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ABSTRACT In this paper, an iterative procedure for the synthesis of sparse arrays radiating focused
beampattern is presented. The proposed approach provides a signifcant reduction in the complexity of the
beam forming network, which is fulfilled by reducing the number of antenna elements in the array. An
iterative scheme is used where the prescribed pattern response in the mainlobe is cast as a multi-convex
problem at each step that the nonconvex lower bound constraint is relaxed while including a reweighted
l1-norm minimization based on the magnitudes of the elements. Thus, a sparse array with fewer elements
(compared to other methods) and a better performance of beam pattern (e.g., narrower 3-dB beamwidth,
lower maximum sidelobe level) is produced. The resulting sparse array is able to generate a steerable pencil
beam, matching a given power mask and avoid to constraint the fitting of any a priori defined reference beam
pattern. The practical array imperfections are also compensated in the optimization stage by using worst-
case performance optimization technique. Examples concerning the design of linear and planar arrays show
relevant savings of array elements with respect to conventional array techniques.

INDEX TERMS Array pattern synthesis, multi-convex programming, sequential convex optimization, sparse
array.

I. INTRODUCTION
Reducing the number of elements in an antenna array pro-
vides several advantages over the conventional techniques,
such as lower weight, cost, power consumption, and the
minimization of the complexity of the Beam Forming Net-
work (BFN). In digital beam forming array antenna systems,
these advantages are reflected as a reduction in the com-
putational load. The synthesis of reducing the number of
elements is a nonconvex and highly nonlinear optimization
problem, thus providing the global optimum solutions (i.e.,
good antenna selections) is very difficult, although good
suboptimal solutions (rather than the globally optimal one)
to the problem can be generally presented.

Generally the reduction of the number of array elements
calls for the design of nonuniformly spaced antenna arrays.
In such a framework, several different approaches have been
proposed over the last few decades to synthesize such arrays.
Among them one can mention stochastic optimization algo-
rithms such as simulated annealing (SA) [1], [2], ant colony
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optimization (ACO) [3], genetic algorithm (GA) [4], particle
swarm optimization (PSO) [5]. Unfortunately, these methods
turn out being relatively time consuming, especially when
dealing with the synthesis linear or planar arrays composed
by a large number of antenna elements. Of course, in general,
the achievement of the global optimum is not guaranteed
due to the stochastic nature of the resolution algorithms.
In addition, the hybrid method that combines the ACO and
Least mean square algorithm is also utilized for the synthesis
of thinned fractal array [6]. This work succeeds not only
to steer the nulls in the directions of interferences and the
mainlobe direction to desired angle, but also to maintain the
similar radiation characteristics at diverse frequency bands
with a reduced number of elements.

With the recent advances in convex optimization, few
methods have lately shown a great significance and rel-
evance on many applications in communications and sig-
nal processing. These hybrid synthesis algorithms, com-
bining a stochastic optimization algorithm (SA or GA) to
select the element locations and convex programming to
obtain the element excitations, have thus been successfully
implemented for solving multimodal and multidimensional
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problems such as the sparse array synthesis [7] and [8]. In [9],
a procedure to synthesize sparse arrays with antenna selected
via convex optimization is presented. Despite its efficiency
and success, the iterative method uses conjugate symmetric
excitations and allows to synthesize only symmetric shaped
beampatterns in order to keep the convexity of the problem.
However, The symmetric weight constraint limits its result
in real-valued patterns and thus lacks the degree of freedom
(DOF) than that containing complex terms, and therefore,
only symmetric power patterns are realizable, which preclude
asymmetric sidelobe distribution. In practice, many appli-
cations require complex-valued array responses like scanned
beams or shaped beam patterns. Especially, satisfactory solu-
tions can be obtained thanks to the possibility of synthesizing
asymmetric arrays (with more DOF) and to the simultaneous
optimizations of the distribution of array elements excitations
and positions.

In the framework of convex optimization, sparse-
forcing methods have been extensively addressed by many
researchers [9]–[13], and its implementation allows a strong
reduction of the number of elements needed to achieve
the design specifications. However, antenna synthesis is a
slightly different problem compared to antenna measure-
ments. It is to be noted that, while antenna measurements
involve basically the solution of a finite-dimensional linear
system, sparse array synthesis is a much more complex
(and computationally expensive) case, since the space of
unknowns (both the array coefficients and the positions of
the elements are optimized) is, in principle, continuous. After
reviewing the advantages and disadvantages of the existing
methods, we present a new approach based on multi-convex
programming for the synthesis of sparse arrays radiating
focused beampattern. The provided solutions exhibit two key
features which allow to maximize the radiation performance
of beam pattern and minimize the weight and complexity of
the BFN. First, differently from usual beam design meth-
ods for radar applications, the proposed design can achieve
beampatterns characterized by arbitrary beamwidth (BW)
and response ripple. By reformulating this non-convex lower
bound constraints on the beampattern as an equivalent multi-
convex optimization problem by adding two sets of auxil-
iary variables, a low complexity iterative algorithm which
alternatingly adjusts the system variables and the auxiliary
variables is proposed to solve the multi-convex optimiza-
tion problem and find a stationary optimum. This facilitates
the design of a mainlobe with controllable beamwidth and
response ripple. In addition, arbitrary peak sidelobe level
(PSL) can also be controlled. Unlike the mathematical pro-
gramming methods [9], [13], [14] which are only applica-
ble for symmetric purely-real arrangements, the proposed
method based on multi-convex programming is feasible for
complex syntheses such as asymmetric patterns(like, for
instance, steerable beam patterns satisfying a prescribed
power mask) or patterns with nulls towards the directions
of clutter returns or jamming signals. Second, it shows and
discusses different technique for the simplification of the

array architecture. In order to utilize reweighted l1-norm
minimization inspired technique we have preliminarily to
restrict the search space of the unknowns, in particular the
element positions of the array, because of the fact that a
reduction of the search space could result in an increase of
the convergence rate. Additionally, only the array coefficients
are optimized and the elements are fixed at predefined posi-
tions.Then, the computation time in our design is several
(i.e. two or three) orders of magnitude smaller than previous
methods involving Convex Programming (CP) procedure.

This results in a more efficient radiation pattern requiring
fewer array elements that satisfies the same design specifi-
cations (concerning PSL and beamwidth) obtained by a non-
sparse structure array. The proposed approach can be used to
design nonuniformly spaced planar arrays with interelement
spacings larger than halfwavelength, without the appearance
of grating lobes in the focused beampattern.

Due to the practical array imperfections such as Mutual
Coupling (MC) effects and other array calibration errors,
the actual array manifold can be unknown and it can differ
from the ideal presumed one. Thus, the synthesized pattern
may degrade the radiation performance. For example, the tra-
ditional beampattern synthesis methods do not satisfy the
provided specification on null design for practical fabricated
arrays [15]. To compensate for undesirable effects in practice,
robust beampattern constraints are derived in this paper based
on the pre-calculated MC effects matrix and worst-case per-
formance optimization technique. With use of the coupling
matrix, the MC effects can be represented at an easy rate.

The communication is organized as follows. In Section II,
the approach based on multi-convex programming for the
synthesis of sparse arrays radiating focused beampattern is
described. To show its efficiency, numerical comparisons
with standard benchmark problems are showed in Section III.
Conclusions are drawn in Section IV.

II. SYSTEM MODEL
Consider a linear array composed of 2N elements and assume
the interelement spacing being 1d along the x-axis. For the
sake of clarity, the problem is described for a one-dimensional
pattern synthesis. The array factor F(u) is given by

F(u) =
N∑

n=−N

anejkn1du (1)

wherein j =
√
−1, k = 2π/λ0, λ0 representing the wave-

length in freespace, u = sinθ (∈ [−1, 1]). The weight vector
a = [a−N , . . . , aN ]T denoting the excitations for beam
pattern. Defining the 2N -dimensional array response vector
by w(u) = [ejk(−N )du, . . . , ejkNdu], (1) can be rewritten as
F(u) = w(u)a.

A. MULTI-CONVEX PROGRAMMING
The synthesis problem involves determining the weight vec-
tor a that maximize the radiation performance of beam pattern
(e.g, narrow half-power beamwidth (HPBW) and low PSL).
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Then, the final version of the optimization problem is

sup
(u)∈SB

∣∣∣∣∣w(u)a∣∣2 − d(u)∣∣∣ ≤ ε (2a)∣∣w(u)a∣∣ ≤ ρ(u) (u) ∈ SL (2b)

The power radiated by the array |F(u)|2 is as close as
possible to a desired shape d(u), where d(u) ∈ R+, in the
main (shaped) beam region (denoted SB). The resulting array
is able to minimize the maximum ‘‘distance’’ ε between
the desired power pattern d(u) and the field radiated by
the array |F(u)|2. The sidelobes, in the region (denoted
SL), are kept below the envelop ρ(u). Two nonoverlapping
groups, SB and SL plotted in Fig.1, are then introduced. Let
us notice that the mainlobe constraint in (2a) translates a
maximization problem (discussed in [9], [13], [14]) into a
minimization problem. As a crucial circumstance, the generic∣∣w(u)a∣∣ (u ∈ SL) is positive semidefinite quadratic form,
so it can be shown constraint (2b) define a hypercylinder [16],
and henceforth convex constraint, in the space of excitations.
Although the constraint (2b) build a convex set and the objec-
tive function is convex, this is not the case of the shaped beam
constraint (2a). To solve the problem, one can reformulate the
above non-convex problem as equivalent multi-convex opti-
mization problemwith the addition of two auxiliary variables.
Then, the optimal synthesis problem can be written as∣∣∣(wal )Hwar − d∣∣∣ ≤ ε with al = ar (3a)

|war| ≤ ρ (3b)

It yields the complex vector w = w(u) and real positive
numbers d = d(u) and ρ = ρ(u). (·)H is the conjugate
transpose, then, if one of the weight vectors al and ar in (3)
is fixed, the resulting one-variable cost function becomes
convex, and the optimization problem (3a) gives rise to a
CP problem. By fixing variables ar for instance, the points
c = aHl w

Hw are constraint, and the optimization problem
can be stated as

|car − d | ≤ ε with al = ar (4)

In the proposed design, the iterative algorithm need a guess
(starting point) that is reasonably close to the optimal solution
(the obtained element excitations fit the desired one in terms
of PSL and mainlobe beamwidth), or else it is prone to
be stuck at one of these local minima. This starting point
should be chosen consistently with the problem(2). In this
work, the definition of the point generating the patterns
within the desired power constraints is given by means of
an iterative projection method based on the Iterative Fourier
technique (IFT).

Key characteristics of this Fourier technique algorithm are
that the technique itself is highly robust, very simple, and
very easy to implement in Matrix Laboratory (MATLAB),
requiring only a few lines of code. The computational speed is
very high, because the core calculations used in this technique
are based on direct and inverse fast Fourier transforms. Such a

FIGURE 1. Schematic view of the focused beam synthesis problem.

technique is very well suited for the synthesis of large linear
and planar arrays (See [17]–[24] for further details).

The process to obtain al is an averaging operation to
guarantee that asymptotically the difference between two
variables vanishes. Since it is difficult to reach the opti-
mum matching by manual adjustment, the smoothing algo-
rithm [25] cannot ensure the equality among al and ar as
the number of iterations increases. In this paper, we pro-
puse a heuristic way which amounts to update variable τ by
minimizing the approximate constraint, the radiation pattern
parameters δ and ρ are then updated and projected onto
convex programming problem in the next iteration. Addition-
ally, self-adjusting mechanism is introduced to determine the
search direction, then the spatial datum point τ is substituted
by its value determined in the previous step. τ for the (k + 1)
th iteration turns out to be

τk+1 =
(
w(u0)(al )k

)2
(5)

where u0 is the observation direction.
The maximum ripple AML(> 0) of main beam is defined

as

−AML ≤ 20log10
(
(
√
dk − δk+1)/

√
τk+1

)
≤ 0 (6)

or 0 ≤ 20log10
(
(
√
dk + δk+1)/

√
τk+1

)
≤ AML (7)

where δk+1 > 0 indicate the distance between two successive
solutions dk+1 and dk . According to the sandwich theorem,
(7) is selected. As variation of τ between two successive iter-
ations becomes small with the convergence of the algorithm,
we have that τk = τk+1. Then, the nonconvex constraint in the
denominator is relaxed by replacing the update τk+1 with τk ,
the maximum value of δ is given by

δk+1 ≈
√
dk −
√
τk10

−AML
20 (8)

The shaped beam constraint that can be formulated as
follows

εk+1 = |dk+1 − dk | ≈ 2(dk −
√
dk
√
τk10

−AML
20 ) (9)

Sidelobe constraintUB, is defined according to the envelop
ρ in (2b), given by

UBk+1 =
√
(τk )(10(

ρ
20 )) (10)
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Notablely, the robustness of the proposed approach is
improved since there is no parameter to be tuned.

B. THE SYNTHESIS OF SPARSE ARRAY
In this paper, the aim of the proposed design is to synthesise
a sparse array so as to match beampattern with minimum
number of elements, the synthesis problem can be written as

min
a
‖a‖0 under(2) (11)

The l0-norm minimization problem is an NP-hard com-
binatorial optimization problem and generally impossible
to solve, as its globally optimal solution usually requires
an intractable combinatorial search, even for a modest-
sized array. In order to circumvent the intractable problem,
we relax (11) by replacing the l0-norm with the following l1-
norm

min
a
‖a‖1 under(2) (12)

Note that the l1-norm is the closest convex function to
l0-norm. An algorithm involves performing a sequence
of reweighted convex l1 minimization problems has been
developed in [9]–[13], [26], [27]. By relaxing min

a
‖a‖0 to

weighted l1 minimization problem, the vector a is minimized
at (k + 1)th iteration as

min
a

N∑
n=−N

|(an)k+1|
|(an)k| + µ

with µ > 0 (13)

The threshold µ, whose value is set slightly larger than the
zero, is used to provide stability when |(an)k| = 0. Notably,
in the first iteration (k = 1), a unweighted l1-norm of (12) is
solved.

C. ROBUSTNESS ISSUES
In order to include effect of mutual coupling among
antenna arrays for array application of beampattern synthe-
sis, we insert a mutual coupling matrix to modify array
steering vector (ASV). The mutual coupling matrix is
transformed from mutual impedance matrix which can be
obtained by usingmanymutual coupling compensationmeth-
ods [9] and [15]. By using worst-case optimization technique,
the error between the actual steering vector w̃(u) and the ideal
presumed one w(u) are compensated by coupling C. Assume
that the actual steering vector w̃(u) = Cw(u) is

w̃(u) = w(u)+ e(u) (14)

where e(u) is the complex error, its norm is limited by∥∥e(u)∥∥2 ≤ η(u) = η (for simplicity), ‖.‖2 is the matrix two-
norm. The previous proposed sidelobe constraint is rewrit-
ten as max

∣∣w̃(u)a∣∣ ≤ UB. Applying the triangle and
Cauchy-Schwarz inequalities along with the inequality∥∥e(u)∥∥2 ≤ η, we have that∣∣w̃(u)a∣∣ = ∣∣w(u)a+ e(u)a∣∣

≤
∣∣w(u)a∣∣+ ∣∣e(u)a∣∣

≤
∣∣w(u)a∣∣+ η ‖a‖2 ≤ UB (15)

FIGURE 2. The pattern synthesis with 177 elements, the PSL is −38.32dB.

It can be shown that the constraints (15) define convex sets
in the space of the unknowns. Consequently, the synthesis
problem is formulated as the determination of the weight
vector a such that

min
ak+1

N∑
i=−N

|(ai)k+1|
|(ai)k | + µ

with µ > 0

|car − d | ≤ ε with al = ar
|war| + η ‖ar‖2 ≤ UB (16)

Note that, different from the methods proposed
in [9], [13], [14] which allow to synthesize only conjugate-
symmetric excitation assumption in order to keep the problem
convex, the proposedmethod can be extended to the synthesis
of scanned beams or shaped beams with complex-valued
responses. Algorithm 1 shows the sketch of the approach.

Algorithm 1 The Design of Linear and Planar Sparse Arrays
Radiating Focused Beam Patterns
procedure SHAPEDBEAM
a, a←−results based on the IFT method FInitialization

while i<I(The maximum allowed number of
iterations)

or |‖al‖1 − ‖ar‖1| > 10−7 do
c = aHl w

Hw Solve (16) to get al
ar←− al

end while
return a
end procedure

III. REFERENCE EXAMPLES
To assess capabilities and performances of the proposed syn-
thesis approach, some benchmark problems usually found
in the literature concerning the synthesis of nonuniformly
spaced linear and planar arrays are considered in the
following.
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FIGURE 3. Synthesized excitation amplitudes for the focused
beampattern. Design parameters: Ne=177, Aperture size=182.744λ.

A. MINIMIZE THE PSL FOR LINEAR ARRAY
As the first numerical simulation to validate the proposed
approach, a sparse linear array whose element positions and
excitations are optimized by hybrid method (which involves
a nonuniform Fourier transform and a SA procedure together,
NUFFT-SA) in [28], Fig. 3, is considered. The optimized
sparse array has a −35.12 dB PSL and 0.4◦ HPBW in a
249.46λ aperture. In this case, an initial array, with a maxi-
mum aperture of 249.46λ, composed of 259 elements is con-
sidered as a starting point to synthesize the desired focused
beampattern. The constraints (16) are applied with µ = 0.45
and AML = 0.01dB. As can be seen in [28], our approach can
achieve a 3.2dB lower PSL than that provided by competing
design (PSLMulti−convex = −38.33dB vs. PSLNUFFT−SA =
−35.12dB). Fig. 2 shows the synthesized pattern by using the
approach herein proposed with Ne=177 elements, the ampli-
tude and position distributions are nonuniform while all exci-
tation phases are zeros. Compared with the 473 nonuniform
(amplitude and phase) elements synthesized by the com-
peting method, our method reduces the required number of
antennas by 62.58%. Furthermore, the size of spatial aperture
in our design is 182.744λ, which is decreased by roughly
26.74% compared to that in [28]. The minimum, average,
and maximum spacing between adjacent elements turned out
being equal to 0.9669λ, 1.0383λ and 2.9007λ, respectively,
thus alleviating the mutual coupling amongst the elements.
The amplitude only control used in the work reduces the
complexity of the BFN because it needs only the attenuators
and not phase shifters which is required in phase control
approach. Moreover, the achieved antenna layout and exci-
tations are determined just after 5 iterations, the CPU time
required to complete the iterative loop is equal to 60 seconds.
In the first four iterations, the desired power pattern mask
on the mainlobes and sidelobes was discretized by using 644
samples uniformly-spaced in the normalized angular domain
u, in the last iteration (k= 5), the desired pattern was synthe-
sized giving a total of 3316 points.

FIGURE 4. The pattern synthesis with 160 elements, the PSL is −33.05dB.
Solid line and the dashed line represent the corrected pattern and the
damaged pattern, respectively. The figure shows that the BW of the
corrected pattern is the same as the BW of the original one.

If several elements of the array are damaged, the PSL may
increase dramatically [29] and [30]. One may want to opti-
mize the excitations (amplitude only control) of the remaining
elements to control the radiation performance. Seventeen
failure elements are randomly chosen (i.e., the 1th, 2th, 4th,
7th, 10th, 12th, 22th, 26th, 30th, 51th, 54th, 126th, 150th,
151th, 153th, 167th, and 170th elements, which is 10% of the
total number of active elements), and the proposed approach
is carried out to recalculate the amplitudes to reduce the
PSL and keep HPBW to be equal to the original(undamaged)
one. As shown in Fig. 4, the PSL of the corrected pattern
is −32.76dB, which is 5.57 dB higher than the original one
but 5.53dB lower than the damaged pattern (with original
amplitudes and 17 elements failures). The corrected pattern
has the same HPBW as the original pattern (Fig.2). Thanks
to the efficiency of CVX slover, the proposed approach can
correct the array pattern, which are degraded by element fail-
ures, in almost real time (i.e., 14.5s). All the simulations have
been obtained for a PC equipped with an Intel(R) Core(TM)
i5-6500T (3.4 GHz) provided with 12 GB of RAM mem-
ory and running 64-bit Windows 10. The software coding
of the proposed method have been implemented under the
MATLAB programming platform R2014a and convex prob-
lem solver (CVX [31]).

Next, larger linear arrays are applied to compare the pro-
posed approach with a NUFFT method, stochastic optimiza-
tion algorithm and convex optimization approach [32]. The
initial array size are selected as 180λ, 210λ, 240λ, 270λ,
300 λ and 330 λ, and their corresponding initial element
number is 191, 221, 251, 281, 311 and 341, respectively.
For each linear array, the element positions are fixed at pre-
defined positions with the minimum spacing between adja-
cent elements greater than 0.94λ. The desired pattern is to
minimize the PSL with a prescribed mainlobe area [−0.36◦

0.36◦]. Table 1 gives the simulation results with different
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TABLE 1. The simulation results in the CVX, the PSO, the NUFFT and the Proposed design with difierent initial elements.

FIGURE 5. The pattern synthesis with 170 elements, the PSL is
−33.5645dB and and all the null regions are smaller than −64.23dB.

geometries and target patterns obtained by the proposed
approach and shows the comparisons with other optimisa-
tion methods. As far as the array layouts are concerned,
it is worth noticing that, the reduction in the aperture by
6.2% ∼ 29.6% and the reduction in the number of elements
by 77.0% ∼ 78.9%, both obtained by the multi-convex
approach, are not accompanied by a worsening of the PSL
and BP (see Table 1). The number of iterations is typically
very small (less than 13 for all the synthesis problems, as evi-
denced in the Fig. 6), so that the additional computational cost
is not prohibitive. This example illustrates the reliability and
efficiency of the proposed approach for the optimization of
electrically large linear arrays.

In this case, the null control is added into design require-
ments for a sparse linear array. In order to investigate the
robustness of the solutions presented in the presence of MC
effects and other array calibration errors, robust constraint for
the sidelobe region is used with the proposed method (16)
where η = 0.017. The number of required elements is
minimized by minimizing the cardinality of the current dis-
tribution through its reweighted l1-norm. A 333-elements
array is initialized from the proposed design and the array
aperture is 327.3λ. The optimization goal is to minimize the
PSL with a prescribed mainlobe area as [−0.0089,0.0089].
In addition, a depression of about 30 dB below the

FIGURE 6. Convergence of the number of active elements versus the
number of iterations.

sidelobe level has been imposed for the angular direction
having [−76.7◦,−74.4◦] and [14.1◦, 15.9◦]. Fig.5 shows the
PSL is equal to −33.56 dB, that is about 1.3 dB lower than
that obtained with the method in [28], and the null regions
are smaller than −64.23 dB (rather than −52 dB reported
in [28]) with the 170 elements. Obviously, the number of
array elements is reduced more than 31.2% through the
proposed method. Finally, the aperture size in our design is
slightly smaller than 349.46λ [28], which is equal to 326.31λ.
As a matter of fact, the maximally sparse solution presents
not only a lower PSL value but also a considerably narrower
BW (i.e., BWMulti−Convex = 0.0178 versus BWNUFFT−SA =

0.0720). Such a result further confirms the effectiveness of
the proposed design in dealing with the nonconvex part of
the problem at hand, thus allowing the synthesis of focused
beampatterns with better characteristics.

B. MINIMIZE THE PSL FOR PLANAR ARRAY
As first comparison, we will consider the specifications dis-
cussed in [33], where 49 elements were required to synthe-
size a pencil with a 6-dB main beam width of sin(θbw) =
0.237 a side lobe level of −17.6dB. The similar radiation
performance, with multi-convex programming formulation
with 35 elements only (see Fig. 7) within an array aperture of
25λ2. The element locations and the associated normalized
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FIGURE 7. Sparse planar array synthesis results: (a) 3D view of the far field pattern with (b) u and v cutting planes and (c) optimized layout of the
35 element array.

TABLE 2. Coordinates and normalized weights: Focused beam.

excitations, whose dynamic range ratio (|wmax | / |wmin|,
DRR) is 2.89, are reported in Table 2. The achieved layout
exhibits a maximum directivity DMAX = 18.97dB, the mini-
mum inter-element distances is 0.83λ. It is worth underlin-
ing that the case of [33] has been considered, with small
variations of the PSL and of the beamwidth, also in other
papers. The proposed method is computationally efficient
(e.g., the CPU time is just 1.3 min for the synthesis of a
49-element uniform array, including the process of finding
the minimum element number). It is stressed that the PSL
of the sparse array turned out to be about 0.3 dB lower
than that of the CS-based weighted-norm one [27], which
however saves almost 15% (1-35/41) of the elements, and
requires less CPU time. In [10] an array of 35 elements is
achieved in six hours; instead, in [11] a layout with 33 radi-
ating elements is achieved in about 100 minutes. Table 3 pro-
vides the comparison results of these four approaches. As for
the computational costs, the poposed design provides about
two orders of magnitude faster computing speed compared
with Inflating-Deflating Exploration Algorithm (IDEA), and
three orders of magnitude that compared with the multi-level
branch-and-bound (B&B). As far as the number of elements
are concerned, it should be noticed that the initial array

aperture in [11] is increased form 25λ2 to 32.2301λ2

(5.952λ× 5.415λ). Such an additional DOF for the solution
space can be exploited to improve the array performance of
the competing method.

The second example is aimed at demonstrating the valid-
ity of the proposed approach to the design of large planar
array with circular boundaries (i.e., a non-rectangular shape).
A concentric circular array is considered as in [28]. There
are 20 rings and a single element at the center. The radius of
the nth ring is rn = 0.6nλ. In the nth ring, there are [2πn]
elements uniformly distributed. That is a nonuniform array
and the total element number is 1310. The optimization goal
is to minimize the PSL with the mainlobe region restricted to
{(u)|
√
u2 + v2 ≤ 0.074}. The result from theNUFFT-SA [28]

has a PSL of −37.05 dB with 718 elements.
In contrast to [28], a planar array with 2M×2N = 28×28

elements has been taken into account with an inter-element
distance along the x and y axis equal to dx = dy = 0.889.
Accordingly, the circular aperture has been generated by
imposing to zero the excitations of the elements outside a cir-
cular contour of radiusRs = 12.1λ, as in Fig.8. Fig.9 gives the
pseudocontour plot of one simulation result. The u and v cut
patterns are in Fig.10. The corresponding amplitude
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TABLE 3. The comparison of sparse array results of the four approaches with earlier published theoretical results involves mainly the antenna radiation
characteristics.

FIGURE 8. A planar array with 2M × 2M = 28× 28 elements has been
taken into account with an inter-element distance along the x and y axis
equal to dx = dy = 0.8889. The initial (blue marked) elements are the
ones selected by the circle of radius 12.1λ.The area bounded by the
convex hull is 443.26λ2.

FIGURE 9. Pesudocontour plot of the planar array, which is restricted to
be smaller than −37.12 dB.

excitations are reported in Fig.11. Note that only one quadrant
of the whole array is plotted by virtue of the quadrantal sym-
metry of the antenna. As it can be observed, the 512 elements
layout achieving a side lobe level lower than −37.12dB for

FIGURE 10. Beampattern cuts at u = 0 and v = 0 of the synthesized
pattern.

FIGURE 11. Resulting steerable array layout relative to the synthesis of
focused beam power pattern. Active radiating elements Ne=512. The area
bounded by the convex hull is 397.43λ2.

{(u)|
√
u2 + v2 ≤ 0.0735}. Only 87.7% antenna array is used

in this case. We observe that the proposed design has better
radiation performance (e.g., narrower 3-dB beamwidth, lower
maximum sidelobe level) and the number of array elements is
decreased by 28.7% compared to that in [28]. In the proposed
design, the radiating elements are disposed in a centrosym-
metric fashion with respect to the array center. The broadside
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TABLE 4. Input parameters: Array edge, Initial elements.

focused (pencil) beam pattern is generated by imposing a
quadrantal symmetry of the excitation amplitudes: the beam
is generated when all quadrants are excited with the same
phase. Notably, the provided solutions exhibit a key feature
which allows the minimization of the weight and complexity
of the BFN. Finally, the size of spatial aperture in our design
is 397.4λ2, which is decreased by 12.5% compared to that
in [28]. The minimum spacing between adjacent elements is
constrained between the limits 0.889≤dx and 0.889≤dy, this
suggests the MC effects among antenna array are very small
that it can be neglected.

Then, for different PSLs, the synthesis problem (16) is
solved in order to determine the minimum number of the
required active antenna elements. Specifically, the considered
array size and the BW together with the relative optimum
PSL are reported in Table 4. Interestingly, as it can be seen
from Table 4, the minimum number of required active ele-
ments decreases as the array size and initial number of array
elements increases, showing that there are more DOF for
the optimization/sparsification problem (for the considered
aperture sizes).

Moreover, it should be noted that the number of actual
unknowns is equal to just a quarter of the overall num-
ber of excitations. Here we must point out that although
Algorithm 1 also uses the reweighted l1-norm scheme,
the introduced pair-sparsity in it for symmetric excitation
costs some freedom degree of weight vector. As a result,
the obtained result is less sparse than that of array with
asymmetrical aperture.

To explore the ability of Algorithm 1 to synthesize the
beampattern of asymmetric planar array, we simulate an
asymmetric antenna array (see initial aperture distribution
in Fig.12). Here the same beampattern synthesis configura-
tion (BW = 0.0734993, PSL = −37.2348) as that of the
above example is used. In this case, theweight coefficients are
restricted to take on only real values here. Then, thanks to the
potentialities of convex solvers, the possibility of designing
asymmetric planar arrays, i.e., with a larger number of DOF,
is fully exploited. Fig.12 plots the corresponding beampattern
slices of the u and v direction generated by Algorithm 1,
which shows that the generated beampattern meets the

FIGURE 12. (a) A planar array with 2M × 2M = 30× 30 elements,
dx = dy = 0.9259. The initial elements are the ones selected by the circle
of radius 13.5 λ. (b) Resulting array layout relative to the synthesis of
focused beam power pattern.The area bounded by the convex hull is
408.1λ2. Active radiating elements Ne=462. (c) Pesudocontour plot of the
planar array with restriction of mainlobe width. (d) Beampattern cuts at
u = 0 and v = 0 of the synthesized pattern shown in (c).

FIGURE 13. Number of active elements Ne Vs Steering angles for BWs and
PSLs of Table 4.

mainlobe and sidelobe constraints. In Fig.12, we show the
positions of 462 selected elements and the complete asym-
metric array.

From these considerations, we can conclude that for asym-
metric planar array, Algorithm 1 leads to more zero exci-
tation antennas than symmetrical aperture case due to the
freedom degree increase resulted from a proper relaxation
of the pair sparsity constraints on weight elements. Further-
more, the obtained results clearly indicate that the proposed
approach can be of interest when the number of DOF of
the high-dimension synthesis at hand is very large and com-
putationally unfeasible for stochastic optimization methods.
Clearly, this represents a major advantage for larger arrays.

Basically speaking, such stochastic optimization method-
ology [28] is prone to stuck in local optimum and cannot be
easily applied to planar arrays composed by a large number
of elements owing to the convergence issues and the arising
computational burden. Then, the achievement of provably
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optimal solutions is not guaranteed due to stochastic nature of
the resolution algorithms. We should point out that the com-
peting methods [28] and [32] require choosing appropriate
parameter values to obtain a suboptimal solution. One cannot
choose the state optimal control parameters for the first time,
and several attempts may be required. Thus, the computa-
tional load will be drastically increased. However, there is
no parameter to be tuned for CVX slover (fixed parame-
ter µ). Moreover, since software package CVX (SDPT3 and
SEDUMI as its main optimization solvers) allow, nowadays,
to handle large array synthesis problem that involve mil-
lions of variables, the excellent performances in terms of
computational efficiency and the best achievable array and
radiation performance obtained in this work (or even larger
problems) demonstrate the proposed approach more attrac-
tive than NUFFT and global optimization technique which,
as previously observed, do not assure convergence (to optimal
solutions) and can become prohibitive in the case of large
planar arrays.

C. MAXIMALLY SPARSE AND STEERABLE ARRAYS
Let us now evaluate the performance of the proposed
approach in the design where a given (steering) angular
position is assigned for the given mask, which is of great
interest in the case of Active Electronically Scanned Array
(AESA) systems. More in detail, SB in (2b) is the region out
of the assigned mainbeam (whose extension are kept below
the PSL) such that u2 + v2 ≤ [1 + sin(θM )]2, where θM is
the angle with respect to the broadside direction of the array,
so to extend the constraint outside the visible space in the
(u, v) region and automatically avoide possible grating lobe
(when making linear steering).

In this design an increased number of array elements,
with respect to the broadside 3-D pattern, is expected. This
experiment aims to assess how the saving in the number
of antenna elements vary with respect to the amplitudes of
the steering range. In each synthesis problem, for a fair
comparison, the desired power mask to fulfill is optimal in
the Chebyshev pattern (see Table 3 in [11], Ne = 121,
Ne is the number of active elements, PSL = −24.3877dB,
BW = 25.3326◦) for the prefixed element positions. More
in detail, the numerical assessment in performed by fix-
ing, as input parameters, the initial number of array ele-
ments and the associated maximum sidelobe level for a given
beamwidth. Then, for different values of the steering angle,
the search for the solution is carried out in order to select the
minimum number of active elements.

In this example, a planar array with M × N = 11 × 11
elements has been taken into account with an inter-element
distance along the and axis equal to dx = dy = 0.5. The
proposed resolution method has been applied to perform
the optimization of the array design, for different steering
directions whose extension vary in the range of 0◦ to 51◦.
A set of numerical results are plotted in Fig. 13, recalling the
definition of Elements Number Reduction Ratio (ENRR) [11]
as ENRR = 1 − Ne/(M × N ), which represents the trend of

FIGURE 14. Resulting steerable array layout relative to the synthesis of
focused beampattern. Edge size 5λ. Discretization grid: dx = dy = 0.5λ.
Steering range θm = 51◦. The dashed curve represents the convex hull.
Active radiating elements Ne=105.

FIGURE 15. 3D power pattern radiated by the 5λ steerable array (Fig. 14)
pointing at broadside. Ne=105 active radiating elements. BW = 25.3◦,
PSL = −24.3dB.

TABLE 5. ENRR Vs Steering angles for BWs and PSLs.

the reduction in the number of array elements with respect to
the steering intervals.

Fig.13 clearly depicts how the converge ENRR toward the
final solution as the steering angle reaches the maximum one.
The sparse array is able to radiate a power pattern that satisfies
the radiation characteristics in Table 5, in the considered
steering direction that extends up to θM = 51◦ for each value
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FIGURE 16. u-cut and v-cut of the synthesized pattern radiated by the
array in Fig. 14 with Ne=105 active radiating elements.

FIGURE 17. 2D power pattern radiated by the 5λ steerable array (Fig. 14)
pointing at (θ, φ) = (51◦, 0◦). BW = 25.3◦, PSL = −24.3dB. The visible
region is delimited by the withe circle, wheras the blue colored areas
indicate the sidelobe region.

of φ (denote the polar angle). For this case, in Fig.14 the opti-
mized element layout, composed of Ne=105 active elements,
is plotted. The method allows a saving of about 13.2% of
the array elements with respect to the competing design [11]
still keeping a very accurate pattern matching. In Fig.15 the
broadside 3D-radiation pattern is plotted in the desired region
of the (u, v) domain such that u2 + v2 ≤ [1+ sin(θM )]2 with
θM = 51◦. The u-cut and v-cut of the synthesized pattern are
plotted in Fig.16. Fig. 17 plots the normalized array factor
for a steering direction angle of (θ , φ) = (51◦, 0◦). As it can
be noticed, the proposed approach has capability to scan the
beam, without the appearance of grating lobes in the whole
visible range (i.e. sin(θM ) = 0.7771 and Umax = 1.7771).
The directivity of the maximally sparse linear array is

21.0262dB, whereas in the isophoric one (uniform weight-
ing for all active elements) it is 21.8269dB, thus giving a
ratio between the latter and the former directivity of 0.8dB

(this confirms it is non-superdirective). The area bounded in
our design is slightly smaller than 25λ2 [11], which is equal
to 23.625λ2.

IV. CONCLUSION
A sequential convex optimization based approach for the syn-
thesis of linear and planar sparse arrays generating focused
beampattern is presented. The main advantages of the pro-
posed approach can be summarised as follows. (a) For the
considered benchmark problem, considerable improvements
are obtained in terms of required radiation characteristics and
the minimum number of required radiating elements. (b) The
optimal solution can be more easily found since there is no
parameter to be tuned (fixed parameter µ = 0.45) contrary
to stochastic optimization procedures in which the fine tuning
of the numerous control parameters is definitely a difficulty.
(c) The positions of the elements are fixed at predefined val-
ues, which makes the designed sparse array more realisable
in practice. (d) The presented approach allowed a significant
reduction of CPU time with respect to the other considered
methods, thus the proposed design can be used for real-time
applications. Furthermore, the maximally sparse array, able
to radiate the steerable power pattern satisfying the provided
specifications. The trend of the reduction in the number of
array elements with respect to the steering intervals has been
also investigated. The array imperfections are also considered
in the optimization stage by using worst-case optimization
technique. Finally, there is no restriction regarding the array
geometry to be synthesized. Indeed, arbitrary arrays and any
beam patterns (monopulse tracking applications, etc) can be
handled.
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