
Received November 23, 2019, accepted December 17, 2019, date of publication December 30, 2019,
date of current version January 8, 2020.

Digital Object Identifier 10.1109/ACCESS.2019.2962969

XML-Based Video Game Description Language
JORGE R. QUIÑONES 1 AND ANTONIO J. FERNÁNDEZ-LEIVA 2
1Department Lenguajes y Ciencias de la Computación, Universidad de Málaga, 29071 Málaga, Spain
2ITIS Software, Department Lenguajes y Ciencias de la Computación, Universidad de Málaga, 29071 Málaga, Spain

Corresponding author: Antonio J. Fernández-Leiva (afdez@lcc.uma.es)

This work was supported in part by the Spanish Ministry of Economy and Competitiveness (MINECO) DeepBio under Grant
TIN2017-85727-C4-1-P, and in part by the Universidad de Málaga.

ABSTRACT This paper presents the XML-based Video Game Description Language (XVGDL), a new
language for specifying Video games which is based on the Extensible Markup Language (XML). The
proposal is portable and extensible, and allows games to not only be defined at engine level but also
includes specific features that can lead the game design process whilst simultaneously reducing the gap
between game specification and its corresponding game implementation. XVGDL is as generic as possible,
making it possible to describe different genres of games. This paper focuses on presenting the basis of the
language. The paper describes the syntax as well as the components of XVGDL, and provides examples
of their use. Defining games via XML structures provides all the advantages of the management of XML
files and opens up interesting lines of research. Our proposal provides a number of novel features. So,
XVGDL game definitions can be managed as any other XML file, which means that it can be automatically
handled by any XML file management software. Another interesting feature is that XVGDL can specify
game components (e.g., game Artificial), in-game processes (e.g., the procedural generation of maps) or
in-game events (e.g., the checking of the conditions to end a game match) via the association with external
(possibly non-XML) files. Moreover, XVGDL files can be easily validated as any XML file what means
that validations against a particular Document Type Definition (DTD) or XML Schema Definition (XSD)
are possible. In addition, the paper presents a first prototype implementation of a (text-based) interpreter
that allows XVGDL game specifications as a playable game to be executed. This tool not only validates our
proposal but also represents a first step towards smoothing the path to obtaining an executable version of a
game from its game specification.

INDEX TERMS Video game description language, extensible markup language, XML, game design, game
tools.

I. INTRODUCTION
The importance of a Video Game Description Lan-
guage (VGDL) has been reported in the literature. Its
use is especially interesting in General Video Game Play-
ing (GVGP) where the objective is to create autonomous,
automated agents capable of learning to play previously
unknown games without human intervention and just by
being told the rules of a game [1]. GVGP has a strong
influence on many Artificial Intelligence (AI) areas, espe-
cially in Non-player character (NPC) behaviour learning,
search, planning, and the employment of games as AI
benchmarks [2].

Within the community of Artificial and Computational
Intelligence inGames, one of themost important and valuable

The associate editor coordinating the review of this manuscript and

approving it for publication was Mario Luca Bernardi .

objectives is the definition of a language that allows video
games to be specified. Formally, this language should provide
structures to define the main components of a video game
such as rules, mechanics, events, physics, user interaction,
multimedia elements or narrative.

Having aVGDL to specify games can aid the human under-
standing of the features and mechanics of the game, and can
also simplify the task of implementing general video game
agents. In addition, specifying different games with the same
VGDL can promote the attainment of a general evaluator to
measure the quality of an automated agent to play the games
described via the VGDL, in a general way.

Also note that, the specification of video games via a
VGDLmay be compiled with a compiler, specifically built-in
for the VGDL. This compiler could provide numerous oppor-
tunities and paves the way for automatic game generation [3].
In fact, this is a desired goal, that is to say, giving a game

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 4679

https://orcid.org/0000-0003-4348-4853
https://orcid.org/0000-0002-5330-5217
https://orcid.org/0000-0002-3223-7032

J. R. Quiñones, A. J. Fernández-Leiva: XVGDL

specification as input to a compiler with the aim of pro-
ducing an executable version of the game. As indicated
in [3], ‘‘Implementing such a compiler could provide numer-
ous opportunities; users could modify existing games very
quickly, or have a library of existing implementations defined
within the language (e.g. an Asteroids ship or a Mario avatar)
that have pre-existing, parameterised behaviours that can
be customised for the users’ specific purposes’’. Moreover,
finding a standard VGDL would provide a significant con-
tribution because researchers can concentrate their efforts
on the implementation details of the aforementioned desired
compiler.

Thus far, a number of different VGDLs have been pro-
posed (see Section II). However, whereas all of them provide
interesting features, most of them have been defined to cover
specific games or genres of games. In fact, the majority of
these VGDLs were defined from scratch and their syntaxes
specifically adjusted to their specific objectives. This repre-
sents a restriction, not only on developing a standard compiler
but also on convincing the community about the validity of
compilers to define games generically.

This paper presents a new VGDL that provides features
not present in other VGDLs. This is the main contribution
of this paper. In common with other VGDLs, our proposal
includes components to define game elements, mechanics,
rules, and scheduled events. In addition, XVGDL also allows
specific design components to be described such as game
maps, screen configurations and viewports, game renderers
or game states. It can also be easily extended to support some
other features like, for example, multimedia elements.

The main difference with other existing VGDLs is that
our proposal is based on the well-known Extensible Markup
Language (XML). This distinction implies important advan-
tages over existing VGDLs. First, the fact that our proposal
is substantiated in a well-known markup language makes it
attractive for the community as it increases its potential to
be generalised and accepted as a standard VGDL. Second,
XVGDL may be viewed as a general-purpose language in
the sense that the games described via XVGDL are XML
files and, thus, are portable and can evolve naturally with the
XML language. Third, the definition of a game via XVGDL
is an XML file, and as a consequence, can be directly han-
dled by any existing XML management software. Fourth,
we have defined a (publicly available) XML Schema Defi-
nition (XSD) for our XVGDL, termed XVSD (see [4]). The
consequence is that any XVGDL game specification can be
easily validated according to these schemes.

A second contribution of this paper is to demonstrate that
our proposal also aims to reduce the gap between the speci-
fication of a game and its implementation (i.e., an executable
version of the game according to its specification). The paper
presents a prototype implementation of a (text-based) inter-
preter that receives as input an XVGDL game description and
allows executing a playable version of the game.

The paper is structured as follows: Section II discusses
related work and compares our proposal with other VGDL

languages. Section III describes all the main components and
features of the XML-based video game description language
(XVGDL). Then, Section IV presents the XVGDL Game
Engine, a first prototype of an interpreter of XVGDL game
specifications. The paper ends with our conclusions and men-
tions to some lines of future research.

II. RELATED WORK
In addition to aforementioned approaches, this section dis-
cusses other Video Game Description Languages.

Existing research papers have expounded initial ideas and
established guidelines of what a VGDL should define and
how to incorporate video game elements into written con-
figurations (i.e., the game specification written in a spe-
cific VGDL) [3]. The importance of finding a formal way
that allows specifying video games concisely is, nowadays,
a well-accepted approach within the AI community [1], [3].

One can find, in the scientific literature, approaches which
primarily focus on theoretical models, describing games
using mathematical models, like General Video Game Play-
ing [1] or Epistemic GDL [5]. It is also worth mentioning the
work presented in [3] (referenced in Table 3 as TWVGDL)
which establishes the basis for a generic VGDL [6].

If we consider just games (and not video games), GDL
(i.e., the Game description Language) can be considered the
standard of General Game Playing (GGP) for describing
games (even dealing with both randomness and imperfect
information) [7]. The GDL basically represents a mathemat-
ical notation similar to the syntax and semantics of logic
programming that cannot be directly extended to cope with
video games (because, for instance, it does not provide struc-
tures or components to describe multimedia elements or user
interaction).

It is also difficult to find proposals of VGDLs whose game
specifications can be compiled (or interpreted) into an exe-
cutable, and that includes the use of standard tools/languages.
Some experiments have been reported in the literature for
obtaining a playable video game from the game specification
written in a concrete VGDL. This is the case of PyVGDL,
a VGDL based on the programming language Python [8].
The approach represents a good starting point to compile
game specifications, but it is developed in a very specific way
for describing video games so its use is very limited. Other
interesting proposals suggest the integration with commercial
game engines. This is the case of Casanova, a declarative
programming language that allows the integration with the
well-known Game Engine Unity [9] and which can also be
used with other engines and libraries [10], [11]. However,
Casanova is more oriented to developing games and not
video games. In general, we can say that the existing imple-
mentations of compilers for VGDLs are usually closed and
developed in a very specific way for describing video games.
In other words, they are tied to certain features or specific
games and therefore are not transferable to different tools or
engines (like Unity for example).

4680 VOLUME 8, 2020

J. R. Quiñones, A. J. Fernández-Leiva: XVGDL

Apart from the aforementioned PyVGDL, one can find
other similar approaches to XVGDL that are associated with
high-level programming languages such as Ludi [12], but this
is restricted to 1-player board games.

It is worth mentioning that there are also existing
approaches, such as Ludocore [13] that help designers to
develop rules and their relations, contributing with a flexible
game engine for logical games, able to be applied to both
GDLs and VGDLs. It is in the scope of XVGDL to establish
the basis to allow a game engine to interpret and run games
making Ludocore an excellent source of information related
to future XVGDL research.

In the following section, we describe XVGDL and its main
components.

III. THE XML-BASED VIDEO GAME DESCRIPTION
LANGUAGE
Based onVGDL andwork already cited in this paper ([3], [8],
[14] among others), XVGDL is a new language for describ-
ing games that is portable, extensible and covers as many
aspects of a game as possible, including those concerning
game design. The initial idea is to use XVGDL for research
purposes, but, thanks to its features and capabilities it can
also be used to create a basis for games to be exported to
commercial game engines.

A. DESCRIBING A GAME USING XVGDL
In addition to the aforementioned features that XVGDL pro-
vides, this language also has the following:

• It includes all the principal features of current VGDLs
already described in the video game research community
and not only includes the game description itself but also
has special tags and values to be taken into account by
the game engine.

• It is designed to be as generic as possible in order to
allow a wide range of games to be defined. As will be
shown in this paper, the language offers the possibility of
specifying the association of in-game tasks with external
files that will handle the execution of these tasks. This
is a powerful mechanism that links the game specifica-
tion with a possible implementation. So, it allows, for
instance, the (perhaps procedural) generation of game
maps/levels, the control of (perhaps automated) game
AI, the activation of events, the checking of parameters
during a match of a game, just to give a few examples).
In fact, this feature gives designers the option of creating
different variations of a game by programming external
processes that affect the game components (e.g., game
layout or game AI).

• All main features related to game design – such as game
maps, game renderer, game rules or game mechanics
– are included in order to describe games. Covering
all those aspects ensures that a well-designed XVGDL
game may be compiled (or interpreted) into a playable
version by a game engine able to run XVGDL games

or, in a further step, export XVGDL games to any of the
commercial engines’ formats.

B. EXTENSIBLE MARKUP LANGUAGE ADVANTAGES
The Extensible Markup Language, XML, is a general-
purpose markup language developed by the World WideWeb
Consortium (W3C) with the goal of storing data in a readable
form [15]. XML is proposed as a standard for the exchange of
structured information between different platforms, including
the Internet, but not necessarily for it. It can be used in
databases, text editors, spreadsheets, etc. Being of general-
purpose, and unlike other markup languages, XML is not
totally predefined, in the sense that users can define new tags
for their own applications.

Our proposal of developing a VGDL based on XML is
based on the power and potential of XML and its simplicity,
generality, and usability across different platforms and envi-
ronments. The XVGDL language is based on the standard
XML language, so it inherits its main features to make it
extensible, maintainable, and portable. It is also flexible and
open to any required future upgrades to improve the current
definition.

Games described in XVGDL are XML files and, therefore,
they can make use of libraries dedicated to managing XML
files. In addition, the XVGDL game specifications are not
restricted to any specific programming language or operating
system.

In addition, XML can make use of data structures, which
is good for our purposes, as XVGDL allows not only game
rules and mechanics to be defined but also game objects
and elements. These data structures and their relationships
can be considered as data in themselves. Moreover, XML
allows interrelating of these data structures. This feature is
extremely useful in issues like defining collision rule actions,
where one considers two kinds of objects. Here, it is possible
to make a reference to the objects under collision using the
object-defined name, as shown in Figure 1.

C. XVGDL VALIDATION
One of the most important steps when a designer writes a
game describedwith a VGDL is to validate whether or not it is
well-written in the language being used, which means check-
ing whether or not it follows the language syntax. XVGDL
files can be easily validated as any XML file which means
that it allows validations against a particular Document Type
Definition (DTD) or XML Schema Definition (XSD). This
provides the opportunity to define the structure and valid
building blocks of an XML document, taking the following
key concepts into account:

• The elements and attributes that can appear in a docu-
ment.

• The number of (and order of) child elements.
• Custom and standard data types for elements and
attributes.

VOLUME 8, 2020 4681

J. R. Quiñones, A. J. Fernández-Leiva: XVGDL

FIGURE 1. Example XVGDL referencing defined objects.

• Default and fixed values for elements and attributes,
including enumeration of elements for specific data
types.

We have worked to provide an XMLSchemaDefinition for
XVGDL (XVSD) which is available in [4]. This XVSD can
be employed to make sure all XVGDL files are valid (as an
XML file) and correct (according to this schema definition).
In order to upgrade the XVGL language, it is mandatory to
update the schema with the required modifications.

It should be evident that our XVSD is a previous step
for obtaining a compiler for the definitions of video games
written in XVGDL.

D. GAME SPECIFICATION AND ELEMENTS IN XVGDL
Game specifications are XML files in which game compo-
nents are defined as XML components. Figure 2 illustrates
graphically the XVGDL components and their relations. An
XVGDL specification contains the description of a game, and
it usually starts with a standard XML declaration in the form:

<?xml version="version_number"
encoding="encoding_declaration"
standalone="standalone_status"

?>

In general, the rest of an XVGDL game description (also
termed as specification throughout the paper) follows the
following code scheme:

<gameDefinition>
<!-- Renderer configuration -->
...

<!-- Timeout configuration -->
...

<layout> ... </layout>
<map ...> ... </map>
<controls ...> ... </controls>
<players ...> ... </players>
<objects> ... </objects>
<events> ... </events>
<rules> ... </rules>
<endConditions> ... </endConditions>
<gameStates> ...</gameStates>

</gameDefinition>

Thus, the specific components managed in the game
description can be identified as the content enclosed
between the start-tag <gameDefinition> and the end-tag

</gameDefinition>. In a general way, the list of spe-
cific game components managed in XVGDL can be classified
as: properties, layout, maps, controls, players, objects, events,
rules, and end conditions. Note that XVGDL is a language in
itself and different implementations of interpreters, engines
and tools are responsible for interpreting all of the tags.

We now provide details of each of the aforementioned
XVGDL components. To clarify them, we define the classic
Pacman video game [16] in XVGDL to illustrate the main
components of the language. Pacman has been chosen for
the case study because it is a well-known game, already used
in several studies for generating content, applying any kind
of AI to enemies or players [17]–[20] and it is also simple
enough to understand how to configure and prepare XVGDL
for a complete simulation. A full XVGDL configuration for
the Pacman game can be found in [21], and part of it is
included inAppendix.Moreover, we provide the full XVGDL
description of standard versions of other well-known games
(i.e., Breakout, Space Invaders and an example of a first
person shooter) in [22]. In the following explanations we refer
to certain lines of the Pacman XVGDL specification, shown
in its entirety in Appendix, for a clearer comprehension of the
XVGDL components.

1) PROPERTIES

A list of properties can be set for a game. Each property is set
by the tag property followed by a number of attributes in
the form <property attribute1 attribute2 />.
For instance, see in Appendix, the definition of a property
with the name and value of attribute timeout in Line 8 and its
use in Lines 71–72 to declare one of the end conditions of the
Pacman game.

The definition of properties is completely open to design-
ers’ specific needs, so properties with any name and value
can be defined. An XVGDL Game Engine or interpreter
implementation could access any of the defined properties in
the context and update them in runtime if needed.

2) LAYOUT

This component allows the layout of the game to be declared.
It is defined by the content enclosed between start-tag

4682 VOLUME 8, 2020

J. R. Quiñones, A. J. Fernández-Leiva: XVGDL

FIGURE 2. XVGDL components.

<layout...> and the end-tag </layout>, and it used
to specify the visual layout of the game.

XML elements therefore can be used to describe specific
components containing game state properties or elements that
should be presented in the game view. The syntax employed
for the layout components is:
<component attribute1 ... attributeN>

....content
</component>

The current version of XVGDL allows elements to be
placed in four positions, namely, top, left, right, and
bottom. The position labelled as center is reserved for
the game view itself. In each one of these positions, different
layout components can be set. See for instance Lines 10–20,
in Appendix, where the game score and the highest score
(obtained in previous games) are configured in the top of
the screen, whereas player lives and player items are set in
the bottom position. Note that other components such as
life percentage may be integrated in a similar way.

At the same time, each component may have its own
rendering specification using the attribute renderer. See
for instance Line 6, in Appendix where the renderer config-
uration is defined in another XML file. This is precisely one
of the added values of XVGDL, the possibility to provide the
definition of a number of game components via external files

(not only in the XML format as demonstrated later in this
paper.

3) MAP

This component is employed to define the main properties
of the game scenario. The syntax employed to identify this
component in the XVGDL file is the following:

<map attribute1 ... attributeN> </map>

This component admits a number of attributes in the form
tag = value. So, the following tags and values may be
used in the current version of XVGDL:

• The tag type can take the values 2D or 3D to specify
the dimensional nature of the game;

• The tags sizeX, sizeY and sizeZ can take a numer-
ical value specifying, respectively, the length of the map
in each of the three coordinate axes.

• Other tags like toroidal can be set with a Boolean
value (i.e., true or false) to indicate additional fea-
tures of the gamemap (in this case, a true value indicates
the toroidal nature of the map)

• The tag file can be assigned to an external file
(i.e., a file that is not part of the game specification writ-
ten in XVGDL) that can provide information to estab-
lish the initial distribution of game objects in the map.

VOLUME 8, 2020 4683

J. R. Quiñones, A. J. Fernández-Leiva: XVGDL

Moreover, it enables other engines/tools to be employed
to read that file and represent the map according to that
configuration.
In addition, the tag generator can also be used to
be assigned to an external file where the distribution
of game objects may be done automatically (perhaps
procedurally or by any other method). This option is
particularly useful for experimentation as it allows maps
to be created by external code.

See for example Lines 29–31, in Appendix where for the
game Pacman, a 2d non-toroidal map of size 20 × 40 is
defined. The initial placement of objects is left to the exe-
cution of an external random generator. In this example, the
generator places all game objects randomly.

4) CONTROLS

This component has been added to be used as a link between
the game specification and its possible implementation.
It allows the game designer to define the mechanism for user
interaction in the specification itself (the current version of
XVGDL supports the employment of values associated with
a keyboard). The syntax employed to identify this component
in the XVGDL file is:
<controls>
<control attribute1 ... attributeN \>
...
<control attribute1 ... attributeN \>

</controls>

where each component <control.../> is associated with
a mechanism of data input (e.g., keyboard or gamepad,
for instance). The attributes take the classical form of
tag = value. The current version of XVGDL admits
the following tags for the keyboard: left, right,
up, down, forward, backward, rotateXleft,
rotateXright, rotateYleft, rotateYright,
rotateZleft, rotateZright, jump, fire, and
special. The value associatedwith each tag (if presented as
an attribute in the game specification) can be any ASCII code
that identifies the key associated with the action described in
the tag. The degree of rotation or advance in the movement
keys can be configured in the rendered configuration as
explained previously.

See for example Lines 25–27, in Appendix where for the
game Pacman, the movement actions have been associated
with the arrow keys.

5) PLAYERS

This component provides information about the players who
will take part in the game. The syntax employed to identify
this component in the XVGDL file is the following:
<players number="1" maxnumber=...>
<player name = STR score =...>
...
<player name = STR score =...>

</players>

where STR denotes a text string. Basically, it declares the
number of players, and other information specific to each

player such as player name, the initial number of lives, ini-
tial score or life percentage. See for example Lines 33–35,
in Appendix where we have declared one human player with
an initial number of 3 lives.

A property denoted as ai can also be used to assign a
specific Artificial Intelligence (probably implemented exter-
nally) to the player(s) in a similar way as done with the
aforementioned map generator. This provides a useful way
to execute the game autonomously without any human inter-
vention, which is perfect for issues related to the game design
or debugging.

Players declared in this part have the status of objects (as
explained below) in the game.

6) OBJECTS

This component is used to declare the nature and properties
of each object that will appear in the game, apart from the
players already declared, as described. The syntax employed
to identify this component in the XVGDL file is:
<objects>
<object name=STR type=... dynamic=.../>
...
<object name=STR type=... dynamic=.../>

</objects>

where for each XML object’ attributes can be used to declare
its name, its type, whether it is dynamic or static, its volatility,
number of instances, etc.

With respect to the type of the objects, the current version
of XVGDL supports the following values:

• player: The object will be associated with one of the
players declared in the player component.

• enemy: The object represents a player enemy which
usually causes harm to the player in some way.

• projectile: The object represents any kind of player
or enemy-thrown weapon. This element may not exist
at the start of the game but can appear during the
game depending on the activation of events. Think, for
instance, when one presses the fire key (see below).

• wall: The object is a non-traversablemap. For instance,
the object can be used to establish map limits.

• item: The object represents an item that can trigger
a concrete event, applying rules and mechanics in the
same way as any other kind of object.

Other properties such as the initial position of an object,
the speedFactor, size, whether it is dynamic or
volatile, and the number of instances of any object can
also be declared in the object declaration. For every instance
of an object, engines/tools should create an internal identifier
that differentiates one from another.

An attribute termed as ai can also be used to assign an
artificial intelligence to govern the behaviour of an object.
This is particularly useful for enemies, projectiles, and also
players (as already mentioned). As with other components
in XVGDL, the behaviour of the artificial intelligence can
be left to an external file. However, the current version of
XVGDL provides the following built-in AI definitions:

4684 VOLUME 8, 2020

J. R. Quiñones, A. J. Fernández-Leiva: XVGDL

• chase_player: the object chases the player around
the game map.

• go_to: the object tries to move to a concrete position
on the map.

• go_to_object: the object tries to reach the position
of another concrete object. It is thus a more generic
version of chase_player.

• random_movement: the object moves randomly
around the map.

• path: the object moves through a path of positions on
the map.

An attribute termed as size can also be used to assign
object sizes. Note however that these values cannot be con-
sidered as pixels as this depends on a number of factors,
such as the designer’s criteria. For instance, in a game based
on square cells, size units can represent one cell, while for
other kinds of games, size can represent a factor to calculate
the pixels of a concrete object. In this sense, and as shown
previously, XVGDL provides the possibility of configuring
sizes and XVGDL interpreters will be in charge of managing
those sizes accordingly.

As an example, see Lines 37–44 in a classical XVGDL
Pacman specification shown in Appendix. See Lines 39–40
where dynamic and volatile objects called ghost of type
enemy are associated with distinct built-in AIs. So,
Line 39 declares two instances of a ghost that will chase
the player, and Line 40 declares another two instances of
a ghost that will move randomly. Other objects, including
non-volatile and static (and that cannot be traversed) like
the walls (Line 38), or dynamic and volatile like smalldots
(Line 41), bigdots (Lines 42), or cherries (Line 43), are
defined in the game specification.

Also note that in this part, the objects are declared but not
the game mechanics, which are defined in the rule section.
So, big and small dots are objects that Pacman must collect in
order to win the game, whereas the cherry is an object that is
displayed on the map and affects Pacman in several different
ways such as awarding extra ability, points or lives.

7) EVENTS

This component is employed to declare game events, which
occur mainly during game execution in response to some
interaction with the player (though not necessarily so). Exam-
ples of game events are associated with the action(s) exe-
cuted when a user presses keys. In this case, for instance,
the player moves, shoots or takes any other action. The action
might also affect the game in other ways, as for instance
pausing its execution. Some other events can be configured
to occur during the gameplay programmatically (i.e., by cod-
ing). For instance, items appearing on the screen in a random
position or enemies being created at a concrete point of
the map from time to time. Those kinds of events can be
easily configured simply by specifying the class imple-
menting the event action. As an example, consider again,
a classical Pacman specification in XVGDL in Appendix;

TABLE 1. Types of game rules supported in current version of XVGDL.

Lines 47 and 48 declare two events to spawn cherries and
ghosts, and each number of configured time units (to be
interpreted by the XVGDL interpreter), respectively.

Distinguishing between consumable or
not-consumable events is a key aspect for designers.
While a key press is consumable (once executed, the event
is not considered again), a configured consumable event
lasts forever while the game loop is being executed. It is the
responsibility of the game engine (or XVGDL interpreter)
to manage those events according to their type. Those
consumable events should be processed just once by the
interpreter while those that are not consumable must be kept,
to execute them in each game loop execution.

8) RULES

This component allows the mechanics of the game to be
defined via its game rules. Game rules define the general
behaviour of a game when an event occurs involving two or
more objects already present in the game state. For instance,
a rule is configured to explain what happens when a player
gets an item or a player is hit by an enemy. The syntax
employed to declare rules in the XVGDL file is:

<rules>
<rule name=STR type=...>
<ruleAction objectName=STR result=...value=.../>
<ruleAction objectName=STR result=...value=.../>
</rule>
...

</rules>

Each rule is defined by declaring its name (i.e., a text
string STR, as ‘‘eatSmallDot’’, for instance), its type
(i.e., generic, collision, proximity, or distant,
the types available in the current XVGDL version as shown
in Table 1), and one or more actions that will be executed
upon the activation of the rule. The activation of a rule
launches the execution of its actions. The number of actions
associated with a game rule depends on both the type of the
rule and the number of objects involved in its activation. Each
action is declared in the form <ruleAction.../>) and its
execution can influence the game in many diverse ways (and
this is declared in the properties result and value). For

VOLUME 8, 2020 4685

J. R. Quiñones, A. J. Fernández-Leiva: XVGDL

TABLE 2. Results that can be used in the rule actions in current version of XVGDL.

instance, a rule action can affect the state of the objects (e.g.,
they might disappear), or it might increase the value of the
game score, just to give a couple of examples.

A rule action defines how the rule exactly affects a given
object when the rule that contains the rule action is activated.
This means that there is a rule action defined specifically
for each object affected by the activation of the rule. In the
rule actions, the property result identifies the action that is
executed when the rule is activated, and the property value
(if declared in the rule action) defines the intensity of the
action (i.e., how the action affects the object).

Table 2 shows all the results (i.e., actions) that can be used
as a rule action in the current version of XVGDL. The first
column identifies the action to be assigned as a result, the sec-
ond column describes the consequences of its execution, and

the third column explains how the value associated with the
action in the rule action affects the game (or the object).
For example, when a player gets an item, from the point
of view of the player, its score might be incremented by
an amount n (and this is associated with a result of type
score-up with value n). However, from the point of view
of the item, this might disappear, which is associated with a
result type disappear).
Table 2 describes all supported game rule types and actions

in the current versions of XVGDL. Note that, although the
XVGDL schema currently defines certain values, it can be
extended for future needs.

As examples, see again the Pacman specification in
XVGDL in Appendix. Lines 51–68 define the mechan-
ics of the game via the declaration of four basic game

4686 VOLUME 8, 2020

J. R. Quiñones, A. J. Fernández-Leiva: XVGDL

rules. So, rule eatSmallDot (resp. eatBigDot) defined in
Lines 52–55 (resp. Lines 56–59) indicates that, when Pac-
man (i.e., the player object) collides with (i.e., eats) a
smallDot (resp. bigDot) object, Pacman increases its
score by 100 points (resp. 300 points) while the smallDot
(resp. bigDot) object disappears, as a result of the col-
lision. Also, rule eatCherry (see Lines 60–63) deals with
the situation when Pacman eats (i.e., collides with) a piece
of fruit (i.e., a cherry). In this case, the Pacman evolves to
be invincible and a transition to the state pacmanPowerUp
(declared in Lines 70–90; game states and state transitions
are described below) is executed (in Line 61) by assigning the
value game-state-transition (see rule 23 in Table 2)
to the result of the action affecting the Pacman. The last
rule ghostCatchPacman (Lines 64–67) defines the situation
in which the Pacman and a ghost coincide in a cell of the map
(i.e., they collide) with the consequence that Pacman dies.
The consequence is that Pacman teletransports to a random
position (see rule 13 in Table 2) whereas the ghost does
nothing in particular.

9) END CONDITIONS

This component is used to specify when the game ends
according to several different aspects of the game that can be
configured (game timeout, number of turns, zero lives event,
etc.). Note that a game rule can also be configured as an end
condition as seen before and forces the game to finish if it is
applied (see rule action end-game in Line 21 of Table 2).
The syntax employed to declare end conditions in the

XVGDL is:

<endConditions>
<endCondition checkerClass=... attributes />
<endCondition checkerClass=... attributes />
<endCondition .../>

</endConditions>

A number of distinct criteria to finish the game
can be declared with <endCondition ... />. The
checkerClass attribute can be used to specify an exter-
nal component that we make responsible for evaluating the
ending condition. In addition, each ending condition can
have a number of attributes that are basically parameters for
the external checker in order to check whether the state to
establish the end of the game has been reached. In the cur-
rent version of XVGDL attributes like value, property,
orobjectNames can be used, just tomention some of them.
As an example, see Lines 70–76 in Appendix, where three

conditions to end the game have been declared: after a timeout
without user interaction (Lines 71–72), when there are no
more volatile objects in the map (i.e., Pacman has collected
all the dots in the map, considered as a winning condition;
Lines 73–74), or when Pacman loses all its lives (considered
as a no-winning condition; Line 75).

10) GAME STATES
In addition to the aforementioned components, XVGDL also
provides the element gameStates to allow the definition

of specific game states during gameplay. The syntax of this
component is as follows:

<gameStates>
<gameState id=STR>

<rules>...</rules>
<events>...<events>
<!-- Other game components -->
...

</gameState>
<gameState id=STR>
...

</gameState>
...

</gameStates>

It is possible to declare distinct game states. A game state
is composed by a name (i.e., a text string STR), a set of
game rules and a set of events. In addition, other possible
components, such as end conditions, can be associated with
a game state.

In an XVGDL game specification, all the elements
declared outside the gameStates part represent elements that
should be applied, affected or considered during all gameplay
in any state of the game. The elements declared inside a
concrete gameState tag will only be considered when the
gameplay can be associated to that specific state (as a result
of a state transition).

So, we can define specific states grouping elements that are
applied (or executed) not only during all gameplay but also
under certain circumstances. This is a powerful mechanism
that enables the execution of different behaviours during dif-
ferent game phases or after a concrete moment, for instance
after an event occurs.

All rules, events and end conditions defined in the default
game state (i.e., the state declared outside the <gameStates>
declaration) will be applied in other states but can be overrid-
den in a concrete game state.

As an example of use, see Lines 78–90 in Appendix. Here
we define a specific state, named as pacmanPowerUp,
associated with the ingestion of a power-up by the Pacman.
The consequence is that, at that moment, the Pacman should
evolve to beat the ghosts. To cover this situation, this state
redefines – in Lines 81–84 – the game rule ghostCatchPac-
man whose definition associated with the default game state
was declared in Lines 64–66. The gameplay will transit to
this new state when the Pacman eats a cherry, an action that
is reflected in Lines 60–62, as already explained. The state
of the game can be changed again by a specific rule action
declared as before.

The gameplay can be set to its default game state by the
activation of an event with result game-state-reset as
shown in Line 888 (see also, Row 24 in Table 2). The result
is that the game returns to its original state, 10 seconds after
the activation of the event.

IV. A PROTOTYPE OF AN XVGDL INTERPRETER
XVGDL Game Engine is a prototype of an XVGDL inter-
preter that allowsXVGDL game specifications to be executed
in two different ways. First, a human can play an XVGDL

VOLUME 8, 2020 4687

J. R. Quiñones, A. J. Fernández-Leiva: XVGDL

game specification, using, for now, the keyboard as the main
input. This can be done by using the keys for the classical
movement actions (i.e., left, right, up, down, fire, etc.) that
have been included by default in the XVSD, that is to say,
the specific XML Schema Definition (VSD) for XVGDL.
The keys to interact can also be (re)defined in the control
component of the specifications as aforementioned. Second,
XVGDL Game Engine supports executing games in a sim-
ulation mode. So, designers or researchers can create games
that can be executed with no human intervention. This can
be done by letting all the players be controlled by game AIs
managed externally (as shown in the last section). This second
approach is important from the point of view of research
as it allows games to be specified by XVGDL and played
automatically.

One of the main features of XVGDL Game Engine is that,
as already mentioned, there are some game aspects (e.g.,
game interface) that can be specified externally from the
game specification itself, allowing different versions of the
same game to be defined if necessary. In this prototype, for
instance, a basic ASCII-based implementation for XVGDL
Game Engine has been developed. This version allows games
written in XVGDL to be played and visualise its execution
in text-mode. At this point of the research, the visualisation
of the game execution itself is not really important, so this
renderer is suitable for our needs as it demonstrates the capa-
bilities of XVGDL and theXVGDL engine. It also proves that
it is possible to create an executable version of a game from its
XVGDL specification. For future implementations, and other
targets more focused on commercial uses of the game, tools
like Java FX, Android, Java Swing, Unity, Unreal or other
solutions should be explored to improve the XVGDL Game
Engine.

A. XVGDL GAME ENGINE IN ACTION
Note that XVGDLGame Engine (XGE) is a basic and simple
game engine built exclusively for research purposes and to
demonstrate the XVGDL features put into action. However,
the current implementation acts like a real game engine,
taking as input the XVGDL specification of a video game.
The XVGDL game engine then process this information by
loading each component of this specification. So, it loads
the parameters of the renderer configuration (e.g., in our
current implementation XGE, the size of the window to show
text assocciated with the game execution). It also places the
objects according to their specified positions and creates a
textual version of the map by executing an external file or by
loading a predefined map structure, etc. These two tasks are
done according to the specifications given in the components
layout and map of the game specification.

The XGE loads the rest of the information provided in the
game specification and it initiates the classical iterative pro-
cess associated with the execution of games. This basically
means to apply the mechanics of the game, let the objects/-
players act according to their assigned gameAI or in response
to the interaction with the user, determine if scheduled game

FIGURE 3. Pacman Gameplay. In this capture, w: (W)alls; c: (C)herries; g:
(G)hosts; p: (P)layer; b: (B)ig Dots; s: (S)mall Dots.

events and consumable events have to be applied, check
the game rules between objects to value if they have to
be used (if so, rule actions are applied for each concrete
object involved in the rule), and determine whether or not
some of the game end conditions have been reached. Then,
the information shown in the display window (i.e., a text-
window in the current version of XGE) is refreshed and all the
(probably modified) information of the game (i.e., the game
map, the game objects, etc.) is drawn again. A new iteration is
initiated unless an end condition is reached. The game ends
when a ending condition has been reached from any of the
configured rules.

The prototype of GVE is accessible online and open source
can be downloaded from github [23]. XVGDL Game Engine
is packaged inside a runnable jar file. XVGDL Games can be
launched using this sentence (given <config> is a XVGDL
configuration file:
java -jar xvgdl-game-engine.jar<config>
As an example of execution, Figure 3 shows a screenshot

of the XVGDL Pacman specification being executed in XGE.
The walls and dots were randomly placed in the map, and
later adjusted to have the classical format of the original
Pacman game). In this example we used predefined game
AIs to govern the behaviour of the ghosts (more specifically,
they are trying to catch Pacman). Figure 4 shows a screenshot
of the XVGDL Breakout specification running in GVE. The
game specification for this well-known game is available
at [22]. In this case, the map was generated using an external
file-based map generator and all objects were located in the
screen according to it.

4688 VOLUME 8, 2020

J. R. Quiñones, A. J. Fernández-Leiva: XVGDL

TABLE 3. XVGDL vs. other existing VGDLs: FEATURES: ‘Playable Game’ (PF), ‘Portable Format’ (PF), Standard (STD), Extensibility (EXT). SUPPORT FOR:
Multiplayer (MPl), multiple-level games (MLe), Game Rules (GRu), Game Events (GEv), Game Properties (GPr), 2D Games (2D), 3D Games (3D), Artificial
Intelligence for objects (AI), independent and separate game renderers (Ren). Symbol l means that the VGDL referenced in the corresponding row has the
feature indicated in the corresponding column whereas symbol m means that the VGDL has this feature but with exceptions (i.e., a limitation to 2 players).

FIGURE 4. Breakout Gameplay. In this capture, w: (W)alls; y: (Y)ellow
Bricks; y: (O)range Bricks; y: (R)ed Bricks; p: (P)layer; b: (B)all; f: (F)loor.

V. XVGDL VS. OTHER VGDLS
Now, we compare XVGDL with other interesting VGDLs,
most of which have already been mentioned previously
(see Section II). We note that none of the existing approaches
or implementations for VGDLs have become a standard in
the field of video games. In general, most of the existing
approaches concentrate on concrete types of games or theo-
retical aspects. However, XVGDL tries to cover a wide range
of games and, powered by its extensibility, could cover other
non-supported elements, in the current version of XVGDL,
for future needs. In what follows, we highlight the main
differences and similarities of our proposal with these.

Table 3 reflects the main features and differences with
respect to XVGDL of a number of VGDLs, already reported
in the scientific literature. The first part of the table focuses
on features that the language provides whereas the second
part concentrates on the existence of strictures imposed by the
language, to support the definition of specific game compo-
nents. The first column cites the names (and a corresponding

bibliography reference) of the VGDLs included in the com-
parison. Columns 2 to 5 enumerate distinct features that are
desirable in a VGDL. So, given a game specification GS,
that is to say, a game described in a VGDL, PG (‘Playable
Game’) indicates that this specification can be compiled or
interpreted into an executable by some kind of available tool;
PF (‘Portable Format’) means that the GS can be directly
managed in a specific way by other available specialized
software (e.g., visual editors, validators, or converters to other
formats like HTML or Excel, to name a few); STD indicates
that the VGDL is based on a well-known programming lan-
guage (the absence of this feature means that the language
has been constructed from scratch with its own notation); and
EXT refers to the capacity of the language to be extended (for
instance, to support new game components or to cover new
genres of games). Columns 6 to 14 refer to the support that
the language provides for defining certain game components.

In the case of PyVGDL, the symbol m for the portable
format column is used to mark that feature as available, but
only under the PyVGDLdeveloping framework. In the case of
XVGDL, it is marked as portable because there are hundreds
of tools that manage XML files. So, these tools can transform
an XML file as needed (for instance, by parsing the XML
specification in Python or any other programming language,
or by translating theXMLfile to other file formats, just to give
a couple of examples). Thus, XVGDL is not limited to any
one development framework or IDE. Likewise, the column
standard is marked as m for PyVGDL as it is based on the
Python language, a common scripting language nowadays,
but not, in fact, a standard. Themajority of the GDLs included
are not based on any standard language. This means that
files written in these VGDLs have to be treated as mere text
files. However, files written in XVGDL can be managed by
hundreds of software tools dedicated to XML; for instance,
(possibly visual) XML editors, translators fromXML to other
formats (e.g., Excel, Access, HTML, text, etc.), XML content
sorters, XML validators, XML debuggers, XML markers,
XML viewers, XML schema tools, and many others.

Not only XML-oriented tools are important at this point.
It is really interesting that all modern high-level programming
languages, such as Java, C or C#, provide support (e.g.,
in a native way or through specific libraries) to manage
XML files. This contributes with much flexibility and allows
developers to think about different possible implementations

VOLUME 8, 2020 4689

J. R. Quiñones, A. J. Fernández-Leiva: XVGDL

for XVGDL game engines or interpreters. Developers are not
tied to any particular language, rather they are free to use any
of them.

Nevertheless, XVGDL supplies most of the evaluated fea-
tures and multi-level is planned for upcoming versions. Also
note that, many of the VGDLs proposed thus far mainly focus
on simple 2D graphical games and usually are limited to one
discrete state and action space (XVGDL allows, as shown
above, the specification of multiple states and state transi-
tions). Moreover, the syntax and semantics of the languages
pretty much restrict the specifications to the complexity of
primitive board games. This is a consequence of the nature of
these VGDLs, limited by their syntax as it was created specif-
ically for particular games. While the XVGDL approach tries
to reach the abstraction for a general definition of any kind
of game, existing approaches are focused on a particular
example (for example, board or arcade games). Rules or
mechanics represented in these existing VGDLs are then
intended to cover those needs. The exceptions are PyVGDL
and XVGDL, although our proposal provides extra features
as shown in Table 3.

In addition, as already mentioned, no existing VGDL can
be considered a standard for GVGP. So, many proposals
for VGDL offer simple structures, with very specific nota-
tions, that allow specifying very simple games. Our proposal
is more general as it is based on a well-known language,
the XML, and takes advantages from it. However, note that
XVGDL cannot be considered a standard for VGDLs yet.
Moreover, whilemost of the work donewith VGDLs has been
directed to concrete examples (particular development for a
known game), XVGDL tries to change the approach, focusing
first on the abstraction of defining games and thereby letting
us create specifications for a wide range of games.

VI. CONCLUSION AND FUTURE RESEARCH
This paper has presented XVGDL, a video game description
language which is based on XML (a well-known markup
language) and can be used to write video game specifications.
As any video game description language, it has structures to
specify video game components such as game layout, game
mechanics, or game objects. In addition, XVGDL covers
other many important game components such as multimedia
elements, game artificial intelligence, (procedural) map

generators or game states. Moreover, XVGDL also provides
additional advantages that no other VGDL has. Note that
XVGDL is based on XML so that the descriptions of games
are edited as XML files, following the XML syntax with its
tags, properties and components. This means that XVGDL
game specifications can be managed by any software able to
manage XML files, including generic XML tools.

Designed to be a video game description language, our
proposal also eases the transition from game specifications
to game implementations and provides structures to deal with
this issue. For instance it allows specifying the data input for
the interaction with the user(s), or conceding the execution of
specific game tasks to external files (e.g., for the procedural
generation of maps, for checking ending conditions, or for
controlling the behaviour of non-player characters). In order
to validate our ideas, in this paper we have also presented a
first prototype implementation for the XVGDLGame Engine
(XGE), a tool that enables an executable version of a game to
be obtained directly from it specification written in XVGDL.

The XVGDL language is open to incremental modifica-
tions to meet any further needs. New game-related concepts,
not included in the current version of XVGDL presented here,
can be tackled. Note that we have defined an XML Schema
Definition for XVGDL. This schema can be employed for
validating our game specifications written in XVGDL. New
language artifacts can be offered to the game designers by
extending the schema adequately. For the future, we are con-
sidering includingmultiple level management and support for
narrative definition.

Another line of future research is to explore how XVGDL
can be extended to deal with games that manage imperfect
information such as the digital collectible card games (e.g.,
HearthStone) or poker. Finally, we plan to improve the pro-
totype implementation of XVGDL Game Engine.

In accordancewith the primary principles of Open Science,
the sources of the XVGDL game Engine (XGE) and the
XML Schema Definition for XVGDL are publicly available
(see [4], [23]). In addition, many details of XVGDL and a
number of game specifications written in XVGDL can be
found at [22].

APPENDIX
PACMAN XVGDL EXAMPLE

1 <?xml version="1.0" encoding="UTF-8" standalone="no" ?>
2 <!-- Definition~of pacman game -->
3
4 <gameDefinition>
5 <!-- Renderer configuration -->
6 <property key="rendererConfiguration" value="/context/pacmanAsciiRendererConfiguration.xml" />
7 <!-- Timeout configuration in milliseconds. Set to -1 for no \timeout -->
8 <property key="timeout" value="20000" />
9
10 <layout>
11 <component id="gameInfoTop" location="top">
12 <contextProperty id="score" />
13 <contextProperty id="hiScore" />
14 </component>
15

4690 VOLUME 8, 2020

J. R. Quiñones, A. J. Fernández-Leiva: XVGDL

16 <component id="gameInfoDown" location="bottom">
17 <contextProperty id="lives" />
18 <contextProperty id="playerItems" />
19 </component>
20 </layout>
21
22 <!-- XVGDL allows define controls that can be overriden whithin controls tag
23 In case of Pacman, no~fire, jump or special control is defined
24 -->
25 <controls>
26 <control left="27" right="26" up="24" down="25/>
27 </controls>
28
29 <map type="2D" sizeX="20" sizeY="40" toroidal="false"
30 generator="es.jor.phd.xvgdl.model.map.RandomLocationGameMapGenerator">
31 </map>
32
33 <players number="1" maxNumber="1" minNumber="1">
34 <player name="pacman" score="0" lives="3" livePercentage="100"/>
35 </players>
36
37 <objects>
38 <object name="wall" type="wall" dynamic="false" volatile="false" sizeX="1" sizeY="1" instances="60" />
39 <object name="ghost" type="enemy" dynamic="true" volatile="true" size="1,1" instances="2"
40 ai="chase_player" />
41 <object name="ghost" type="enemy" dynamic="true" volatile="true" size="1,1" instances="2"
42 ai="random_movement" />
43 <object name="smallDot" type="item" dynamic="true" volatile="true" size="1,1" instances="2" />
44 <object name="bigDot" type="item" dynamic="true" volatile="true" size="1,1" instances="2" />
45 <object name="cherry" type="item" dynamic="true" volatile="true" size="1,1" instances="1" />
46 </objects>
47
48 <events>
49 <event type="engine" className="es.jor.phd.xvgdl.model.event.SpawnItemEvent" objectName="cherry"
50 timer="5000" />
51 <event type="engine" className="es.jor.phd.xvgdl.model.event.SpawnItemEvent" objectName="ghost"
52 timer="1000" />
53 </events>
54
55 <rules>
56 <rule name="eatSmallDot" type="collision">
57 <ruleAction objectName="pacman" result="score-up" value="100" />
58 <ruleAction objectName="smallDot" result="disappear" />
59 </rule>
60 <rule name="eatBigDot" type="collision">
61 <ruleAction objectName="pacman" result="score-up" value="300" />
62 <ruleAction objectName="bigDot" result="disappear" />
63 </rule>
64 <rule name="eatCherry" type="collision">
65 <ruleAction objectName="pacman" result="game-state-transition" value="pacmanPowerUp" />
66 <ruleAction objectName="cherry" result="disappear" />
67 </rule>
68 <rule name="ghostCatchPacman" type="collision">
69 <ruleAction objectName="pacman" result="teletransport" />
70 <ruleAction objectName="ghost" result="" />
71 </rule>
72 </rules>
73
74 <endConditions>
75 <endCondition checkerClass="es.jor.phd.xvgdl.model.endcondition.TimeoutGameEndCondition"
76 property="timeout" value="0" />
77 <endCondition checkerClass="es.jor.phd.xvgdl.model.endcondition.NoObjectsPresentGameEndCondition"
78 objectNames="bigDot,smallDot" winningCondition="true"/>
79 <endCondition checkerClass="es.jor.phd.xvgdl.model.endcondition.LivesZeroGameEndCondition" />
80 </endConditions>
81
82 <gameState id="pacmanPowerUp">
83 <rules>
84 <!-- Overrides rule for ghostCachPacman -->
85 <rule name="ghostCatchPacman" type="collision">
86 <ruleAction objectName="pacman" result="score-up" value="500" />
87 <ruleAction objectName="ghost" result="disappear" />
88 </rule>
89 </rules>

VOLUME 8, 2020 4691

J. R. Quiñones, A. J. Fernández-Leiva: XVGDL

90 <events>
91 <!-- Back to normal state after a configured time
92 <event type="engine" result="game-state-reset" timer="10000" />
93 </events>
94 </gameState>
95 </gameDefinition>

REFERENCES
[1] J. Levine, C. B. Congdon, M. Ebner, G. Kendall, S. M. Lucas,

R. Miikkulainen, T. Schaul, and T. Thompson, ‘‘General video game play-
ing,’’ in Artificial and Computational Intelligence in Games (Dagstuhl
Follow-Ups), vol. 6, S. M. Lucas, M. Mateas, M. Preuss, P. Spronck, and
J. Togelius, Eds. Dagstuhl, Germany: Schloss Dagstuhl—Leibniz-Zentrum
fuer Informatik, 2013, pp. 77–83, doi: 10.4230/DFU.Vol6.12191.77.

[2] G. N. Yannakakis and J. Togelius, ‘‘A panorama of artificial and compu-
tational intelligence in games,’’ IEEE Trans. Comput. Intell. AI in Games,
vol. 7, no. 4, pp. 317–335, Dec. 2015, doi: 10.1109/tciaig.2014.2339221.

[3] M. Ebner, J. Levine, S. M. Lucas, T. Schaul, T. Thompson, and J. Togelius,
‘‘Towards a video game description language,’’ in Artificial and Computa-
tional Intelligence in Games (Dagstuhl Follow-Ups), vol. 6, S. M. Lucas,
M. Mateas, M. Preuss, P. Spronck, and J. Togelius, Eds. Dagstuhl,
Germany: Schloss Dagstuhl—Leibniz-Zentrum fuer Informatik, 2013,
pp. 85–100, doi: 10.4230/DFU.Vol6.12191.85.

[4] J. Ruiz and A. J. Fernández-Leiva. (2018). XVGDL Schema. [Online].
Available: https://github.com/jorgeruizqui/phd/blob/master/xvgdl/xvgdl-
core/src/main/resources/xvgdl.xsd

[5] G. Jiang, D. Zhang, L. Perrussel, and H. Zhang, ‘‘Epistemic GDL:
A logic for representing and reasoning about imperfect information
games,’’ in Proc. 25th Int. Joint Conf. Artif. Intell. (IJCAI). New York,
NY, USA: AAAI Press, 2016, pp. 1138–1144. [Online]. Available: http://
dl.acm.org/citation.cfm?id=3060621.3060779

[6] N. Love, T. Hinrichs, D. Haley, E. Schkufza, and M. Genesereth, ‘‘General
game playing: Game description language specification,’’ Stanford Univ.,
Stanford, CA, USA, Tech. Rep. LG-2006-01, 2008.

[7] M. Thielscher, ‘‘A general game description language for incomplete
information games,’’ in Proc. 24th AAAI Conf. Artif. Intell. (AAAI),
Atlanta, GA, USA, M. Fox and D. Poole, Eds. New York, NY,
USA: AAAI Press, Jul. 2010. [Online]. Available: http://www.aaai.org/
ocs/index.php/AAAI/AAAI10/paper/view/1727

[8] T. Schaul, ‘‘An extensible description language for video games,’’ IEEE
Trans. Comput. Intell. AI in Games, vol. 6, no. 4, pp. 325–331, Dec. 2014.

[9] Unity Game Development Platform. Accessed: Nov. 15, 2019. [Online].
Available: https://unity3d.com/es

[10] Casanova. (2012). Casanova. [Online]. Available: https://github.com/vs-
team/casanova-mk2

[11] M. Abbadi, F. Di Giacomo, A. Cortesi, P. Spronck, G. Costantini, and
G. Maggiore, ‘‘Casanova: A simple, high-performance language for game
development,’’ in Serious Games. Cham, Switzerland: Springer, 2015,
pp. 123–134.

[12] C. Browne, ‘‘Evolutionary game design: Automated game design comes
of age,’’ SIGEVOlution, vol. 6, no. 2, pp. 3–16, Feb. 2014, doi: 10.
1145/2597453.2597454.

[13] A.M. Smith, M. J. Nelson, andM.Mateas, ‘‘LUDOCORE: A logical game
engine for modeling videogames,’’ in Proc. IEEE Conf. Comput. Intell.
Games, Aug. 2010, pp. 91–98.

[14] T. Schaul, ‘‘A video game description language for model-based or inter-
active learning,’’ in Proc. IEEE Conf. Comput. Intell. Games (CIG),
Aug. 2013, pp. 1–8.

[15] World Wide Web Consortium. Accessed: Nov. 15, 2019. [Online]. Avail-
able: https://www.w3.org/xml/

[16] Pacman Official. Accessed: Dec. 2, 2019. [Online]. Available:
http://pacman.com/en/

[17] M. Wickramasinghe, K. Gunawardana, J. Rajapakse, and D. Alahakoon,
‘‘Investigating individual game-play patterns using a self-organzing map,’’
in Proc. IEEE 6th Int. Conf. Inf. Autom. Sustainability, Sep. 2012,
pp. 203–208.

[18] A. Chiang, ‘‘Motivate AI class with interactive computer game,’’ in Proc.
1st IEEE Int. Workshop Digit. Game Intell. Toy Enhanced Learn. (DIGI-
TEL), Mar. 2007, pp. 109–113.

[19] J. Svensson and S. J. Johansson, ‘‘Influence Map-based controllers for
Ms. PacMan and the ghosts,’’ in Proc. IEEE Conf. Comput. Intell.
Games (CIG), Sep. 2012, pp. 257–264.

[20] Q. Sun and S. He, ‘‘Artificial neural network using the training set of DTS
for Pacman game,’’ in Proc. 11th Int. Comput. Conf. Wavelet Actiev Media
Technol. Inf. Process. (ICCWAMTIP), Dec. 2014, pp. 209–213.

[21] J. Ruiz and A. J. Fernández-Leiva. (2018). XVGDL Configuration for
Pacman. [Online]. Available: https://github.com/jorgeruizqui/phd/blob/
master/xvgdl/xvgdl-pacman/src/main/resources/context/pacman_context_
configuration.xml

[22] (2019). XVGDL Web. [Online]. Available: https://www.xvgdl.com
[23] (2018). XVGDL Game Engine GitHub Repository. [Online]. Available:

https://github.com/jorgeruizqui/phd/blob/master/xvgdl/build
[24] C. Browne and F. Maire, ‘‘Evolutionary game design,’’ IEEE Trans. Com-

put. Intell. AI in Games, vol. 2, no. 1, pp. 1–16, Mar. 2010.
[25] S. M. Lucas, M. Mateas, M. Preuss, P. Spronck, and J. Togelius, Eds., Arti-

ficial and Computational Intelligence in Games (Dagstuhl Follow-Ups).
Dagstuhl, Germany: Schloss Dagstuhl—Leibniz-Zentrum fuer Informatik,
2013, vol. 6. [Online]. Available: http://www.dagstuhl.de/dagpub/978-3-
939897-62-0

JORGE R. QUIÑONES received the degree in
computer science from the University of Granada
(UGR), Spain, in 2002. He is currently pursuing
the Ph.D. degree in computer science with the Uni-
versity of Málaga (UMA). His entire professional
career has been developed as a Software Engi-
neer in private international companies, such as
CapGemini or Indra and, more recently, as a Tech-
nical Lead at Piksel. Working in different projects
and business inside the IT market, he has special-

ized during almost eight years in air traffic control supervision software.
He is also leading cutting-edge technology solutions for the media industry’s
biggest companies around the world. He has combined his professional
career with an extra formation in industrial organisation at UMA.

ANTONIO J. FERNÁNDEZ-LEIVA received the
Ph.D. degree in computer science from the Univer-
sity of Málaga (UMA), Spain, in 2002. He worked
in private companies as a Computer Engineer.
He is currently an Associate Professor with
the Lenguajes y Ciencias de la Computación
Department. He leads a master studies on game
development at UMA, is the Co-Head of the CAE-
SIUM research group at UMA, and is also the
Co-Founder of A Bonfire of Souls, a private game

development company. His main areas of research involve both the appli-
cation of metaheuristics techniques to combinatorial optimization and the
employment of computational intelligence in games.

4692 VOLUME 8, 2020

http://dx.doi.org/10.4230/DFU.Vol6.12191.77
http://dx.doi.org/10.1109/tciaig.2014.2339221
http://dx.doi.org/10.4230/DFU.Vol6.12191.85
http://dx.doi.org/10.1145/2597453.2597454
http://dx.doi.org/10.1145/2597453.2597454

	INTRODUCTION
	RELATED WORK
	THE XML-BASED VIDEO GAME DESCRIPTION LANGUAGE
	DESCRIBING A GAME USING XVGDL
	EXTENSIBLE MARKUP LANGUAGE ADVANTAGES
	XVGDL VALIDATION
	GAME SPECIFICATION AND ELEMENTS IN XVGDL
	PROPERTIES
	LAYOUT
	MAP
	CONTROLS
	PLAYERS
	OBJECTS
	EVENTS
	RULES
	END CONDITIONS
	GAME STATES

	A PROTOTYPE OF AN XVGDL INTERPRETER
	XVGDL GAME ENGINE IN ACTION

	XVGDL VS. OTHER VGDLS
	CONCLUSION AND FUTURE RESEARCH
	REFERENCES
	Biographies
	JORGE R. QUIÑONES
	ANTONIO J. FERNÁNDEZ-LEIVA

