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ABSTRACT With the rapid development of wireless communications technology, long term evolution (LTE)
technology in unlicensed bands (LTE-U) can effectively solve the lack of spectrum resources. However,
the competition in LTE-U and wireless fidelity (WiFi) will seriously interfere their communication quality,
which making the friendly coexistence of LTE-U and WiFi becomes a hot research area. In this paper,
we propose a classification algorithm based on deep learning to realize the identification of LTE-U and
WiFi signal. Experiment results use mixed data at different signal to noise ratios (SNRs) and compare the
classification results within two data forms. Experimental results show that our proposed deep learning-aided
method can effectively distinguish LTE-U and WiFi signals and further achieve their friendly coexistence.

INDEX TERMS Automatic LTE-U, WiFi, in-phase and quadrature, deep learning, unlicensed band.

I. INTRODUCTION
In recent years, with the development of the internet of things
technology and the advent of the era of big data [1]–[4],
smart wireless devices have shown an explosive growth trend.
However, wireless spectrum resources are very limited, and
they are gradually unable to meet people’s growing traffic
demands [5], [6]. Limited spectrum resources and exponen-
tially increasing user service requirements are a common
problem faced by all mobile operators at present [7]. In the
current situation where the increase of licensed spectrum is
limited, in order to solve this problem, researchers have set
their sights on fully utilized unlicensed spectrum resources
[8]–[10]. Unlicensed-band long term evolution (LTE) tech-
nology is regarded as one of the key technologies to solve
the scarcity problem of spectrum in next-generation wireless
communications [11].

However, wireless fidelity (WiFi) is an important wire-
less technique in the unlicensed frequency band and it is
widely used in daily life [12]. It has a wide coverage and
a large number of users. After the introduction of LTE-
Unlicensed (LTE-U) in unlicensed bands, LTE-U shares
channel resources with WiFi systems in Fig. 1. WiFi uses
the CSMA/CA access mechanism of the collision avoidance
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FIGURE 1. The LTE and WiFi coexistence system in unlicensed band.

channel access method [13]. Its back-off mechanism will
cause the existing LTE-U signal to seriously deteriorate the
performance of the WiFi network, resulting in a decrease in
WiFi throughput [14]. At the same time, the quality of service
(QoS) guarantee mechanism in the LTE-U system allows it
to carry out normal business [15]. Eventually, the LTE-U
system can preferentially preempt channels, which causes it
to occupy WiFi channel resources in unlicensed bands [16],
and brings non-negligible interference to the WiFi system.
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FIGURE 2. Structure of proposed LTE-U/WiFi coexistence system.

Therefore, the biggest challenge faced by LTE technology
in unlicensed bands is the issue of friendly coexistence with
WiFi systems [17].

Researchers have explored various methods to solve the
problem of friendly coexistence between LTE and WiFi.
License assisted access (LAA) technology is an unlicensed
band LTE technology with LBT function, that is, as long as
the channel is free. Hence, it can access transmission [18].
Cano et al. proposed a novel proportional fair distribution
scheme to ensure the fair coexistence of LTE and WiFi [19].
Based on the LAA technology, Naim et al. developed a novel
analytical model that usesMarkov chains to accurately model
the LAA listen-before-talk solution [20]. In order to enhance
the fairness of LTE-U, an adaptive scheme called mLTE-U
has been proposed [21].

With the rapid development of deep learning [22],
it has gradually been applied to wireless communications
[23]–[31], the internet of things [2], [17], [32], [33] as well
as direction of arrive estimation [34]–[39]. In order to adapt
to changes in the wireless environment [40], the advantages
of Q-learning have been fully reflected [41], [42]. mLTE-U
is enhanced by Q-learning technology, which is used to inde-
pendently select the appropriate combination of TXOP and
mute periods, so that it can provide reasonable coexistence
between co-located mLTE-U and WiFi networks [43].

In this paper, we propose a deep learning based method
to achieve friendly coexistence of LTE and WiFi. Due to
the outstanding performance of convolutional neural net-
works (CNNs) in feature extraction. Our proposed method
can accurately classify the signals coexisting with LTE and
WiFi under in-phase and quadrature (IQ) samples, thereby
achieving friendly coexistence of LTE-U/WiFi signals.

The structure of this article is as follows. We introduce the
system model in Section II. Section III describes the analysis
of data and algorithms. The simulation results in Section IV
show the outstanding performance of our proposed method.
Finally, we summarize our work in Section V.

II. SYSTEM MODEL
A. THE LTE-U/WiFi COEXISTENCE SYSTEM
In this paper, we identify the LTE and WiFi signals in unli-
censed band by using deep learning algorithms, in order
to deal with the vicious contention among the LTE-U and
WiFi system in wireless channel. Fig. 2 shows the model
of the LTE-U/WiFi friendly coexistence system proposed in
this article. After receiving the unknown signals by using
professional spectrum device, we firstly pre-process them
on demand, such as IQ sampling and introducing Gaussian

FIGURE 3. Structure of classical convolutional neural network.

white noise. Subsequently, different DL neural networks are
connected to the processed signals for training. Thus, we ana-
lyze the classification performance of the coexistence scheme
based on the test and verification results.

B. CLASSICAL CONVOLUTIONAL NEURAL NETWORK
In the past few years, deep learning algorithms have been
widely used by experts and scholars in many cutting-edge
fields such as image processing and language processing.
What’s more, deep learning algorithms have outperformed
human recognition in some areas of recognition and per-
formed very well. Therefore, many research teams have
begun to adopt deep neural networks, especially CNN,
in wireless communications. CNN is famous for its powerful
image recognition capabilities. The main input of CNN is the
image. After training, CNN could classify these images, such
as cars, houses, etc. Additionally, the image is a matrix of
pixels in computer language. Each pixel matrix contains three
dimensions, namely image width, image height, and RGB
value.

Fig. 3 shows the structure of a typical CNN. It is obvious
that CNN also composed of one input layer, one hidden layer
and one output layer, just like a general deep neural network.
It can be seen from the figure that after taking the image as an
input, convolutional layer, pooling layer and fully connected
layer in the hidden layer can extract abstract features from
multiple aspects in order to achieve accurate recognition. For
instance, the convolutional layer is the first to extract the input
image’s features, which is convolved with the pixel matrix
by using a plurality of pre-set two-dimensional convolution
kernels. After each convolutional layer, a pooling layer needs
to be connected to compress parameters and simplify network
complexity. In general, the convolutional layer and the pool-
ing layer appear in pairs. The more they appear, the more
features are extracted by CNN, and the higher the recognition
accuracy. After a series of convolutions and pooling, there is a
fully connected (FC) layer which is included in all traditional
neural network architecture. Each layer of the FC layer is
one-dimensional, and each layer of neurons is associated
with all activations of the previous layer. Finally, our output
layer contains a Softmax classifier which could calculate the
probability of an image belonging to each category in order
to ultimately implement image recognition. Inspired by this,
we can replace the imagewith the data of LTE-U/WiFi signals
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in the form of a three-dimensional matrix as the input of the
CNN, which may accurately identify the signal.

III. DATA AND ALGORITHM ANALYSIS
A. RECEIVED DATA PRE-PROCESSING
In this section, we pre-process the received LTE-U and WiFi
signal data. The software used for pre-processing is MAT-
LAB R2018a, which is an efficient data processing software
and is always used in signal simulation for wireless commu-
nication experiments. Meanwhile, our signal data is collected
by an organization called EWINE PROJECT in TCD who
collects a variety of signal data from laboratory environments.
For the accuracy of the experiment, we used 80,000 signal
samples which LTE and WIFI each accounted for a half.
These signal data are subject to IQ sampling, labeled with its
corresponding wireless communication technology. Impor-
tantly, this system is trained on a mixed dataset, consisting
of nine datasets with SNRs = {−20,−15, · · · , 15, 20} dB.
Finally, 75% of the signal samples are used for training, and
the remaining 25% are selected for model verification.

1) RANDOM PHASE OFFSET
In fact, the data collected by the laboratory is too ideal and
not similar with the actual wireless signals cause the training
models are not extensive. Therefore, we introduce a random
phase offset to the signal data in order to simulate the phase
offset and energy loss produced in the actual signal during the
wireless channel. To explain how to achieve random phase
offset, we define x(n) as the received LTE-U or WiFi signal,
and it obeys

N−1∑
n=0

|x (n)|2 = 1 (1)

Please note that y(n) as the processed signal that is the
received discrete-time complex sampled byNyquist criterion,
and it is defined as

y (n) = Aej1θx (n)+ w (n) , n = 0, 1, . . . ,N − 1 (2)

where A represents the scale factor, 1θ represents phase off-
set which obeys a random distribution of (0, π). Hence, w(n)
is the additive noise and N means the number of sampling
points. After adding the random phase offset, we can verify
whether the deep learning model which performs well under
idealized conditions can also continue to be great in real
situations.

2) IN-PHASE & QUADRATURE OR AMPLITUDE & PHASE
After adding the random phase offset to the received signal,
we sample the signal at the rate of 15 Mbps, and the IQ
sampling data of the signal is more favorable for the neural
networks to extract different features. Since the real and imag-
inary parts of the signal represent the in-phase and quadrature
values of the signal, we combine the real and imaginary parts

into a 2× N matrix RIQ, denoted as:

RIQ=
[
real(y(0)) real(y(1)) · · · real(y(N − 1))
imag(y(0)) imag(y(1)) · · · imag(y(N − 1))

]
(3)

which is a real matrix with dimensionality 2 × N and it is
the input of neural network. In other words, if the neural net-
works can extract features from IQ data, they can also extract
features of Amplitude & phase (AP) data. According to the
mathematical derivation, we define the amplitude formula of
the signal mamp(y(n)) as

mamp(y(n)) =
√
real2(y(n))+ imag2(y(n)) (4)

we also define the phase formula of the signal mpha(y(n)) as

mpha(y(n)) = arctan(
imag(y(n))
real(y(n))

) (5)

where N represents the number of sampling points. Thus, we
combine the real and imaginary parts into a 2×N matrixMAP,
which denotes as:

MAP=

[
mamp(y(0)) mamp(y(1)) · · · mamp(y(N−1))
mpha(y(0)) mpha(y(1)) · · · mpha(y(N−1))

]
(6)

which is a real matrix with dimensionality 2 × N and it is
also the input of neural network. Furthermore, with the IQ and
amplitude/phase (AP)matrices of the received signals, we can
use them as the input to several deep learning models so that
we can compare the ability of extracting abstract features and
recognition accuracy of them.

B. PROPOSED CNN MODEL PARAMETER
In this section, a CNN model proposed in our LTE-U/WiFi
coexistence system will be explained in detail. The training,
verification and testing of CNN models in this experiment
were carried out on Keras 2.2.2, who is based on Python3.7.1
with tensorflow 1.1.0 software library. In addition, Keras is
an advanced object-oriented software library that allows the
Central Processing Unit (CPU) and Graphics Processing Unit
(GPU) to fully collaborate with each other. In our setup, all
model training is done on the computer with two NVIDIA
GTX 2080Ti GPUs and 8 Intel Xeon E3 CPUs.

The detailed structure and specific parameters of the CNN
model used in this paper are shown in the Fig. 1. The input
to the neural network is the LTE-U and WiFi signal data
through pre-processing, whose size is 2×1024 IQ or AP data.
The number of sample size is 40,000. It can be clearly seen
from the figure that the subject of CNN consists of two parts:
feature extraction part and classification part. Details are as
follows:

Obviously, the convolutional layer can extract the abstract
features of the data from multiple aspects, so that the fea-
ture extraction part consists of two convolutional layers with
different parameters. The first convolutional layer consists
of 128 convolution kernels, each of which has a dimension
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FIGURE 4. Structure of CNN model proposed in this paper.

of 2×4. Those kernels are convolved with the wireless chan-
nel data of the input layer, respectively. Further, the second
convolutional layer is composed of 64 convolution kernels
with dimension 1 × 4, who are convolved with the output
of the first convolutional layer, aiming to find the abstract
features that the first convolutional layer has not extracted.
After each convolutional layer, we add the BN layer and the
activation function layer. The BN layer normalizes the data
in order to prevent the data extraction from the previous layer
changing the laws of the original data. Now the activation
function generally is expressed as PReLU, the upgrade ver-
sion of ReLU, who can effectively accelerate convergence,
reduce over-fitting and improve the efficiency of model train-
ing. Importantly, one pooling layer often appear with one
convolution layer, performing average pooling and reducing
parameters.

The classification part is also attractive, consisting of three
FC neural networks. The neurons of each layer of the FC
layers are closely connected to the neurons of previous layer.
The first FC layer contains 128 neurons and the second
FC layer contains 64 neurons. Similarly, we also added the
batch normalization (BN) layer and the PReLU activation
function layer after this two FC neural networks. However,
it is essential for a FC layer to contain the dropout layer who
can reduce the network complexity and has a value of 0.5.
The third fully connected layer, also as the output layer of the
CNN structure, uses the Softmax function, who outputs the
predicted probability of the input signal category.

C. ACCURACY EVALUATION
In order to evaluate the LTE-U/WiFi coexistence systemmore
objectively, we will not only analyze the classification accu-
racy of various algorithms, but also use some additive per-
formance evaluation as indicators of various algorithms. The
concerned indicators consist of precision and recall, whose
detailed definition will be explained below, respectively.

To understand the concept of precision and recall, we must
understand the meaning of true positive (TP), true negative
(TN), false positive (FP) and false negative (FN) firstly.

In general, both TP and TN are predictive pairs, TP is a
positive class, and TN is a negative class. Hence, we consider
LTE-U as the positive class andWiFi as the negative class and
the detailed description of these indicators is defined as:

- TP indicates that a LTE-U signal sample is predicted as
an LTE-U signal sample by the classification algorithm,
it is verified and predicted correctly.

- TN indicates that a WiFi signal sample is predicted as a
WiFi signal sample by the classification algorithm, it is
verified and predicted correctly.

- FP indicates that a WiFi signal sample is predicted as
an LTE-U signal sample by the classification algorithm,
and the prediction result is incorrect.

- FN indicates that a LTE-U signal sample is predicted as
aWiFi signal sample by the classification algorithm, and
the prediction result is incorrect.

Furthermore, precision, the number of samples that are
correctly predicted to be positive class divided by all the
samples that are predicted to be positive class, is expressed
as:

Pprecison =
TP

TP+ FP
(7)

and recall, the number of samples that are correctly predicted
to be positive class divided by the number of samples that are
positive class, is expressed as:

Precall =
TP

TP+ FN
(8)

Since the number of samples for each signal in this paper is
the same, the recall is equal to the prediction accuracy who is
expressed as:

Paccurary =
TP+ TN

TP+ TN + FP+ FN
(9)

IV. SIMULATION RESULTS
A. COEXISTENCE PERFORMANCE ANALYSIS FOR
LTE-U/WiFi SYSTEM
In this section, we send two kinds of LTE-U/WiFi signal
data to different deep neural network algorithms for training.
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FIGURE 5. Correct classification probability for IQ & AP data with
different DL algorithm.

The first data form is In-phase & quadrature, and the other is
Amplitude & phase. What’s more, those three DL training
models which we have choose are: CNN, fully connected
deep neural network (DNN) and recurrent neural network
(RNN). The detailed algorithm analysis and evaluation are
shown below.

1) CORRECT CLASSIFICATION PROBABILITY
Firstly, we analyze the classification accuracy of the LTE-
U/WiFi system proposed in this article. The signal-to-noise
ratio (SNR) range of the received signal is from −20dB to
20dB, as shown in Fig. 5. This figure illustrates the classifi-
cation performance of two different data presentation forms
(IQ and AP) training under three deep learning algorithms.
We can clearly observe that the correct classification proba-
bility of CNN model is excellent, which is higher than 90%
when SNR is better than 0dB. Additionally, the identification
probability can reach almost 99% at high SNRs. In contrast,
the other two deep learning algorithms’ classification accu-
racy is always around 50% no matter what SNR is, which
means that the signals cannot be distinguished. Furthermore,
we can find that the identification accuracy of the IQ data
is 96%, while the AP data classification accuracy of 67% in
CNN training model for−5dB of SNR.More precisely, when
the SNR is higher than 5dB, the classification performance of
the two input data forms is the same. This indicates that the
input data in the form of IQ with CNN training model can
effectively distinguish the LTE-U and WiFi signal.

2) CONFUSION MATRIX FOR IQ DATA AND AP DATA
Next, in order to compare the impact of different input data
forms on the CNN training model, Fig. 7 shows the confusion
matrix of CNN models with two input data forms at different
SNRs. More specifically, Fig. 6a and Fig. 6b represent the
confusion matrix of IQ data and AP data when SNR is
−10dB. We can observe that taking the AP data form as the

FIGURE 6. Confusion matrices for both IQ & AP data in CNN model for
different SNRs: (a) IQ SNR= −10dB; (b) AP SNR= −10dB; (c) IQ SNR=0dB;
(d) AP SNR=0dB; (e) IQ SNR=10dB; (f) AP SNR=10dB.

FIGURE 7. Correct classification probability of the CNN model with or
without the BN layer.

input the system makes the entire system recognize the WiFi
signal as the LTE-U signal, which is not ideal. Moreover,
Figs. 6(c-f) represent the confusion matrix of IQ and AP data
when SNR is 0dB and 10db, respectively. Obviously, with
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FIGURE 8. Correct classification probability for IQ & AP data considering
random phase offset.

SNR increasing, the label prediction results become good and
close to 100%. Overall, the label prediction results in the form
of IQ data are significantly better than in the form of AP data,
and the use of the IQ data form as the coexistence system
input makes the entire model converge faster.

3) BN LAYER’S PERFECT PERFORMANCE
Based on the above results, we found that using IQ data as the
input to the coexistence system and using CNN as the training
model to the system can achieve better discrimination of LTE-
U and WiFi signals. Then, we need to adjust the model of
CNN to achieve the best classification results. Fig. 7 shows
the classification accuracy of the CNNmodel with or without
the BN layer.When SNR is greater than 0dB, the BN layer has
little effect on the classification result. However, the classifi-
cation accuracy is significantly reduced and the convergence
becomes slower, without feature standardization of BN layer,
when SNR is less than 0dB. Therefore, the BN layer are added
to the CNN models of the entire systems proposed in this
paper.

B. EXPERIMENT RESULTS FOR LTE-U/WiFi SIGNAL WITH
RANDOM PHASE OFFSET
In this part, the random phase offset is added to the received
LTE-U and WiFi signal data, which aims to simulate a more
realistic wireless channel environment. As shown in Fig. 8,
the input signal data form is still IQ and AP and two deep
learning algorithms, CNN and DNN, are used. Fig. 8 shows
that even if there is an unknown phase offset in the signal data,
CNN can still accurately distinguish the LTE signal under the
condition of high SNRs. Not surprisingly, DNN still performs
bad. Further, using IQ data as the system input is significantly
better than using AP data.

Similarly, Fig. 9 demonstrates the confusion matrix of
CNN model who introduces phase offset. When the SNR
is −10dB, it is noticed that taking the AP data form as an

FIGURE 9. Confusion matrices for both IQ & AP data considering phase
offset in CNN model for different SNRs: (a) IQ SNR= −10dB; (b) AP
SNR= −10dB; (c) IQ SNR= 0dB; (d) AP SNR=0dB; (e) IQ SNR= 10dB; (f)
AP SNR= 10dB.

input make the overall system recognize the WiFi signal as
an LTE signal. What’s worse, when the SNR is 10dB, the
performance of CNN who uses AP data as input to recognize
LTE signals is very poor. Therefore, even if the random
phase offset is assigned, the classification effect of CNN who
uses IQ data form as input is still very good and has good
robustness.

C. ADDITIVE PERFORMANCE EVALUATION: PRECISION
AND RECALL
Last but not least, we evaluate other indicators: accuracy and
recall, which can be seen in Table 1 and Table 2, respectively.
According to the definition, it can be considered that the recall
and accuracy are numerically the same since the number of
training samples is consistent. Focusing on the precision, the
effect of phase offset on the CNN model is reduced by 20%
on average when SNR = 0 dB. Another point is that when
the AP data is used as input and the phase offset is taken into
account, the precision reaches 1, but the recall is only 66%.
The phenomenon shows that the recognition on WiFi signal
is very good, but it can hardly identify LTE signal. In general,
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TABLE 1. Precison of CNN model.

TABLE 2. Recall of CNN model.

the impact of the input data form on our classification system
is less than that of the random phase shift.

V. CONCLUSION
In this paper, we have proposed a classification algorithm
based on CNN model in order to realize the identifica-
tion of LTE-U and WiFi signal. In the data preprocessing
period, we added random phase offset and used different data
forms as the input of the model to compared their differ-
ence. In addition, the CNN training model has trained on
the mixed data, consisting of nine datasets with SNRs =
{−20,−15, ..., 15, 20} dB. This signal identification algo-
rithm can effectively distinguish LTE-U and WiFi signals
and make them coexistent friendly. Finally, the experimental
comparison results show that using IQ data as the input of
the CNN classification model can converge faster and have
better robustness. In future work, we will collect more com-
plex actual signals and adjust the model parameters to make
system more universal.
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