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ABSTRACT For compensating the bias caused by the noisy input which is always ignored by ordinary
algorithms, two novel algorithms with zero-attraction (ZA) penalties are proposed in this paper. The first
one constructs a bias-compensated term in the updating recursion of the zero-attraction proportionate
normalized least mean square (PNLMS) algorithm which is named BC-ZA-PNLMS algorithm. The second
one employs the bias-compensated term and the correntropy induced metric (CIM) constraint to renew the
updating recursion of the PNLMS algorithm which is named BC-CIM-PNLMS algorithm. Both of these
two algorithms are derived on the basis of unbiased criterion. Simulation examples are carried out, and
the results indicate that the two newly developed unbiased algorithms outperform the related algorithms
previously presented in other literatures for combating noisy input and measurement noises.

INDEX TERMS Unbiased adaptive filtering, zero-attraction (ZA), correntropy induced metric (CIM),
PNLMS algorithm.

I. INTRODUCTION
Normalized least-mean-square (NLMS) algorithm is one of
the popular adaptive filtering algorithms which are widely
used in signal processing field, such as echo cancellation,
system identification and linear prediction [1], [2]. Because
of the simplicity and excellent performance of the NLMS,
the family of the NLMS algorithms are extensively and
deeply studied. It is well known that the channel responses of
several practical systems such as the wireless communication
system and echo path, are sparse, which means that most of
the parameters to be estimated are insignificant and negligi-
ble, only small part of the parameters are remarkable and con-
siderable [3]–[5]. For the purpose of taking advantages of the
sparse characteristics in these systems, the proportionate type
algorithms which obtain fast convergence speed by assigning
an independent step-size to each coefficient have been devel-
oped [6]–[11]. Among these algorithms, themost popular one
is the proportionate normalized least mean square (PNLMS)
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algorithm [6]. Inspired by the compressed sensing, a type of
zero attraction algorithm has been developed by introducing a
penalty term into the updating recursion of the original adap-
tive filter algorithm [12]–[19]. The role of the sparse penalty
is to attract the small value coefficients to zero, consequently,
faster convergence speed can be obtained than that of orig-
inal algorithms and even than that of the proportionate type
algorithms. Among the zero attraction algorithms, the zero
attraction NLMS (ZA-NLMS) algorithm is the most famous
one [14]. Besides the traditional zero-attractors obtained from
different norm penalty, the correntropy induced metric (CIM)
method has been considered to construct a zero-attractor in
[20]–[26], which is to measure the similarity between the two
different variables. If one variable is zero, the CIM tends to
be l0-norm. Thus, the CIM can be used to approximate the
l0-norm to exploit the sparsity of the system.
Although the two categories algorithms which fall into

proportionate type one and zero attraction type one can get
smaller steady state error and faster convergence, which only
focus on the output noise and do not consider the input noise.
However, the input noise caused by modeling and instrument
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error is unavoidable, and the neglect of input noise may
introduce estimation bias which decreases the accuracy
accordingly. Using higher order model and increasing the
signal-to-noise ratio (SNR) can mitigate the adverse impact
of input noise in some degree but can never be eliminated
completely [27]. To overcome this drawback, some improved
algorithms for unbiased estimation have been investigated
[28]–[39]. The total least squares (TLS) and the bias-
compensated least squares (TL) methods can handle the bias
issue but suffer to computational inefficiency [40]. Therefore,
the bias-compensated algorithms under least mean square
criterion obtain more attention relay on their easy implemen-
tation and low complexity. In [28], the unbiased criterion for
steady state is utilized to provide a simple approach of bias
compensation via the statistical property of the input noise.
Since then, unbiased algorithms deriving from the unbiased
criterion have been developed. Among the existing ideas,
the classical adaptive filter algorithms like the NLMS [1], [2],
[41], PNLMS [6], constrained least-mean-square (CLMS)
[42], least mean fourth (LMF) [43], [44], normalized subband
adaptive filter (NSAF) [45], [46], proportionate least-mean-
square/fourth (PLMS/F) [47]–[49], affine-projection-like
(APL) [50], [51], normalized maximum correntropy criterion
(NMCC) [20], [21], [52]–[54], fractional order normalized
least mean square (FONLMS) [55]–[58] are improved by
reducing the impacts of the input noise via appending a
bias-compensated term into the updating equation of the
primal algorithms. Furthermore, the stabilization for the bias-
compensated NLMS (BC-NLMS) algorithm based on unbi-
ased criterion was also researched carefully in [59].

Inspired by the idea of bias-compensation and motivated
by utilizing the sparsity of system impulse response, the novel
algorithm is proposed to utilize both of the bias-compensated
and sparsity to construct new updating recursion of the
PNLMS algorithm in this paper. The bias-compensated term
is derived from the unbiased criterion and incorporated with
zero-attraction scheme. Besides the traditional zero attractor
of the sign function, the CIM is also be employed to form
the desired zero attractor. The two proposed algorithms are
named BC-ZA-PNLMS and BC-CIM-PNLMS, respectively.

II. REVIEW OF THE PNLMS ALGORITHM WITH SPARSE
PENALTY CONSTRAINT
A. THE PNLMS ALGORITHM WITH ZERO ATTRACTOR
Consider a finite impulse response (FIR) system with
L taps, and the weight vector w(k) denotes a column-
vector with L rows. The system input signal is v(k) =
[v(k), v(k − 1), v(k − 2) · · · , v(k − L+1)]T , which is noise-
free vector. The desired signal is described as

d(k) = vT (k)w(k)+ n(k). (1)

n(k) represents the noise signal from the environment. The
system estimation error is

e(k) = d(k)− vT (k)ŵ(k) (2)

with an estimation ŵ(k).

The PNLMS’s update recursion is

ŵ(k + 1) = ŵ(k)+ µ
v(k)Q(k)e(k)

vT (k)Q(k)v(k)+ ε
(3)

with a step-size of µ, where ε � 0 is to prevent the denom-
inator from zero. Q(k) is a weight assignment matrix which
assigns individual step-size to each tap corresponding to its
magnitude, and it is described as

Q(k) = diag {q1(k), q2(k), . . . , qL(k)} . (4)

The element q in the matric Q(k) is

ql(k) =
αl(k)
L∑
i=1
αi(k)

, 1 ≤ l ≤ L, (5)

where

αl(k) = max
{
ρmax

{
δ,
∣∣ŵ1(k)

∣∣ , ∣∣ŵ2(k)
∣∣ , · · · ,∣∣ŵL(k)∣∣} ∣∣ŵl(k)∣∣} . (6)

The parameter ρ in (6) is used to keep the iteration going on
when

∣∣ŵl(k)∣∣ is much smaller than the previous item, and its
value is always 1

L ∼
5
L . The parameter δ in (6) is a small

constant to promote the iteration running at beginning when
all the coefficients are zeros.

The PNLMS can achieve fast convergence speed at initial
stage of iteration which benefits from the step-size individual
assignment of each coefficient. However, the advantage can-
not be maintained at the later stage, which suffers from the
slow convergence speed of the small value coefficients that
are assigned small step-sizes. To accelerate the convergent of
the small coefficients, the l1-norm regularization constraint
is introduced to the optimization of the PNLMS algorithm to
force the small coefficients to approach zeros rapidly. Then,
the resulting updating recursion of the ZA-PNLMS algorithm
is obtained as

ŵ(k + 1) = ŵ(k)+ µ
v(k)Q(k)e(k)

vT (k)Q(k)v(k)+ ε
− γ sgn(ŵ(k)).

(7)

It is observed that the first two terms of the iteration are the
same as those of the PNLMS algorithm, and the last term
of the sign function with a zero attraction strength control
parameter γ is the constructed zero attractor.

B. REVIEW OF THE CIM
Recently, the CIM is introduced to the adaptive filter which
acts as an approximation of l0-norm [20]–[26]. Compared
with the global measurement of the mean square error (MSE),
the correntropy focuses on local statistics. To describe the
similarity of two random vectors, the correntropy of two
vectorsW and Z is defined as

V (W,Z) =
1
M

M∑
j=1

κ(wj, zj). (8)
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where κ(.) represents the kernel used to satisfy the Mercer’s
theorem. Among the various kernel functions, the Gaussian
kernel is the most popular one, and it is described as

κ(w, z) =
1

√
2πσ

exp(−
‖w− z‖2

2σ 2 ), (9)

where the kernel width is σ , and its size is equal to the range
of a special set. The CIM is

CIM(W,Z) =
√
κ(0)− V (W,Z), (10)

which is a nonlinear metric derived from the correntropy.
Herein, makeW to ŵ(k) and make Z to zero, then, the degree
to which the coefficient approaches zero can be obtained.
This is lucky coincidence to the role of the zero attractor.
Thus, the CIM can be chosen to be a sparse penalty to exploit
the sparsity of the original adaptive algorithm. To simplify
the expression, the CIM usually takes squared rather than the
form of square root which is shown as

CIM2 (ŵ(k), 0)= 1

Lσ
√
2π

L∑
i=1

(
1−exp

(
−
ŵ2
i (k)

2σ 2

))
. (11)

Taking the derivation of CIM2
(
ŵ(k), 0

)
with respect to ŵ(k),

we can get

∂CIM2
(
ŵ(k), 0

)
∂ŵ(k)

=
1

Lσ 3
√
2π

ŵ(k) exp
(
−
ŵ2(k)
2σ 2

)
. (12)

The updating recursion of the PNLMS algorithm with CIM
penalty can be described as

ŵ(k + 1) = ŵ(k)+ µ
v(k)Q(k)e(k)

vT (k)Q(k)v(k)+ ε

−γCIM
1

Lσ 3
√
2π

ŵ(k) exp
(
−
ŵ2(k)
2σ 2

)
(13)

Comparing to (7), we can find that γCIM 1
Lσ 3
√
2π

ŵ(k)

exp
(
−
ŵ2(k)
2σ 2

)
is regarded as a zero attractor, and the algorithm

with CIM constraint is also can be considered as a zero
attraction type algorithm.

III. THE BIAS-COMPENSATED ZERO ATTRACTION
ALGORITHMS WITH INPUT NOISE
The algorithms mentioned in the previous section can both
exploit the system’s sparse characteristic and further accel-
erate the convergence rate, nevertheless, the input noise of
the filter which is unavoidable in practice is not taken into
account. To mitigate the adverse impacts of the noisy input,
an unbiased term is incorporated into the updating equation
of the traditional algorithm.

Input signal containing noises is described as

x(k) = v(k)+ nin(k) (14)

with nin(k) = [nin(k), nin(k − 1), nin(k − 2) · · · ,
nin(k − L+1)]T is the input noise (see Fig.1) that is assumed

FIGURE 1. The block diagram of adaptive filtering.

to be white Gaussian noise (WGN) and independent of v(k).
The resulting error signal will be replaced by

ein(k) = d(k)− xT (k)ŵ(k) = d(k)

−(v(k)+ nin(k))T ŵ(k) = e(k)− nTin(k)ŵ(k). (15)

As can be seen from (15), the considering input noise causes
additional bias compared with e(k) which is expressed in
(2). Therefore, the updating equation of the ŵ(k) shown in
(7) is improper. To make the estimation accurate, a bias-
compensation term is introduced and is written asWBC. Then,
the new updating equation of the BC-ZA-PNLMS algorithm
turns to

ŵ(k + 1) = ŵ(k)+ µ
x(k)Q(k)ein(k)

xT (k)Q(k)x(k)+ ε
−γ sgn(ŵ(k))+WBC(k). (16)

In order to figure out the concrete expression of WBC(k),
the unbiased criterion proposed in [28] is employed which
is described as

E
[
w∗(k + 1) |x(k)

]
= 0

whenever E
[
w∗(k) |x(k)

]
= 0, (17)

where

w∗ = w− ŵ. (18)

The unbiased criterion is only satisfied in steady state, and
by this time the w∗ tends to zero. According to (16) and (18),
we can get

w∗(k + 1) = w∗(k)− µ
x(k)Q(k)ein(k)

xT (k)Q(k)x(k)+ ε
+γ sgn(ŵ(k))−WBC(k). (19)

Taking the conditional expectation of both sides of (19) to
get the same form in (17). It is found that the third term on
the right-hand side of the equation can be omited in the fol-
lowing operation, avoiding introducing extra bias and being
unnecessary for input noise elimination [35]. Then, the result
of taking conditional expectation will be

E
[
w∗(k + 1) |x(k)

]
= E

[
w∗(k) |x(k)

]
−µE

[
x(k)Q(k)ein(k)

xT (k)Q(k)x(k)+ ε

∣∣∣∣ x(k)]
−E [WBC(k) |x(k) ] . (20)
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In steady state, the equation will become

E [WBC(k) |x(k) ] = −µE
[

x(k)Q(k)ein(k)
xT (k)Q(k)x(k)+ ε

∣∣∣∣ x(k)] ,
(21)

where

E
[

x(k)Q(k)ein(k)
xT (k)Q(k)x(k)+ε

∣∣∣∣ x(k)]=Q(k)E [x(k)ein(k) |x(k) ]
xT (k)Q(k)x(k)+ ε

.

(22)

Substituting (14) and (15) into (22), we will obtain

E [x(k)ein(k) |x(k) ]
= E [(v(k)+ nin(k)) (e(k)

− nTin(k)ŵ(k)
)
|x(k) ] = E [(v(k)e(k)+ nin(k)e(k)

− v(k)nTin(k)ŵ(k)− nin(k)nTin(k)ŵ(k)
)
|x(k) ] . (23)

To make the calculation tractable, some assumptions are
given. First of all, the input noise nin(k) is independent of v(k)
with mean and variance of zero and δ2in, respectively. Next,
the observation noise n(k) is independent of nin(k) and v(k)
with N (0, 1) distribution. In addition, both of x(k) and v(k)
are uncorrelated to w∗(k). Based on these assumptions, (23)
can be rewritten as

E [x(k)ein(k) |x(k) ]
= E [v(k)e(k) |x(k) ]

+E [nin(k)e(k) |x(k) ]− E
[
v(k)nTin(k)ŵ(k) |x(k)

]
−E

[
nin(k)nTin(k)ŵ(k) |x(k)

]
, (24)

where

E [v(k)e(k) |x(k) ] = 0, (25)

E [nin(k)e(k) |x(k) ] = 0, (26)

E
[
v(k)nin(k)T ŵ(k) |x(k)

]
= 0, (27)

E
[
nin(k)nTin(k)ŵ(k) |x(k)

]
= δ2inE

[
ŵ(k) |x(k)

]
. (28)

Substituting the result into (21), yields

E [WBC(k) |x(k) ] = µδ2in
Q(k)E

[
ŵ(k) |x(k)

]
xT (k)Q(k)x(k)+ ε

. (29)

Then, the bias-compensation term can be calculated via (29)

WBC(k) = µδ2in
Q(k)ŵ(k)

xT (k)Q(k)x(k)+ ε
. (30)

Substituting this result into (16), the updating equation of
the bias-compensation ZA-PNLMS (BC-ZA-PNLMS) algo-
rithm is obtained as

ŵ(k + 1) = ŵ(k)+ µ
x(k)Q(k)ein(k)

xT (k)Q(k)x(k)+ ε

+µδ2in
Q(k)ŵ(k)

xT (k)Q(k)x(k)+ ε
− γ sgn(ŵ(k)). (31)

From (31), it can be found that ŵ(k + 1) = ŵ(k) +
µ

x(k)Q(k)ein(k)
xT (k)Q(k)x(k)+ε is the regular expression of PNLMS,

FIGURE 2. Learning lines with different sparsities.

µδ2in
Q(k)ŵ(k)

xT (k)Q(k)x(k)+ε is the bias-compensated term, and
γ sgn(ŵ(k)) is the sparse penalty constraint.
Furthermore, the bias-compensation PNLMS algorithm

with CIM constraint can be derived in the similar way. As a
result, the updating equation of the BC-CIM-PNLMS is
expressed as

ŵ(k + 1) = ŵ(k)+ µ
x(k)Q(k)ein(k)

xT (k)Q(k)x(k)+ ε

+µδ2in
Q(k)ŵ(k)

xT (k)Q(k)x(k)+ ε

−γCIM
1

Lσ 3
√
2π

ŵ(k) exp
(
−
ŵ2(k)
2σ 2

)
. (32)

Compared with the updating equation of BC-ZA-PNLMS,
the BC-CIM-PNLMS has different sparse penalty constraint
γCIM

1
Lσ 3
√
2π
ŵ(k) exp

(
−
ŵ2(k)
2σ 2

)
which works more effec-

tively benefits from the adjustable width of the kernel σ .
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FIGURE 3. Learning lines with different SNRs.

The key parameter δ2in in (31) and (32) is the variance of
the input noise which usually can not be obtained directly in
practice. So the methods of δ2in estimation are investigated in
several literatures and are summarized in [59]. Herein, δ2in is
replaced by δ2in(k) which is the instant value at kth iteration,
and δ2in(k) can be estimated by following equations based on
time ergodicity.

δ2in(k) =
1

Lδ2ŵ(k)+η
δ2ein

(k)
+

L
xT (k)x(k)

, (33)

where

δ2ŵ(k) = (1− f )
1
L
ŵT (k)ŵ(k)+ f δ2ŵ(k − 1). (34)

δ2ein (k) = (1− f )e2in(k)+ f δ
2
ein (k − 1). (35)

The parameter f in (34) and (35) is a forgetting parameter,
and η is the pre-known input-output noise-ratio.
From the derivation of the two algorithms, we can conclude

that the BC-ZA-PNLMS and BC-CIM-PNLMS have both of
fast convergence rate and low estimation error which benefits
from the inserting of the bias-compensated term and sparse
penalty constraint. However, the computational complexity
is a little bit higher than the original algorithm. The recursion
of the PNLMS requires 2L2 + 2L − 1 additions, 2L2 + 3L +
2 multiplications and L + 1 divisions. The BC-ZA-PNLMS
requires 3L2+3L−1 additions, 3L2+5L+3 multiplications
and L + 1 divisions. The BC-CIM-PNLMS requires 3L2 +
4L−2 additions, 3L2+7L+7multiplications, L+3 divisions
and L exponentiation.

FIGURE 4. Learning lines with different input signals.

IV. SIMULATION AND RESULT ANALYSIS
To investigate the behaviors of the developed algorithms,
several numerical examples will be carried out in this
part. The behaviors of the BC-ZA-PNLMS and BC-CIM-
PNLMS algorithms with different sparsities are compared
with those of the original ZA-PNLMS algorithm and other
bias-compensated algorithms. Then, the performance of the
two new algorithms are studied with different SNRs, different
input signals and different channel responses, respectively.
Besides, the parameter γ in BC-ZA-PNLMS and σ in BC-
CIM-PNLMS are analyzed. At last, the directly comparisons
between the real channel response and the estimation result
by the proposed methods are made. All of the numerical
examples are conducted by 4000 trials for 200 Monte runs
to get an average MSD defined by MSD = E

[∣∣w− ŵ(k)
∣∣2].

Example 1: The estimation behaviors of BC-ZA-PNLMS
and BC-CIM-PNLMS with different sparsities of 1, 4 and
8 are studied compared with the BC-ZA-NLMS, BC-NLMS,
ZA-PNLMS, BC-PNLMS algorithms. Herein, the sparsity
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FIGURE 5. Performance in echo path.

(represented by S) denotes the number of the nonzero coef-
ficient and other coefficients are assumed to be zero. The
length of the estimated channel is 64. The input signal, input
noise and output noise are Gaussian white signal with distri-
bution ofN (0, 1). The forgetting factors for all the algorithms
involved in simulation are 0.6. To obtain the same initial
convergence rate, the step-sizes for the BC-NLMS, BC-ZA-
NLMS, ZA-PNLMS are set as 0.4, and the step-sizes for the
BC-PNLMS, BC-ZA-PNLMS, BC-CIM-PNLMS are 0.12.
The parameter ε in all the algorithms are set to 0.001. The γ
and γCIM in (31) and (32) are 0.0001 and 0.00001, while both
of the corresponding parameters in other ZA algorithms such
as the BC-ZA-NLMS and ZA-PNLMS are 0.0001. All of the
parameters ρ and δ in the proportionate algorithms are set to
5
L and 0.1, respectively. σ is 0.007. η is 0.0001. The learning
lines with sparisities of 1, 4 and 8 are shown in Figure 2.

We can conclude that the BC-ZA-PNLMS and BC-CIM-
PNLMS algorithms have superior performance respect with
estimation precision under different sparsities. In general,
the algorithms with bias-compensation term behave better
than those algorithms without bias-compensation term which
is shown in Figure 2(b) and Figure 2(c). However, if the chan-
nel response is extremely sparse, the proportional algorithms
show their superiority comparing with the non-proportional
algorithms which is shown in Figure 2(a).
Example 2: The performance of the two developed algo-

rithms for different SNRs are studied. The experimental
environment and parameter settings are the same as those
in Example 1. Herein, the SNR denotes the input signal
variance and input noise variance ratio whose values are
0dB, 10dB, 20dB and 30dB, respectively. The MSD lines

FIGURE 6. Performance in underwater communication channel.

of the BC-ZA-PNLMS and BC-CIM-PNLMS algorithms are
shown in Figure 3. It is evident from the result that the lower
the SNR is, the worse the algorithm performs.
Example 3: The behaviors of BC-ZA-PNLMS and

BC-CIM-PNLMS with different input signals are investi-
gated. The input signals include WGN signal with distribu-
tion of N (0, 1), colored signal that is generated by WGN
through a first order filter with a pole of 0.8, and the speech
signal which lasts 8 seconds and is sampled by 8kHz, respec-
tively. The SNR is set to 10dB and the sparsity is 4. The
step-sizes of BC-ZA-NLMS and BC-NLMS are 0.4, and
the step-sizes for other algorithms are 0.12. f is 0.1. The
estimation behaviors of the algorithms with WGN, colored
signal and speech signal are shown in Figure 4.

As shown from the results, the developed algorithms
can still maintain the superior performance for dealing
with the WGN, colored signal and speech signal. However,
the learning line of speech signal which lasts 8 seconds is
not smooth since it is time-varying. As a result, the results
obtained from the speech signal do not look smooth
enough [30], [36], [39], [59].
Example 4: For the sake of verifying the stability of

the developed algorithms, different channel responses are
considered and simulated. An echo path which is shown
in Figure 5(a) has 256 taps. The performance is shown in
Figure 5(b). The underwater communication channel shown
in Figure 6(a) with 222 taps is considered [60]. The perfor-
mance is shown in Figure 6(b). The simulation result vali-
dates the efficiency of the proposed algorithms for different
applications.
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FIGURE 7. Different values of γ of the BC-ZA-PNLMS algorithm.

FIGURE 8. Different values of σ of the BC-CIM-PNLMS algorithm.

FIGURE 9. Comparison of the real channel response and the estimation
value.

Example 5: In this example, the values of the key
parameters in the BC-ZA-PNLMS and BC-CIM-PNLMS
algorithms are discussed. The appropriate valaue of zero
attraction parameter γ in the BC-ZA-PNLMS algorithm is

discussed, and the result is shown in Figure 7. It is observed
that γ = 0.0001 is the best choice. In addition, the value
of kernal width σ in the BC-CIM-PNLMS algorithm is dis-
cussed, and the result is shown in Figure 8. As can be seen
from the result, both of the values σ = 0.1 and σ = 1 are the
best ones.
Example 6: To illustrate the performance of the proposed

algorithms in channel estimation more intuitively, the real
response which is shown in Figure 6(a) is compared with
the estimation one. Consider that the input signal is WGN
and the SNR is 0dB which conforms the SNR of underwater
communication channel. γ and γCIM are 0.000001, and σ is
0.7. The comparison results are shown in Figure 9.

From the simulation results, we can find that both of the
two novel algorithms can achieve good performance in esti-
mating and tracking even at low SNR and complex environ-
ment.

V. CONCLUSION
The PNLMS algorithmswith zero attraction scheme and bias-
compensated term are developed in this paper. The bias-
compensation term reduces the adverse effect of the noisy
input which is always not considered by the traditional algo-
rithms. The zero attractors incorporated into the PNLMS
can accelerate the returning to zeros for the close-to-zero
coefficients. The BC-ZA-PNLMS and BC-CIM-PNLMS
algorithms have superior performance on both estimation
accuracy and convergence speed. The derivations of the two
algorithms are proposed and discussed on the basis of unbi-
ased criterion, and the behaviors of the new algorithms are
studied in a comprehensive way. Simulation results of numer-
ical examples demonstrate the validity of bias compensation
for suppressing the noisy input and the excellent performance
of the two developed algorithms.

REFERENCES
[1] P. S. R. Diniz, Adaptive Filtering: Algorithms and Practical Implementa-

tion, 4th ed. New York, NY, USA: Springer, 2013.
[2] A. H. Sayed, Fundamentals of Adaptive Filtering. New York, NY, USA,

Wiley, 2003.
[3] J. Benesty, T. Gaensler, D. R. Morgan, M. M. Sondhi, and S. L. Gay,

Advances in Network and Acoustic Echo Cancellation. Berlin, Germany:
Springer, 2001.

[4] L. Vuokko, V.-M. Kolmonen, J. Salo, and P. Vainikainen, ‘‘Measurement
of large–scale cluster power characteristics for geometric channel models,’’
IEEE Trans. Antennas Propag., vol. 55, no. 11, pp. 3361–3365, Nov. 2007.

[5] W. Shi, Y. Li, L. Zhao, and X. Liu, ‘‘Controllable sparse antenna array for
adaptive beamforming,’’ IEEE Access, vol. 7, pp. 6412–6423, 2019.

[6] D. L. Duttweiler, ‘‘Proportionate normalized least-mean-squares adapta-
tion in echo cancelers,’’ IEEE Trans. Speech Audio Process., vol. 8, no. 5,
pp. 508–518, Sep. 2000.

[7] J. Benesty and S. L. Gay, ‘‘An improved PNLMS algorithm,’’ inProc. IEEE
Int. Conf. Acoust. Speech Signal Process., Orlando, FL, USA, May 2002.

[8] H. Deng and M. Doroslovacki, ‘‘Improving convergence of the PNLMS
algorithm for sparse impulse response identification,’’ IEEE Signal Pro-
cess. Lett., vol. 12, no. 3, pp. 181–184, Mar. 2005.

[9] Y. Dong and H. Zhao, ‘‘A new proportionate normalized least mean square
algorithm for high measurement noise,’’ in Proc. IEEE Int. Conf. Signal
Process., Commun. Comput. (ICSPCC), Ningbo, China, Sep. 2015.

[10] J. Benesty and Y. Huang, ‘‘The LMS, PNLMS, and exponentiated gradient
algorithms,’’ in Proc. Eur. Signal Process. Conf., Sep. 2004, pp. 721–724.

4960 VOLUME 8, 2020



Z. Jin et al.: Bias-Compensated PNLMS Algorithm With Sparse Penalty Constraint

[11] Y. Li and M. Hamamura, ‘‘An improved proportionate normalized least-
mean-square algorithm for broadband multipath channel estimation,’’ Sci.
World J., vol. 2014, pp. 1–9, 2014.

[12] D. L. Donoho, ‘‘Compressed sensing,’’ IEEE Trans. Inf. Theory, vol. 52,
no. 4, pp. 1289–1306, Apr. 2006.

[13] Y. Chen, Y. Gu, and A. O. Hero, ‘‘Sparse LMS for system identification,’’
in Proc. IEEE Int. Conf. Acoust., Speech Signal Process., Taipei, Taiwan,
Apr. 2009.

[14] Y. Gu, J. Jin, and S. Mei, ‘‘l0 norm constraint LMS algorithms for
sparse system identification,’’ IEEE Signal Process. Lett., vol. 16, no. 9,
pp. 774–777, Jun. 2009.

[15] Y. Li and M. Hamamura, ‘‘Zero-attracting variable-step-size least mean
square algorithms for adaptive sparse channel estimation,’’ Int. J. Adapt.
Control Signal Process., vol. 29, no. 9, pp. 1189–1206, Sep. 2015.

[16] E. J. Cands, M. B. Wakin, and S. P. Noyd, ‘‘Enhancing sparsity by
reweighted l1-minimization,’’ J. Fourier Anal. Appl., vol. 15, nos. 5–6,
pp. 877–905, 2008.

[17] J. Jin, Y. Gu, and S. Mei, ‘‘A stochastic gradient approach on compressive
sensing signal reconstruction based on adaptive filtering framework,’’
IEEE J. Sel. Topics Signal Process., vol. 4, no. 2, pp. 409–420, Apr. 2010.

[18] G. Su, J. Jin, Y. Gu, and J. Wang, ‘‘Performance analysis of l0 norm
constraint least mean square algorithm,’’ IEEE Trans. Signal Process.,
vol. 60, no. 5, pp. 2223–2235, May 2012.

[19] Y. Li, Y. Wang, and T. Jiang, ‘‘Norm-adaption penalized least mean
square/fourth algorithm for sparse channel estimation,’’ Signal Process.,
vol. 128, pp. 243–251, Nov. 2016.

[20] W. Liu, P. P. Pokharel, and J. C. Principe, ‘‘Correntropy: Properties and
applications in non–Gaussian signal processing,’’ IEEE Trans. Signal Pro-
cess., vol. 55, no. 11, pp. 5286–5298, Nov. 2007.

[21] B. Chen, L. Xing, J. Liang, N. Zheng, and J. C. Principe, ‘‘Steady-
state mean-square error analysis for adaptive filtering under the maxi-
mum correntropy criterion,’’ IEEE Signal Process. Lett., vol. 21, no. 7,
pp. 880–884, Jul. 2014.

[22] S. Seth and J. C. Principe, ‘‘Compressed signal reconstruction using the
correntropy induced metric,’’ in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process., Las Vegas, NV, USA, Mar./Apr. 2008, pp. 3845–3848.

[23] A. Singh and J. C. Principe, ‘‘Using Correntropy as a cost function in linear
adaptive filters,’’ in Proc. Int. Joint Conf. Neural Netw., Atlanta, GA, USA,
Jun. 2009, pp. 2950–2955.

[24] B. Chen, L. Xing, H. Zhao, N. Zheng, and J. C. Príncipe, ‘‘Generalized
correntropy for robust adaptive filtering,’’ IEEE Trans. Signal Process.,
vol. 64, no. 13, pp. 3376–3387, Jul. 2016.

[25] Z. Jin, Y. Li, and Y. Wang, ‘‘An enhanced set–membership PNLMS algo-
rithm with a correntropy induced metric constraint for acoustic channel
estimation,’’ Entropy, vol. 19, no. 6, p. 281, Jun. 2017.

[26] J. Zhao, H. Zhang, G. Wang, and X. Liao, ‘‘Modified memory-improved
proportionate affine projection sign algorithm based on correntropy
induced metric for sparse system identification,’’ Electron. Lett., vol. 54,
no. 10, pp. 630–632, May 2018.

[27] S. Jo and S. Woo Kim, ‘‘Consistent normalized least mean square filtering
with noisy data matrix,’’ IEEE Trans. Signal Process., vol. 53, no. 6,
pp. 2112–2123, Jun. 2005.

[28] S. M. Jung and P. Park, ‘‘Normalised least-mean-square algorithm for
adaptive filtering of impulsive measurement noises and noisy inputs,’’
Electron. Lett., vol. 49, no. 20, pp. 1270–1272, Sep. 2013.

[29] B. Kang, J. Yoo, and P. Park, ‘‘Bias-compensated normalised LMS algo-
rithm with noisy input,’’ Electron. Lett., vol. 49, no. 8, pp. 538–539,
Apr. 2013.

[30] J. Yoo, J. Shin, and P. Park, ‘‘An improved NLMS algorithm in sparse
systems against noisy input signals,’’ IEEE Trans. Circuits Syst. II, Exp.
Briefs, vol. 62, no. 3, pp. 271–275, Mar. 2015.

[31] H. Zhao and Z. Zheng, ‘‘Bias-compensated affine-projection-like algo-
rithms with noisy input,’’ Electron. Lett., vol. 52, no. 9, pp. 712–714,
Apr. 2016.

[32] Z. Zheng, Z. Liu, and L. Lu, ‘‘Bias-compensated robust set-membership
NLMS algorithm against impulsive noises and noisy inputs,’’ Electron.
Lett., vol. 53, no. 16, pp. 1100–1102, Aug. 2017.

[33] Z. Zheng and H. Zhao, ‘‘Robust set–membership affine projection algo-
rithmwith coefficient vector reuse,’’Circuits, Syst. Signal Process., vol. 36,
no. 9, pp. 3843–3853, Sep. 2017.

[34] Z. Zheng, Z. Liu, andH. Zhao, ‘‘Bias–compensated normalized least–mean
fourth algorithm for noisy input,’’ Circuits, Syst. Signal Process., vol. 36,
no. 9, pp. 3864–3873, Sep. 2017.

[35] W. Wang, H. Zhao, and B. Chen, ‘‘Bias compensated zero attracting
normalized least mean square adaptive filter and its performance analysis,’’
Signal Process., vol. 143, pp. 94–105, Feb. 2018.

[36] W. Ma, D. Zheng, X. Tong, Z. Zhang, and B. Chen, ‘‘Proportionate NLMS
with unbiasedness criterion for sparse system identification in the presence
of input and output noises,’’ IEEE Trans. Circuits Syst. II, Exp. Briefs,
vol. 65, no. 11, pp. 1808–1812, Nov. 2018.

[37] W. Ma, D. Zheng, Z. Zhang, J. Duan, and B. Chen, ‘‘Robust proportionate
adaptive filter based on maximum correntropy criterion for sparse system
identification in impulsive noise environments,’’ Signal Image Video Pro-
cess., vol. 12, no. 1, pp. 117–124, Jan. 2018.

[38] W. Ma, D. Zheng, Y. Li, Z. Zhang, and B. Chen, ‘‘Bias-compensated nor-
malized maximum correntropy criterion algorithm for system identifica-
tion with noisy input,’’ Signal Process., vol. 152, pp. 160–164, Nov. 2018.

[39] W. Ma, D. Zheng, Z. Zhang, J. Duan, J. Qiu, and X. Hu, ‘‘Sparse–
aware bias–compensated adaptive filtering algorithms using the maximum
correntropy criterion for sparse system identification with noisy input,’’
Entropy, vol. 20, no. 6, p. 407, May 2018.

[40] G. H. Golub and C. F. van Loan, ‘‘An analysis of the total least squares
problem,’’ SIAM J. Numer. Anal., vol. 17, no. 6, pp. 883–893, 1980.

[41] Y. Li, Y. Wang, and T. Jiang, ‘‘Sparse-aware set-membership NLMS
algorithms and their application for sparse channel estimation and echo
cancelation,’’ AEU-Int. J. Electron. Commun., vol. 70, no. 7, pp. 895–902,
Jul. 2016.

[42] H. L. Van Trees, Detection, Estimation, and Modulation Theory: Part IV:
Optimum Array Processing. New York, NY, USA: Wiley, 2002.

[43] E. Eweda, ‘‘Global stabilization of the least mean fourth algorithm,’’ IEEE
Trans. Signal Process., vol. 60, no. 3, pp. 1473–1477, Mar. 2012.

[44] E. Eweda and N. J. Bershad, ‘‘Stochastic analysis of a stable normal-
ized least mean fourth algorithm for adaptive noise canceling with a
white Gaussian reference,’’ IEEE Trans. Signal Process., vol. 60, no. 12,
pp. 6235–6244, Dec. 2012.

[45] K. Lee andW.Gan, ‘‘Improving convergence of theNLMS algorithm using
constrained subband updates,’’ IEEE Signal Process. Lett., vol. 11, no. 9,
pp. 736–739, Sep. 2004.

[46] K. Lee and W. Gan, ‘‘Inherent decorrelating and least perturbation prop-
erties of the normalized subband adaptive filter,’’ IEEE Trans. Signal
Process., vol. 54, no. 11, pp. 4475–4480, Nov. 2006.

[47] M. O. Sayin, N. D. Vanli, and S. S. Kozat, ‘‘A novel family of adaptive
filtering algorithms based on the logarithmic cost,’’ IEEE Trans. Signal
Process., vol. 62, no. 17, pp. 4411–4424, Sep. 2014.

[48] G. Gui, L. Xu, and S.-Y. Matsushita, ‘‘Improved adaptive sparse channel
estimation using mixed square/fourth error criterion,’’ J. Franklin Inst.,
vol. 352, no. 10, pp. 4579–4594, Oct. 2015.

[49] Y. Li, Y. Wang, and T. Jiang, ‘‘Sparse least mean mixed-norm adaptive
filtering algorithms for sparse channel estimation applications,’’ Int. J.
Commun. Syst., vol. 30, no. 8, p. e3181, May 2017.

[50] M. Z. A. Bhotto and A. Antoniou, ‘‘Affine-projection-like adaptive–
filtering algorithms using gradient–based step size,’’ IEEE Trans. Circuits
Syst. I, Fundam. Theory Appl., vol. 61, no. 7, pp. 2048–2056, Jul. 2014.

[51] Y. Li, Z. Jiang, O. M. O. Osman, X. Han, and J. Yin, ‘‘Mixed norm
constrained sparse apa algorithm for satellite and network echo channel
estimation,’’ IEEE Access, vol. 6, pp. 65901–65908, 2018.

[52] Y. Li, Z. Jiang, W. Shi, X. Han, and B. Chen, ‘‘Blocked maximum
correntropy criterion algorithm for cluster–sparse system identifications,’’
IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 66, no. 11, pp. 1915–1919,
Nov. 2019.

[53] W. Shi, Y. Li, and Y. Wang, ‘‘Noise-free maximum correntropy criterion
algorithm in non–Gaussian environment,’’ IEEE Trans. Circuits Syst. II,
Exp. Briefs, to be published, doi: 10.1109/tcsii.2019.2914511.

[54] L. Dang, B. Chen, S. Wang, Y. Gu, and J. C. Principe, ‘‘Kernel Kalman
filteringwith conditional embedding andmaximum correntropy criterion,’’
IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 66, no. 11,
pp. 4265–4277, Nov. 2019.

[55] W. Yin, S. Cheng, Y. Wei, J. Shuai, and Y. Wang, ‘‘A bias-compensated
fractional order normalized least mean square algorithm with noisy
inputs,’’ Numer. Algorithms, vol. 82, no. 1, pp. 201–222, Sep. 2019.

[56] W. Yin, Y. Wei, T. Liu, and Y. Wang, ‘‘A novel orthogonalized fractional
order filtered-x normalized least mean squares algorithm for feedforward
vibration rejection,’’ Mech. Syst. Signal Process., vol. 119, pp. 138–154,
Mar. 2019.

[57] S. Cheng, Y. Wei, Y. Chen, Y. Li, and Y. Wang, ‘‘An innovative fractional
order LMS based on variable initial value and gradient order,’’ Signal
Process., vol. 133, pp. 260–269, Apr. 2017.

VOLUME 8, 2020 4961

http://dx.doi.org/10.1109/tcsii.2019.2914511


Z. Jin et al.: Bias-Compensated PNLMS Algorithm With Sparse Penalty Constraint

[58] S. Cheng, Y. Wei, Y. Chen, S. Liang, and Y. Wang, ‘‘A universal modified
LMS algorithm with iteration order hybrid switching,’’ ISA Trans., vol. 67,
pp. 67–75, Mar. 2017.

[59] S. M. Jung and P. Park, ‘‘Stabilization of a bias–compensated normalized
least-mean-square algorithm for noisy inputs,’’ IEEE Trans. Signal Pro-
cess., vol. 65, no. 11, pp. 2949–2961, Jun. 2017.

[60] Y. Zhang, J. Li, Y. V. Zakharov, J. Li, Y. Li, C. Lin, and X. Li, ‘‘Deep
learning based single carrier communications over time–varying underwa-
ter acoustic channel,’’ IEEE Access, vol. 7, pp. 38420–38430, 2019.

ZHAN JIN received the B.S. degree in elec-
trical and information engineering from
Heilongjiang University, Harbin, China, in 2005,
and the M.S. degree in information and com-
munication engineering from Harbin Engineering
University, Harbin, in 2009, where she is currently
pursuing the Ph.D. degree in information and
communication engineering.

She has been working with the College of Com-
munication and Electronic Engineering, Qiqihar

University, Qiqihar, China, since 2009. She is currently an Associate Pro-
fessor. Her research interests include signal processing and sparse adaptive
filtering.

LONGXIANG GUO received the B.E., M.S., and
Ph.D. degrees from the College of Underwater
Acoustic Engineering (UAE), Harbin Engineer-
ing University (HEU), in 1998, 2001, and 2006,
respectively.

From 2013 to 2015, he was a Visiting Scholar
with the Laboratories of Image, Signal Process-
ing and Acoustics, Université Libre de Bruxelles
(ULB), Brussels, Belgium. He is currently an
Associate Professor with the College of Underwa-

ter Acoustic Engineering, Harbin Engineering University. His main inter-
ests cover acoustic signal processing, image processing, and acoustical
oceanography. He is currently involved in research related to acoustic array
processing and sensor information fusion. His awards and honors include
the Second-Class Reward of Heilongjiang Science and Technology, and
the Second-Class Reward of the China State Shipbuilding Company, Ltd.,
(CSSC) Science and Technology Progress Award.

YINGSONG LI (Senior Member, IEEE) received
the B.S. degree in electrical and information engi-
neering, in 2006, the M.S. degree in electromag-
netic field and microwave technology fromHarbin
Engineering University, China, in 2011, and the
joint Ph.D. degree from the Kochi University of
Technology (KUT), Japan, and Harbin Engineer-
ing University, in 2014.

He was a Visiting Scholar with the University
of California, Davis, from March 2016 to March

2017. He has been a Full Professor with Harbin EngineeringUniversity, since
July 2014. He has also been a Visiting Professor with Far Eastern Federal
University (FEFU) and KUT, since 2018. His recent research interests are
mainly in remote sensing, underwater communications, signal processing,
radar, SAR imaging, and compressed sensing and antennas. He is also a
senior member of the Chinese Institute of Electronics (CIE). He also serves
as a Reviewer for more than 20 journals. He is also an Associate Editor
of IEEE ACCESS and the AEÜ-International Journal of Electronics and
Communications.

4962 VOLUME 8, 2020


	INTRODUCTION
	REVIEW OF THE PNLMS ALGORITHM WITH SPARSE PENALTY CONSTRAINT
	THE PNLMS ALGORITHM WITH ZERO ATTRACTOR
	REVIEW OF THE CIM

	THE BIAS-COMPENSATED ZERO ATTRACTION ALGORITHMS WITH INPUT NOISE
	SIMULATION AND RESULT ANALYSIS
	CONCLUSION
	REFERENCES
	Biographies
	ZHAN JIN
	LONGXIANG GUO
	YINGSONG LI


