
SPECIAL SECTION ON DEEP LEARNING: SECURITY AND FORENSICS RESEARCH
ADVANCES AND CHALLENGES

Received December 1, 2019, accepted December 25, 2019, date of publication December 30, 2019,
date of current version January 16, 2020.

Digital Object Identifier 10.1109/ACCESS.2019.2963092

Deep Learning-Based Intelligent Fault Diagnosis
Methods Toward Rotating Machinery
SHENGNAN TANG 1, SHOUQI YUAN1, AND YONG ZHU1,2
1National Research Center of Pumps, Jiangsu University, Zhenjiang 212013, China
2State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China

Corresponding authors: Shouqi Yuan (shouqiy@ujs.edu.cn) and Yong Zhu (zhuyong@ujs.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 51779107 and Grant 51805214, in part
by the China Postdoctoral Science Foundation under Grant 2019M651722, in part by the Open Foundation of the State Key Laboratory of
Fluid Power and Mechatronic Systems under Grant GZKF-201905, in part by the Natural Science Foundation of Jiangsu Province under
Grant BK20170548, in part by the Youth Talent Development Program of Jiangsu University, and in part by the National Key Research and
Development Program of China under Grant 2019YFB2005200.

ABSTRACT Fault diagnosis of rotating machinery plays a significant role in the industrial production
and engineering field. Owing to the drawbacks of traditional fault diagnosis methods, such as heavily
dependence on human knowledge and professional experience, intelligent fault diagnosis based on deep
learning (DL) has aroused the interest of researchers. DL achieves the desirable automatic feature learning
and fault classification. Therefore, in this review, DL and DL-based intelligent fault diagnosis techniques
are overviewed. DL-based fault diagnosis approaches for rotating machinery are summarized and discussed,
primarily including bearing, gear/gearbox and pumps. Finally, with respect to modern intelligent fault
diagnosis, the existing challenges and possible future research orientations are prospected and analyzed.

INDEX TERMS Deep learning, deep neural network, intelligent fault diagnosis, rotating machinery.

I. INTRODUCTION
As an essential part and one of the most representative of
mechanical equipment, the rotating machinery relies on rota-
tion for purpose of a specific function. It has beenwidely used
in the field of mechanical transmission, including aircraft
engines, pump, wind turbine generator systems, gas turbine
engine, and power plants [1], [2]. Owing to unavoidable mal-
function and downtime of the mechanical equipment in the
process of operation, fault diagnosis is of great significance
for rotating machinery in order to ensure the reliability and
safety [3]–[6].

In general, fault diagnosis methods are divided into
the followings, model-based methods, signal-based meth-
ods, knowledge-based methods and composite methods [7].
In view of traditional fault diagnosis methods, they are pri-
marily based on mechanism, feature frequency or fault fea-
ture extraction [8]. On account of dependence on the practical
experience and professional knowledge, it is difficult to detect
the fault of rotating machinery with complex structure by the
use of traditional subjective fault diagnosis methods [9], [10].
Some improvement and achievement have been made on
fault diagnosis with respect to the model-based methods and
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signal-based methods. A kalman filter was improved and
used to evaluate the state of hydraulic actuator and leakage
of hydraulic system by An and Sepehri [11], [12]. Du and
Goharrizi et al. analyzed and estimated vibration signal of
hydraulic pump, pressure signal of hydraulic cylinder and
actuator via wavelet transform [13], [14]. The doubly iter-
ative empirical mode decomposition (EMD) and adaptive
multifractal detrended fluctuation analysis were employed
to analyze fault diagnosis of the bearing, the gear and the
piston pump [15]. Although the shortages of artificial data
statistics have been compensated by the methods discussed
above to some extent, there are still some limitations in fault
diagnosis of rotating machinery owing to the difficulty in
feature extraction and complicate mathematical model.

With the implement of ‘‘Industry 4.0’’ and ‘‘Internet +’’,
artificial intelligence (AI) has been quickly integrated into the
various traditional industries [16]. Intelligent fault diagnosis,
which is combined with other feature extraction methods,
AI as the main body, has attracted more and more attention.
It is considered to be a powerful tool for big data processing
and fault diagnosis of mechanical equipment, which provides
a new exploration path for fault diagnosis and health manage-
ment of rotating machinery [17], [18].

Great success has been achieved in fault diagnosis of rotat-
ing machinery with traditional machine learning methods,
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such as support vector machine (SVM) and artificial neural
network (ANN) [19]–[22]. Wavelet packet decomposition
and EMD were combined and used to feature extraction,
moreover, ANN was utilized to preliminary fault diagno-
sis by Bin et al. [23]. In order to achieve fault diagnosis
of hydraulic pipe, an integrated method including principal
component analysis (PCA), ANN and multiple adaptive neu-
ral fuzzy inference system was proposed by Saeed et al. [24].
On account of on-line intelligent diagnosis based on neural
network, Schlechtingen et al. used it to fault diagnosis of
wind turbine generator [25]. In order to realize fault iden-
tification of bearing, many various efforts have been made
on the exploration of novel methods. Amar et al. proposed a
neural network based on vibrational spectra [26], Jiang et al.
combined improved singular value decomposition (SVD) and
hidden markov model [27], and Zeng et al. used a maxi-
mum interval classification method based on flexible convex
hull [28]. A novel diagnosis method for bearing was proposed
by Li et al., thereinto, the geometry of input data was taken
into account [29]. In addition, intelligent diagnosis method
was proposed based on firefly neural network by Li et al. [30].
However, there are still some limitations and deficiencies in
traditional intelligent diagnosis methods. On the one hand,
in consideration of feature extraction, a large number of
signal processing technologies requires to be grasped and
rich experience in engineering practice needs to be possessed;
additionally, feature extraction and intelligent diagnosis are
treated separately, the relationship between them could not
be taken into account. On the other hand, with regard to
model training, the shallow model is used to characterize the
complex mapping relationship between signals and health
status, which leads to the obvious deficiency in diagnostic
ability and generalization performance of the model in the
face of mechanical big data [31], [32].

Modern intelligent fault diagnosis technology is based on
the new theory and method of AI. In 2006, Hinton et al.
first proposed the deep learning (DL) theory in Science [33],
which triggered a wave of research on many different fields.
DL was ranked as the top 10 breakthrough technologies
of 2013 by MIT Technology Review. In 2015, Hinton et al.
indicated that DL was thought to be one of machine lean-
ing, and breakthrough was analyzed and discussed in the
respects of image, video, audio and text processing [34].
It has been adequately demonstrated that DL presents the
broad prospects on research and application. Through multi-
layer nonlinear network training, potential features of sam-
ples have been learned and classification or prediction ability
have been improved with DL. DL methods that are widely
studied usually include deep belief network (DBN) [35],
stacked self-encoders (SAE) [36], convolutional neural net-
work (CNN) [37] and recurrent neural network (RNN) [38].
Based on multivariate encoder information, a CNN was
designed to intelligently identify the failure of planetary gear
box by Lin et al. Not only did the deficiency of traditional
vibration analysis overcome, but also a potential intelligent
tool was provided to obtain the expected diagnosis towards

rotating machinery [39]. In accordance with multi-domain
features, an integrated kernel extreme learning machine was
proposed and used to gear box, rotor and motor bearing,
effective diagnosis was achieved by visualization with the
method [40].

Presently, on account of the wide use of DL in many
pattern recognition fields, intelligent fault diagnosis based
on DL has attracted much more attention of professional
researchers in machinery field. Therefore, this review will
focus the efforts on fault diagnosis of rotating machinery.
It will place an emphasis on fault diagnosis integrated with
deep neural network technology. Furthermore, a summary
of the applications will be given towards commonly used
rotating machinery such as bearing, gear and pump. Finally,
the above discussions are concluded and the possible research
directions are provided to inspire more researches in this
field.

II. DL BASED FAULT DIAGNOSIS
A. ARTIFICIAL INTELLIGENCE
As a new and interdisciplinary science, AI is aiming at sim-
ulating some of human thinking processes and intelligent
behavior by the use of computer. It can be achieved in com-
puter by the following two different ways, one is engineering
approach which adopts traditional programming technique;
the other is modeling approach, such as generic algorithm
and ANN.

From SIRI to AlphaGo, rapid development of AI has
been supposed to be interesting, surprising and outstanding
[41], [42]. AI approaches have been integrated into many
various fields, great achievements have been obtained in
man-machine game, pattern recognition, automatic engineer-
ing and knowledge engineering [43]–[45]. Because of the
increase of machinery data and complication of fault which
result in high uncertainty during diagnosis process, AI based
methods will outperform traditional methods on diagnosis
efficiency. AI-based approaches can be divided into the fol-
lowing two categories, knowledge-driven methods and data-
driven approaches [46].

B. DL
As a distinguished development of AI, DL can be under-
stood as feature learning or representation-learning, which
possesses multiple and high levels representations of data,
concretely, through DL, low-level features from simple and
nonlinear modules were composed to form more abstract
high-level representations in terms of categories or features,
complex functions and distributed feature representations of
data can be obtained [47]. Very deep neural networks can be
considered to be typical DL model. DNN plays an essential
role in deep models, mainly including DBN, SAE, CNN,
RNN and GAN. As one of unsupervised learning ways, DBN
is a DNN which possesses the stacked structure and consists
of multiple Restricted Boltzmann Machines. Similarly, SAE
is used to deal with high-dimensional data by means of
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unsupervised learning. It is composed of multiple auto-
encoders, which presents a three-layer neural network
including both encoding and decoding processes. CNN is
a supervised learning network, whose structure seems to be
more complex with convolution layers, sample layers and full
connected layers. With especial ring structure, RNN repre-
sents a unique advantage in settling learning problems with
sequential data via unsupervised learning. It is interesting
that GAN is comprised by generally both non-linear function
models, that is, a generative model and a discriminative
model respectively [48]. In order to overcome the deficiency
of insufficient training data, deep transfer learning (TL)
has achieved that the learning from the source domain is
employed to the target domain [49]. Compared with tradi-
tional machine learning, it should be noted that the key advan-
tage of DL is layers of features are automatically learned from
raw data through a general-purpose learning procedure, not
dependent on engineering skills and domain expertise [34].

In view of the advantages of DL, it has been applied
to many different fields such as language processing, auto-
matic speech recognition, and audio recognition [50], [51].
Meanwhile, this has aroused the interest of researchers in the
field of mechanical engineering, making it play an essential
role in intelligent fault diagnosis combined with other meth-
ods and technologies [52], [53].

C. OVERVIEW OF DL BASED FAULT DIAGNOSIS
Intelligent fault diagnosis is the combination of AI and fault
diagnosis, which expresses comprehensive use of domain
expertise and AI technology and strong capability of process-
ing considerable mechanical data [54], [55].

Three different steps are included in traditional intelli-
gent fault diagnosis, namely, signal collection, feature extrac-
tion and fault classification. Since some exhausted and
handcrafted signal feature extraction technologies could be
required in those methods, diagnosis results will finally be
affected. Moreover, the ability to learn the complex non-
linear relationships between features and patterns will be
hindered with the shallow structures such as SVM [56]. With
respect to new intelligent fault diagnosis, in place of feature
extraction and selection, the features can be automatically
learned from raw signals, which presents more intelligent
than conventional approaches [57], [58].

Some good results have been achieved in applications
to gear, gearbox, bearing, rolling, pump, wind turbine and
nuclear power plant with modern intelligent fault diagno-
sis [59]–[62]. Xu and his colleagues proposed a new intel-
ligent diagnosis method based on elaborately designed deep
neural network for failure detection of wind turbine, which
solved the problem of unbalanced distribution with regard
to SCADA data [63]. Combined a CNN with a Naïve Bayes
data fusion proposal, Chen et al. applied DL theory to nuclear
power plant inspection [62]. Zhang et al. constructed a
new unsupervised learning method called general normalized
sparse filtering, which was used for fault diagnosis of rolling
bearing and planetary gearbox [64].

III. APPLICATIONS OF DL TOWARD FAULT DIAGNOSIS
IN ROTATING MACHINERY
Combined with the above analysis, it can be proved that it has
acquired some improvements and achievements for machin-
ery fault diagnosis illuminated from the applications of DL
technique in other fields. As shown in Table 1, the appli-
cations of DL-based methods in machinery fault diagnosis
have been summarized. In order to evaluate the diagnosis
performance of methods, the following evaluation indicators
are employed, including the diagnosis accuracy, the training
accuracy, the average testing accuracy, the prediction accu-
racy, the clustering effect from visualization.

This review will play an emphasis on intelligent fault diag-
nosis of typical rotating machinery, including bearing, gear
and pump. Furthermore, DL-based approaches for improving
diagnosis accuracy will be analyzed and discussed in the
following.

A. INTELLIGENT FAULT DIAGNOSIS OF BEARING
As one of well-known and widely-used rotary machinery,
bearing is of great significance but its brokendown occu-
pies nearly 45-55% of equipment fault, which will lead to
accidents, downtime, even severe damage and economic loss
[93], [94]. Therefore, it is of vital importance to investigate
intelligent fault diagnosis methods of bearing, especially the
DL technique.

In order to overcome the imbalanced distribution of
machinery health conditions, a new learning method called
deep normalized CNN (DNCNN) was investigated to clas-
sify the faults of bearing by Jia et al. [95]. Three bearing
datasets are employed to validate the diagnosis accuracy of
the proposed methods, in which single faults and compound
faults with various imbalanced degrees are taken into account.
In Figure 1(a-c), it can be seen that DNCNN presents the
superiority than S-CNN and R-CNN in terms of learning
features from the vibration signals, in which the features
cluster well. By the use of the confusion matrices, the
imbalanced classification results were successfully obtained,
that is, 95.4% of the samples were correctly classified by
the proposed method, and only 4% of the samples were
misclassified.

As one method of machine learning, TL makes it possible
that one pretrained model is employed again to another task
with the purpose of reducing the distribution discrepancy and
enhancing the predictive performance [96].

Generally, both developing model and pretraining model
are included, moreover, the latter is widely used in machine
learning. Through the integration of auto-balanced high-order
Kullback-Leibler divergence, smooth conditional distribution
alignment and weighted joint distribution alignment, a novel
TL framework was designed for fault diagnosis of rotator
bearing and gearbox under varied conditions [97]. Inspired
by the idea of TL, a deep CNN was proposed to be used for
fault diagnosis of unlabeled data by Lei et al., which made
it possible that labeled data from one machine after being
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TABLE 1. Summary of DL-based methods for machinery fault diagnosis. TABLE 1. (Continued.) Summary of DL-based methods for machinery
fault diagnosis.

FIGURE 1. The visualization of learned features for Dataset A: (a) S-CNN,
(b) R-CNN, (c) DNCNN. S-CNN represents the convolutional neural
networks (CNN) using sigmoid function, R-CNN represents the CNN using
ReLU, DNCNN represents deep normalized convolutional neural network,
respectively [95].

trained could effectively classify the unlabeled data from
other machines [98]. Furthermore, as one of CNN, a transfer
neural network based on feature was explored for state identi-
fication of bearings. In comparison to the other methods such
as CNN and multi-layer adaptation CNN, the average clas-
sification accuracy of the proposed method was the highest
one which achieved 84.32%. It has been demonstrated that
more desirable transfer results and transfer performance were
obtained with FTNN. Seen from Figure 2(f), in considera-
tion of the learned transferable features, the distribution was
adapted efficaciously, furthermore, the among-class distance
was expanded [99]. In order to overcome the limitations in
training and the performance degradation, a new deeper 1D
CNN based on the residual learning was developed for fault
diagnosis of wheelset bearings, and the effectiveness was
approved by visualization Figure 3 [71].
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FIGURE 2. The visualization of the learned features on the dataset B
(source domain) and the dataset D (target domain): (a) CNN, (b) TCA,
(c) DAFD, (d) DDC, (e) MACNN, and (f) FTNN. CNN represents
convolutional neural networks, TCA represents transfer component
analysis, DAFD represents, DDC represents, MACNN represents
multi-layer adaptation CNN, and FTNN represents feature-based transfer
neural network [99].

FIGURE 3. Visualization of these five methods in noise environment
(SNR = −16 dB). ADCNN represents adaptive deep CNN, Wen-CNN
represents CNN proposed by Wen et al, MSCNN represents multiscale
CNN, WDCNN represents deep convolutional neural networks with wide
first-layer kernels, Der-1DCNN represents deeper 1D CNN [71].

A new deep TL with three-layer sparse encoder was inves-
tigated by Wen et al, which was validated by the use of motor
bearing dataset. Compared with other traditional methods,
such as DBN, ANN, sparse filter, and SVM, this proposed
method presents good performance and the prediction accu-
racy achieved 99.82% [100].

He et al. presented a composite deep signal processing
approach, which integrated vibration analysis and deep learn-
ing [101]. Vibration analysis was embedded into the dis-
crete Fourier transform - inverse discrete Fourier transform
autoencoder, which achieved that time-frequency charac-
teristics were learned adaptively and effective convergence
was obtained in view of learning procedure. Real bearing
data was employed to validate the performance of the pro-
posed method, which presented obviously higher diagno-
sis accuracy compared with those of popular deep neural

network (DNN), CNN and SVM. Specifically, the testing
accuracy reached 100.00% while below 95.50% in other
methods when shaft speeds were set as 45 and 60.

Motivated by the thought of enhancing the generalization
ability and robustness of diagnosis model through utilizing
the structural domain information among multiple bearing
fault types, a new deep output kernel learning was presented
in order to overcome the randomness of some deep learn-
ing methods [102]. In comparison to one the-state-of-the-art
signal analysis method, four shallow models and four deep
models, it showed higher accuracy of 100.00% and shorter
training time of less than 7 s.

Combined compressed sensing with a convolutional DBN,
a new improved deep model with powerful feature learn-
ing ability was constructed to analyze the single fault and
compound faults of rolling bearing by Shao et al. [103].
It should be pointed that the analysis efficiency was enhanced
by compressed sensing and the generalization performance
was enhanced via exponential moving average technique. The
average testing accuracy of the proposed method achieved
94.80%, which was be superior to other traditional methods
of no more than 90.00%, including the standard DBN, CNN,
deep auto-encoder (DAE), BP neural network and SVM.
From the visualization of PCA (Figure 4), it can be proved
that the better clustering result was obtained from the pro-
posed method, which expressed the superiority in capturing
potential features.

FIGURE 4. Three dimensional visualization of different features using
PCA. (a) Compressed data features, (b) extracted 22 features, and (c) deep
features [103].

In regard to the diversity of the fault data distribution and
the data reconstruction ability, a sparse stacked denoising
autoencoder is developed for the fault diagnosis of rolling
bearings [104]. With the introduction of optimized trans-
fer learning algorithm, the problem of the domain adaption
was solved, and the accuracy of the target domain achieved
96.70% in one of motor loads. It was demonstrated that the
quality of the target domain was influenced by the perfor-
mance of the source domain algorithm, however, it is limited
to only depend on the enhancement of the source domain.

In consideration of unlabled data in practical engineering,
combined with Gath-Geva clustering algorithm, a stacked
denoising autoencoder was investigated for roller bearing
fault diagnosis without principal component analysis and data
mark [105]. The proposed method presented the superior
clustering effect. Moreover, its classification accuracy was
higher compared to those of the other combination models,
and the highest one reaches up to 100.00%.
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FIGURE 5. The structure of the proposed CNN-ELM model for fault
diagnosis [107].

B. INTELLIGENT FAULT DIAGNOSIS OF GEAR AND
GEARBOX
It was indicated that the gearbox failure was the primary
contributor to equipment fault, which took up nearly 40% in
mechanical transmission field according to the investigation
performed under the assistance of the Institute of Electrical
and Electronic Engineers (IEEE) [106]. Hence, in view of the
fault diagnosis for gear and gearbox, the methods based on
DL will be highlighted in the following.

Combined CNN and extreme learning machine, a new
model without any extra training and fine tuning was estab-
lished by Chen et al., gearbox dataset and motor bearing
dataset were selected to verify the effectiveness of the pro-
posed method, as depicted in Figure 5 [107]. It was demon-
strated that the feature learning capability was improved by
the CNN employed as an automatic feature extractor, and
the classification performance and the learning speed were
promoted through the extreme learning machine. In view of
gearbox, the results indicated that the training accuracy and
average test accuracy reached 100.00%± 0.00 and 99.83%±
0.24 respectively, which achieved the superiority in contrast
to the other methods such as standard CNN. With regard to
motor bearing, the training accuracy and average test accu-
racy gained 100.00%± 0.00 and 99.92%± 1.24 respectively,
which exhibits the better classification performance.

With respect to signal processing-basedmethods, a wavelet
packet transform, a distance evaluation technique and a sup-
port vector regression (SVR)-based genericmulti-class solver
were combined for fault diagnosis of bearing and gearbox [1].
The proposed method presented the superior representative
capability and the higher diagnosis accuracy, which was
mainly attributed to the influences of wavelet basis functions
on the proposed whole framework.

Motivated by the idea of TL, a new intelligent fault
diagnosis scheme named deep transfer network with joint dis-
tribution adaptation was exploited to overcome the applica-
bility limitations for the traditional diagnosis methods [108].
Three datasets including wind turbine, bearing and gearbox
fault dataset, were employed to verify the performance of
the proposed framework, which displayed some good results
in accordance to various working conditions, the types and
severities of fault. In order to demonstrate the performance
of the proposed method, the average diagnosis accuracy,
missing alarm rate, and false alarm rate were chosen as evalu-
ation indicators, meanwhile, eight state-of-the-art intelligent

diagnosis approaches were used as comparisons. With regard
to gearbox, the average diagnosis accuracy of the proposed
scheme outbalanced those of other methods, which reached
up to more than 96%. Similarly, a working condition-robust
fault diagnosis method based on an improved joint distri-
bution adaptation was exploited to achieve the acquisition
of more useful samples and reduction of the input dimen-
sion [109]. The vibration signal datasets of roller bearings
and a gearbox were used to validate the fault diagnosis per-
formance of the proposed method, which obviously demon-
strated its effectiveness although its computational time was
completely unsatisfactory.

In consideration of unexpected diagnostic results via uti-
lizing the spectrum signal, modern spectrum signals through
preprocessing current signals was incorporated into DNN by
Li et al. [110]. Compared with SVM and BPNN, the pro-
posed method represented superior diagnostic results for
faults detection in planetary gears, the testing accuracy rate
of which achieved 96.69% with standard deviation of 1.05%.
Furthermore, the diagnosis advantage of the proposedmethod
was proved by the visualization of fault characteristics from
PCA, as shown in Figure 6(d), which presented better clus-
tering effect and little overlapping than those of others.

FIGURE 6. Scatterplot of the main characteristic components: (a) signals
in the time domain, (b) direct spectrum signals, (c) spectrum signals
without the power frequency, and (d) modified spectrum signals.
Reprinted with permission from ref. [110].

A new DL method was developed for fault diagnosis of
planetary gear through combining power spectral entropy
of variational mode decomposition and DNN, which was
trained through unsupervised training and supervised fine
tuning [111]. It is beneficial to fault classification via the
reduction of raw signals by the use of BP. Compared with
other methods such as SVM and BP, the proposed method
exhibited the higher overall recognition rate of 100%.

Based on time-frequency analysis and DNN, a deep
residual learning was constructed for fault diagnosis in
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planetary gearbox [112]. Its performance was demonstrated
under nonstationary running conditions, which implied
admirable results for the incipient fault detection, especially
when rotating speed was variable. The proposed scheme
presented the higher diagnosis accuracy, which reached up
to 95.4% under faulty condition.

A deep CNN was constructed for gearbox fault diagnosis
under different operating conditions, which was compared
with different SVM classifiers optimized by the use of a
grid search technique [113]. With regard to vibration sig-
nals of different directions, the proposed method showed the
superiority to other traditional methods. The identification
accuracy achieved 93.6% and the computational cost was
reduced.

By the use of the maximum correntropy and artificial fish
swarm algorithm, a new deep autoencoder feature learning
method was designed and optimized by Shao et al. for the
fault diagnosis of gearbox and electrical locomotive roller
bearing [114]. Compared with other approaches such as stan-
dard deep autoencoder, BP and SVM, the proposed method
possessed the admirable diagnosis effectiveness including
robustness, and the average testing accuracy reached 94.05%
with a smaller standard deviation of 1.34.

In order to overcome the dependence on numerable
labelled data and time consuming of handcrafted feature
extraction in traditional supervised diagnosis, a new deep
semi-supervised method of multiple association layers net-
works was investigated by Zhang et al. [115]. As shown
in Figure 7, the wavelet packet transform was employed to
preprocess raw signals, moreover, the labeled and unlabeled
data was together used to train the model and method. It can
be concluded that the recognition accuracy of the proposed
method presented the advantage in comparison to SAE and
DBN with less labeled data. The recognition rate increased
from 78.58% to 93.26% with the increase of the labeled
samples from 2% to 100%. Additionally, it is worth to note
that the optimization of the hyper-parameter may be a key
challenge and have a great influence on the performance of
the neural networks.

FIGURE 7. The framework of the proposed method for fault diagnosis of
planetary gearbox [115].

C. INTELLIGENT FAULT DIAGNOSIS OF PUMPS
With the function diversity and structural complexity of
hydraulic system, it seems to be more challenging for
fault identification and classification [116]–[118]. As power
source of hydraulic system, hydraulic pump plays an indis-
pensable role in reflecting the working state of the system
[119], [120]. Meanwhile, with respect to the wide use of
centrifugal pump, whose operating state directly affects pro-
duction and safety. According to the statistics on the mechan-
ical and electrical equipment defects, more than 50% are
connected with pump failures [121], [122]. Therefore, it is
of great significance to diagnose pump faults accurately and
effectively in order to ensure the safety and reliability of the
system. Although some researches have achieved admirable
results on machinery intelligent fault diagnosis, there are still
little investigations on pumps.

As an essential and famous DL, DNN has aroused great
attention in intelligent fault diagnosis, which has also stim-
ulated interest in research for pumps. A new data-driven
method based on CNN with LeNet-5 was developed by
Wen et al. [90]. In regard to axial piston hydraulic pump,
two fault conditions were taken into account, and the piston
shoes and swashplate wearing and valve plate wearing were
included. The prediction accuracy achieved 100%. As for
self-priming centrifugal pump, four faults conditions were
analyzed, including bearing roller wearing, inner race wear-
ing, outer race wearing, and impeller wearing fault condition.
From the results of confusion matrix, it can be observed that
the prediction accuracy of 99.481% was obtained, moreover,
the most misclassification was 0.4%. Similarly, a simple
improved CNN was proposed for fault diagnosis of hydraulic
pump by Yang et al. [123]. Two operating conditions includ-
ing stable and variable pump speeds were investigated, the
accuracy rate exceeded 95% and 90% in view of the worst
results.

Based on image-processing technique, a probabilistic neu-
ral network was introduced by Lu et al, and it was achieved
that the feature was automatically extracted in a two-
dimensional space [124]. The speeded-up robust features and
t-Distributed Stochastic Neighbor Embedding (SNE) were
employed to automatic feature extraction and dimensionality
reduction respectively. By the use of t-SNE, the feature infor-
mation was more clustered and presented the potent capabil-
ity of separability (Figure 8(A)). It can be concluded from the
cross-validation results that the proposed method presented
the high diagnosis accuracy. The classification accuracy was
more than 96% for the self-priming centrifugal pump. For
the axial piston hydraulic pump, the average classification
accuracy achieved as high as 98.71%.

Through introducing data indicator containing time and
frequency, Wang et al. investigated a DBN for multiple faults
diagnosis of the axial piston hydraulic pump, which achieved
the advantageous classification accuracy of 97.40% in com-
parison to SVM and ANN [125]. It deserved to be mentioned
that the restricted Boltzmann machine was used to realize the
automatic learning of fault features.
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FIGURE 8. The first three features extracted using t-SNE (A) and without
using t-SNE (B) [124].

In consideration of the complex dynamic behavior for
rotary machinery, symbolic analysis plays an essential
role [126]. In combination with hierarchical symbolic analy-
sis (HSA), a CNN was used for fault diagnosis of centrifugal
pump [127]. The diagnosis accuracy improved as the number
of hierarchical layers increased, moreover, the computation
time admirably reduced after usingHSA. It achieved themax-
imum of 98.50% when hierarchical layer was 3. By means
of data fusion which achieved the transformation of multi-
sensor-signals to images, another improved CNN was pro-
posed by Wang et al., and the prediction accuracy reached up
to 99.47%. It presented the obvious better diagnosis effective-
ness in comparison with other intelligent methods [128].

Owing to the long operating time and computing compli-
cation, a novel intelligent fault diagnosis scheme was devel-
oped combined deep structure with SVM, which realized the
learning of the hidden features [129]–[131]. The similar con-
clusions were obtained that the accuracy rate increased with
the number of network layers. In contrast to other methods,
the proposed method exhibited the superior diagnosis perfor-
mance. In consideration of the accuracy rate and computing
time, the optimum result achieved up to 97.75%with standard
deviation of 0.20.

IV. CONCLUSIONS AND PERSPECTIVES
Relevant studies on fault recognition methods have been
performed by our research group [132], [133]. Additionally,
PCA and XGBoost were integrated to diagnose hydraulic
valves. It is worth noting that we have conducted many
investigations on fault diagnosis and signal processing for
hydraulic pumps and centrifugal pumps, which mainly con-
centrate on conventional intelligent methods [134]–[137].
Furthermore, we gradually begin to study intelligent fault
diagnosis methods such as SVM for hydraulic pumps [138],
which provides a theoretical foundation for the following
researches on DL-based fault diagnosis approaches. In the
present and future, we will put emphasis on the DNN-based
methods and exploremulti-information fusion technique with
well generalization capability, moreover, remote diagnosis
system will be exploited and constructed.

In accordance with the analysis and discussions above,
the methods based on DL can not only adaptively extract

the hidden complex and changeable fault information, but
also overcoming the reliance on diagnostic knowledge and
engineering experience of traditional methods. Although
these methods have achieved some expected results in rotary
machinery, there are still some challenges in the current
researches and the corresponding future research directions
are as follows:

(a) A large number of studies only used experiments or
existing datasets to validate the effectiveness of the proposed
methods, and the underlying mechanism of improved diag-
nostic accuracy has not been analyzed in details.

(b) Many researches primarily focus on the single phys-
ical source information, diagnosis accuracy requires to be
improved owing to small data size. It is significant to pay
more attention to multi-source information, which can com-
prehensively reflect the state of equipment. But multi-source
signal has diversity and complexity problems, which need to
be further studied.

(c) The commonly used single marker system has inter-
preted fault information out of context, and the introduction
of multi-marker system could be promising to explore the
identification of multiple faults.

(d) On account of many present methods, only the diag-
nosis accuracy is improved. However, in the face of the
fault with more coupled and concurrency characteristics, it is
urgent for further exploring the identification of complex
faults and the generalization performance of the method.

Based on the thinking of DL, intelligent fault diagnosis
strategies are overviewed in this review. The applications of
DL-based techniques in fault diagnosis of rotating machinery
are thoroughly analyzed and discussed, mainly bearing, gears
and pumps. The diagnosis performance of these emerged
methods is highlighted, which provides ideas and guidance
for the exploration and applications of novel intelligent fault
diagnosis in rotarymachinery extending to othermachineries.
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