7-10).

P =
[
p11, p

1
2, . . . ,p

1
50

p21, p
2
2, . . . ,p

2
50

]
=

[
sort(o11,o

1
2, . . . ,o

1
50)

sort(o21,o
2
2, . . . ,o

2
50)

]
, (7)

where the function sort(·) sorts all values from small to
large. The sort values corresponding to ‘‘source in’’ and
‘‘source out’’ classes are stored in vectors p11,p

1
2, . . . ,p

1
50

and p21,p
2
2, . . . ,p

2
50, respectively. The effect of median value

filtering in the M-ELM algorithm is to filter out the smallest
and largest values in an array or a vector, and then average the
remaining values. Here, we filter out the smallest 5 values and
the largest 5 values, and the remaining values are averaged.[

o1
o2

]
=

[
ave(p16,p

1
7, . . . ,p

1
45)

ave(p26,p
2
7, . . . ,p

2
45)

]
. (8)

The function ave(·) in Eq. (8) calculates the average value
of the vector. Finally we decide whether the sample belongs
to the class ‘‘source in’’ or ‘‘source out’’ using Eq. (9):

cj = argmax(o1,o2), (9)

The function argmax(·) returns the position (or label) cor-
responding to the maximum in a vector, and the recognition
result of the jth testing sample is recorded as cj. For the d
testing samples, the recognition results are finally stored in a
vector c.

c =



c1
...

cj
...

cd

. (10)

V. EXPERIMENT VALIDATION
In this section, we examine the performance of the proposed
method for gas source declaration.

A. EXPERIMENT AND DATA DESCRIPTIONS
Regular tetrahedron experiments with different side lengths
were first carried out in an indoor natural ventilation envi-
ronment. Side lengths of the three regular tetrahedrons were
set to 1.0 m, 1.5 m and 2.0 m. In each regular tetrahedron
experiment, 2000 training samples (1000 ‘‘source in’’ and
1000 ‘‘source out’’) and 2000 testing samples (1000 ‘‘source
in’’ and 1000 ‘‘source out’’) were obtained by using an
MFC-based sample filter [60].
Further, an irregular tetrahedron experiment was carried

out to verify that the proposed recognition algorithm can
also work adequately for irregular tetrahedrons. Based on the
regular tetrahedron with a side length of 1 m (Fig. 4), two of
the four tetrahedral vertices were moved: one was raised by
0.1 m and the other one was lowered by 0.1 m to construct
an irregular tetrahedron. For the irregular tetrahedron experi-
ment, also 2000 training samples (1000 ‘‘source in’’ and 1000
‘‘source out’’) and 2000 testing samples (1000 ‘‘source in’’,
1000 ‘‘source out’’) were collected. For each sample, the raw
gas concentration measurements (represented by gas sensor
response voltages) and 3D wind data were used as features
for recognition.

B. RECOGNITION ACCURACY OF REGULAR
TETRAHEDRON
For gas source declaration, it was shown that using the mass
flux features, the ELM-MFC (mass flux criterion)method can
obtain a good recognition performance [60]. In this paper,
we use a 16-dimensional feature vector composed of the
gas sensor response voltages and the 3D wind speed mea-
surements, and compare several variants of ELM algorithms,
i.e., the average ELM (AVE-ELM), voting ELM (V-ELM),
maximum ELM (MAX-ELM), minimum (MIN-ELM) and
the median value filtering ELM (M-ELM). The recogni-
tion accuracies in the regular tetrahedron experiments are
shown in Table 1. In Table 1, DTS indicates the regular
tetrahedron experiments with different tetrahedron setups.
Comparedwith the regular tetrahedron experiment with a side
length of 1 m, the position of the tetrahedron was moved
westward by 1 m and moved southward by 1 m. In addition,
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TABLE 1. Recognition accuracy (%) of the regular tetrahedron experiment
using different ELM-based methods.

the tetrahedron was rotated 180 degrees. DGSS indicates
regular tetrahedron experiments with different gas source
setups. Compared with the regular tetrahedron experiment
with a side length of 1 m, the source for the ‘‘source in’’ case
was located in the symmetrical position of the original source
in Fig. 4 (a) with plane ADE (determined by the points A,
D and E) being the symmetry plane, and the distance between
the source and the tetrahedron of the ‘‘source out’’ case was
doubled (i.e., the distance for this experiment was 1.3 m,
compared with 0.65 m for the experiment in Fig. 4 (b)).

As can be seen from Table 1, based on the raw measured
data, the M-ELM method yields the best average recognition
accuracy of 93.2%, better than the other ELM-based declara-
tion methods and better than the ELM-MFC.

C. RECOGNITION ACCURACY OF IRREGULAR
TETRAHEDRON
Table 1 shows that M-ELM yielded the best average declara-
tion accuracy in the regular tetrahedron experiments. We now
ask whether good recognition accuracy can be obtained also
in the irregular tetrahedron experiments. Here, based on the
regular tetrahedron with a side length of 1 m, two of the
four tetrahedral vertices were moved: one was raised by
0.1 m and the other one was lowered by 0.1 m to construct
an irregular tetrahedron. The recognition accuracies of the
irregular tetrahedron experiments are shown in Table 2.

TABLE 2. Recognition accuracy (%) of the irregular tetrahedron
experiment using different ELM-based methods.

As shown in Table 2, the raw measured data plus the
M-ELMmethod again achieved the best recognition accuracy
of 100% in the irregular tetrahedron experiments, better than
the other methods, which further verifies the effectiveness
of using the M-ELM method operating on the raw measure-
ments for tetrahedron-based gas source declaration.

VI. CONCLUSION
For gas source declaration, we propose to use a tetrahedral
sensor node arrangement (with each sensor node consisting
of a gas sensor and an anemometer) and a machine learning
approach to distinguish whether the gas source is inside
(i.e., the ‘‘source in’’ case) or outside (i.e., the ‘‘source out’’
case) the tetrahedron. We propose the median value filtering
based extreme learningmachine (M-ELM) source declaration
method to declare the ‘‘source in’’ or the ‘‘source out’’ case.
We validated the effectiveness of the proposed method for
gas source declaration in real-world experiments, demon-
strating in regular and irregular tetrahedron experiments, that
the proposed method outperforms the ELM-MFC and other
variants of ELM algorithms in terms of gas source declaration
accuracy. However, it is worth noting that M-ELM algorithm
needs to use multiple ELM algorithms at the same time,
and the real-time performance is lower than the classic ELM
algorithm. Besides, for the measurement of the same gas con-
centration, if the ambient temperature and humidity change,
the output of the gas sensor may also change. To accurately
determine whether the gas source is ‘source in’ or ‘source
out’, the sensor response signals in various situations need to
be trained and learned.

We discuss two ways for constructing the tetrahedral
measurement geometry. One is based on a fixed sensor
node structure, and the other is based on a mobile sensor
node structure. For the mobile sensor node structure, a 3D
path planning strategy was proposed and verified through
simulations, which provides a valuable guidance for prac-
tical applications of the proposed gas source declaration
methods.

VII. FUTURE WORK
A. WAYS FOR TETRAHEDRON CONSTRUCTING
As illustrated in Section II B, two theoretical ways for tetrahe-
dron construction were described in detail. One of them was
verified by experiments and the other by simulation. Both
of them use multiple sensor nodes simultaneously. We ask
whether it is possible to use only one sensor node. That is
the third option: a single mobile sensor that carries out the
measurements at the tetrahedron position in sequence, not in
parallel. Compared to parallel sensor nodes, a single sensor
node has a time delay when traversing four nodes. There is
also a delay in the large change of the gas mass. In order to
obtain accurate gas information, the sensor node is required
to move at a much faster rate than the gas diffusion rate.
Therefore, the use of a single sensor node is also a possibility,
and we will conduct corresponding research.
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B. IRREGULAR TETRAHEDRON
Table 2 illustrates that good recognition accuracy of gas
source by using an irregular tetrahedron are obtained. While
based on the regular tetrahedron whose side length is 1 m,
only two sensor nodes were moved by 0.1 m to construct
an irregular tetrahedron. Given that different irregular tetra-
hedron may exist in actual situations, we will continue to
study the recognition performance based on other irregular
tetrahedrons.

C. THREE-CLASS CLASSIFICATION
Theoretically, there is a situation where the gas source is
placed on the edge/rail of the tetrahedron, but in practice,
the more concerned is whether the gas (leak) source is in a
certain area. Generally, the position of the four tetrahedron
vertices is adjusted dynamically and the gas source is con-
firmed by the two-class classificationmethod proposed in this
paper. We will design a three-class classification algorithm
later to verify situation where the gas source is placed on the
edge/rail of the tetrahedron through experiments.
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