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ABSTRACT The Golgi apparatus is a significant membrane-bound organelle of eukaryotic cells that is
made up of a series of flattened, stacked pouches (called cisternae). The Golgi apparatus packages proteins
into membrane-bound vesicles, and so it is responsible for transporting, modifying, and packaging proteins
and lipids into vesicles for delivery to targeted destinations. It belongs to the central organelle mediating
system of eukaryotic cells. Functional defects of the Golgi apparatus are associated with many kinds of
neurodegenerative diseases, such as Parkinson’s and Alzheimer’s diseases. Golgi-resident proteins play
an important role in the Golgi apparatus’ processing, which includes storing, packaging, and dispatching
proteins. Identifying sub-Golgi protein types can help researchers to develop more effective therapies
and drugs for diseases that result from disorders of Golgi-resident proteins. In this paper, we propose a
computational model to discriminate cis-Golgi proteins from trans-Golgi proteins using a machine learning
method. First, we use PseKNC, K-separated Bigrams, and PsePSSM as feature extraction techniques, and
thenwe select the optimal features among those identified by PseKNCwith the AdaBoost classifier. To create
a balanced dataset out of the imbalanced set of Golgi proteins, we used the Random-SMOTE oversampling
approach. Finally, we employed the SVM algorithm to distinguish cis-Golgi proteins from trans-Golgi
proteins. The proposed method achieves promising performance, with accuracy of 96.5%, 96.5%, and
96.9% in the experiments with jackknife cross-validation, independent testing, and 10-fold cross-validation,
respectively, which exceeds the performance of previous related work.

INDEX TERMS Golgi apparatus, feature extraction, hybrid sequence features, protein classification, SVM.

I. INTRODUCTION
The Golgi apparatus, also known as the Golgi com-
plex or Golgi body, is the central organelle that mediates
protein and lipid transport within eukaryotic cells [1]. It is
located very near the rough endoplasmic reticulum (ER) and
hence very near the nucleus. The number of Golgi apparatus
bodies within a single eukaryotic cell varies. Typical animal
cells may have fewer and larger Golgi apparatus units, while
plant cells may contain as many as hundreds of smaller ones.
The Golgi apparatus receives proteins and lipids from the
rough ER and then modifies, sorts, concentrates, and packs
them into sealed droplets called vesicles before sending them
out to the cytoplasm. The Golgi apparatus is composed of a
series of compartments called cisternae, which are fused and
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flattened membrane-enclosed disks. A single Golgi apparatus
can be roughly divided into two parts: the cis-Golgi network
(CGN) and the trans-Golgi network (TGN). Proteins enter
the Golgi on the side facing the ER (cis side) and exit on
the opposite side of the stack, facing the plasma membrane
of the cell (trans side). Cargo proteins processed by the
Golgi apparatus must make their way through the network of
intervening cisternae, and along the way, they become mod-
ified and packaged for transport to various locations within
the cell. Both the CGN and TGN have variable structures,
including both cisterna-like and vesiculated regions. Each
cisterna or region contains different Golgi-resident protein
modification enzymes to help the above process, namely cis-
Golgi proteins and trans-Golgi proteins. These Golgi-resident
proteins play important roles in the Golgi apparatus’ process-
ing, which includes storing, packaging, and dispatching cargo
proteins. Existing studies have shown that the biological
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function of the Golgi apparatus is closely related to many dis-
eases, such as diabetes [2], cancer [3], Parkinson’s disease [4],
and Alzheimer’s disease [5]. Accurately identifying the types
of sub-Golgi proteins could help researchers to understand
the contribution of Golgi dysfunction to diseases and develop
more effective therapies and drugs for these diseases.

Unfortunately, identifying Golgi-resident protein types
by traditional experiments is very costly and time-
consuming [6]. It is relatively sensitive to the stability of
the experimental environment, equipment, and procedure,
which results in poor replicability. With the rapid develop-
ment of bioinformatics and machine learning techniques,
emerging algorithms and models have been devised for
protein sequence classification problems. Machine learning-
based computational models have been used for many sub-
cellular and sub-subcellular localization problems involving
proteins [7]–[13]. Over the past few years, several mod-
els for predicting sub-Golgi protein types have been con-
structed [14]. Ding proposed a method that combines a
special mode of pseudo amino acid composition with the
Modified Mahalanobis discriminant to identify protein types
and obtained an accuracy of 74.7% using jackknife cross-
validation [15], [16]. Later, Van Dijk et al. built a model to
predict the location of type-ii membrane proteins by using
amino acid grouping, string-based triads, and 3D structure-
based triads as feature representations in an SVM classi-
fier [17]. Ding et al. continued to improve their previous
work by using an ANOVA to filter 2-gap dipeptide features
with an accuracy of 85.4% in jackknife cross-validation,
and an online server was also deployed for researchers [18].
Jiao et al. proposed a novel protein sequence representation
method, namely position specific physico-chemical prop-
erties (PSPCP), which integrates Position Specific Scoring
Matrix (PSSM) information with artificially created physic-
ochemical property values. They used ANOVA for feature
selection and SVM with an RBF kernel for prediction and
obtained an accuracy of 86.9% [19]. Further, Jiao used
minimum redundancy maximum relevance (mRMR) as the
feature selection algorithm with the same feature extrac-
tion technique and improved the accuracy to 91% [20].
Later, Yang et al. collected an updated dataset containing
304 sub-Golgi proteins from UniProt. They used this newly
constructed dataset as a training set and continued to use
the 64 sub-Golgi proteins as an independent test set. They
extracted CSP-based features and g-gap dipeptide composi-
tion to capture protein sequence characteristics. To balance
the datasets, the SMOTE algorithm was adopted and ran-
dom forest-recursive feature elimination was employed to
search for optimal features. Their model achieved accuracy
of 88.5%, 93.8%, and 90.1% with jackknife cross-validation,
independent testing, and 10-fold cross-validation, respec-
tively [21]. Ahmad et al. used split Amino acid composi-
tions and a bigram positional-specific scoring matrix as the
feature extraction method and K-Nearest Neighbor (KNN)
as the learner to exceed previous methods with an accu-
racy of 94.9%, 94.8%, 94.9% in jackknife cross-validation,

independent testing, and 10-fold cross-validation, respec-
tively [22]. Rahman et al. adopted both position-specific
feature extraction such as n-grams and n-gapped dipeptides
and position-independent feature extraction. An RF filter
and an SVM wrapper were applied to select the optimal
feature subsets. This is the state-of-art method has so far
achieved accuracy of 95.4%, 95.5%, and 95.3% for 10-fold
cross-validation, jackknife testing, and independent testing,
respectively [23].

However, we think there is still room to improve.
To develop a useful statistical predictor for a protein
classification problem, people often obey Chou’s 5-step
rule [24]–[31]: (1) Collect protein sequences to construct a
benchmark dataset. (2) Extract features from natural protein
sequences that can reveal the intrinsic relationships between
peptide sequences and targets. (3) Develop a powerful pre-
dictor to finish the prediction tasks. (4) Evaluate the predictor
using cross-validation tests. (5) Establish a user-friendly web
server for the predictor.

The proposed model’s construction workflow is shown
in Figure 1. We use three feature extraction methods:
PseKNC, PsePSSM, and k-separated bigrams. The AdaBoost
classifier was employed to select features from PseKNC,
which is a high-dimensional vector of size 8,420. We con-
catenated the three feature descriptors and then used
Random-SMOTE to address dataset imbalance. Finally,
we used the SVM algorithm to distinguish cis-Golgi from
trans-Golgi proteins.

II. MATERIALS AND METHODS
A. DATASETS
We used the training and test benchmark datasets from
Yang et al. [21]. The training set contains 304 protein
sequences, among which 217 are trans-Golgi and 87 are cis-
Golgi proteins, while the test set (collected by Ding) con-
tains 13 cis-Golgi proteins and 51 trans-Golgi proteins (total:
64 sequences) [18].

None of the protein sequences in the training set have more
than 40% pairwise identity with any other protein sequence in
the training dataset, and none of the protein sequences in the
test dataset have more than 25% pairwise identity with any
other protein sequence in the test dataset. This is because a
redundancy cutoff was performed on them to avoid homology
bias and redundancy.

Both the training set and the independent test set were
extracted according to the following criteria [18]:

1. Only proteins annotated as cis-Golgi or trans-Golgi are
selected.

2. Only proteins with experimentally verified annota-
tions are included. Proteins annotated with ‘PROBABLE,’
’PO-TENTIAL,’ or ‘BY SIMILARITY’ are excluded.

3. Protein sequences with ambiguous amino acid notations
(X, B, or Z) are discarded, as are fragments of other proteins.

4. The sequence identity level should be lower than a
CD-HIT threshold, such as 40% or 25%.

VOLUME 8, 2020 4443



C. Wang et al.: Predicting Sub-Golgi Apparatus Resident Protein With Primary Sequence Hybrid Features

FIGURE 1. Framework of the proposed model. In step 1 we use three extraction techniques PseKNC, PsePSSM, k-separated-bigrams. And the character
‘X’ represents one type of 20 amino acids while ‘XX’ represents one type of 400 dipeptides and so forth. In step 2, Adaboost classifier was used to select
optimal features among PseKNC according to their importanceranking and eventually we got 329 features. In step 3 we simply concatenate these three
sets of features and obtained a 769-dimension feature vector. In step 4, we used Random-SMOTE to balance the datasets. Finally, in step 5, we used the
SVM algorithm to distinguish the cis-Golgi proteins from trans-Golgi proteins.

B. FEATURE EXTRACTION METHODS
Generally, one key step in protein prediction is to convert
the protein sequence into an effective mathematical expres-
sion using a reasonable formula [32]. In sequence-based
problems, the method of extracting features from proteins’
primary sequences is significant. One of the primary steps
in the development of a powerful computational model is
conversion of the protein sequences to a set of numerical
features that intrinsically reveal the sequences’ characteris-
tics [33]. The process of feature exaction directly influences
the model’s precision. In general, a combination of differ-
ent feature descriptors contains as much information about
a protein sequence as possible because different descrip-
tors can complement information that the others do not
have [34]. In this paper, we use three feature extraction meth-
ods: PseKNC, PsePSSM, and k-separated bigrams.

1) PseKNC FEATURES
The PseKNC is a novel nucleotide sequence representa-
tion that have been applied to predict the attributes of
DNA sequences [35]. It can also be applied to protein
sequences [36]. A protein sequence P can be represented as
below:

P = R1R2R3 . . .RL (1)

where R1 represents the amino acid at chain position 1, R2
represents the amino acid at chain position 2, and so forth.
The k-tuple nucleotide composition is a vector with 4k com-
ponents that represents a DNA sequence.

D =
[
f K−tuple1 , f K−tuple2 , . . . , f K−tuplei , . . . , f K−tuple4k

]T
(2)

In equation (2), f K−tuplei is the normalized occurrence of the
i-th k-tuple nucleotide in the DNA sequence. When k = n,
6n
i=14

i, and 6n
i=120

i features will be generated for DNA
and protein, respectively. The PseKNC we used was that
from PyFeature [37]. For example, when k = 3, the feature
structure will be X, XX, and XXX, where X represents one
type of amino acid. It produces an 8,420-dimensional vector
composed of the number of occurrences of single peptide,
di-peptides, and tri-peptides in the protein sequence.

2) PsePSSM FEATURES
The position specific scoring matrix (PSSM) can be used to
describe evolutionary information about a protein sequence.
Evolutionary conservation can reflect import biological func-
tions [38], [39]. The PSSM can be generated from the
PSI-BLAST by searching for homogenous sequences to each
query protein in the Swiss-Prot database for three iterations
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with 0.01 as the E-value cutoff [40]. The PSSM of sequence
P is represented by equation (3).

PPSSM =


E1→1 E1→2 · · · E1→20
E2→1 E2→2 · · · E2→20
...

...
. . .

...

EL→1 EL→2 · · · EL→20

 (3)

where in equation (3) Ei→j represents the score of the amino
acid residue at the i-th position of the protein sequence being
changed to amino acid residue type j during the evolutionary
process, where L is the length of the query sequence and
numerical codes 1, 2, ..., 20 represent the 20 native amino
acid residues in alphabetical order. Because Ei→j varies in a
wide range, the following standardization is performed:

Ei→j =
E0
i→j −

1
206

20
k=1E

0
i→k√

1
206

20
u=1

(
E0
i→j −

1
206

20
k=1E

0
i→k

)2 (4)

where i = 1, 2, . . . ,L, j = 1, 2, . . . , 20, and E0
i→j rep-

resents the original scores calculated by PSI-BLAST [41].
However, proteins with different lengths generate different
matrices, which cannot be handled by prediction models.
Thus, to obtain a uniform dimensional matrix, the following
transformation is performed:

PPSSM =
[
E1,E2, . . . ,E20

]T
(5)

E j =
1
L

L∑
i=1

Ei→j (6)

where Ēj(j = 1, 2, . . . , 20) represents the average score of
the j-th type of amino acid in protein P during evolution.
However, this would lead to the loss of information about
sequence order. To avoid this, and prompted by the cre-
ation of PseAAC, the PsePSSM was proposed by Shen and
Chou [42]. The PseAAC is widely used and has been popular
since it was introduced because it not only calculates amino
acid frequency but also considers the long-range correlations
of physicochemical properties between two residues along
the sequence, avoiding the complete loss of sequence-order
information [43]–[45]. This pseudo position-specific scoring
matrix can be depicted as shown below:

PξPse−PSSM =
[
E1,E2, . . . ,E20,G

ξ
1,G

ξ
2, . . . ,G

ξ
20

]T
(7)

Gξj =
1

L − ξ

L−ξ∑
i=1

[
Ei→j − E(i+ξ)→j

]2 (8)

3) k-SEPARATED BIGRAMS
The k-separated bigrams were extracted from PSSM pro-
posed by Saini et al. [46]. It describes the relation-
ships between non-adjacent amino acids along the protein
sequence. The two amino acids are separated by k amino
acids and the bigram probabilities are extracted from the

sequential evolution probabilities in PSSM. The algorithm
can be described mathematically as below:

Tm,n (k)=
L−K∑
i=1

Ni,mNi+k,n, (9)

T (k)=
[
T1,1 (k) , . . . ,T1,20 (k) ,T2,1 (k) , . . . ,T20,20 (k)

]
.

(10)

where 1 ≤ m ≤ 20, 1 ≤ n ≤ 20, k ≤ K , and N is the PSSM
matrix representation for a protein sequence, and it has L rows
and 20 columns as equation (3) and L is the length of the
protein sequence. The k represents the distance between the
amino acid positions which are used to compute the transition
probabilities, for k = 1, the amino acids used to calculate
the transition probabilities are separated by 0 amino acid.
For k = 2, the amino acids used to calculate the transition
probabilities are separated by 1 amino acid and so forth. For
each k , T (k) generates 400 features.

C. FEATURES SELECTION
We combine different assortments of feature descriptors as
much as possible to avoid losing sequential information.
However, there may be overlap among different features and
noise, which can result in over-fitting [47]. To reduce the
impact of redundancy and decrease time and space com-
plexity, we use the AdaBoost classifier implemented in the
scikit-learn package in Python to find the optimal feature
sets with its default the parameter settings (learning rate=1,
C4.5 as the default base learner, and 500 as the number of
base learners) to find the optimal feature sets. AdaBoost is
an ensemble boosting classifier that was proposed by Freund
and Schapire [48]. It is an iterative ensemble method that
works by combining multiple poorly performing classifiers.
The basic concept behind AdaBoost is to set the classifiers’
weights for each iteration according to the accuracy of the
classifier, and it assigns greater weights to incorrectly classi-
fied observations so that these observations will have a high
probability of classification in the next iteration. It calculates
the average impurity curtailment achieved by splitting based
on each of the features in each tree trained on different sample
weight distributions. Every feature is given an importance
score using the scikit-learn package’s feature importance
function. More important features have higher scores. In this
paper, we select 329 features whose importance is larger
than 0.

D. RANDOM-SMOTE
The main concept of SMOTE is to create new minority
class samples by interpolating between several minority class
examples that lie close together [49]–[51]. Specifically, for
every minority sample, its k nearest neighbors from the
minority class are first selected. Then, according to the over-
sampling rate, N neighbors should be chosen randomly from
the k nearest neighbors. Finally, synthetic examples Pj are
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created in the following way:

Pj = x + rand (0, 1) ∗
(
yj − x

)
. (11)

where yj(j = 1, 2, . . . ,N ) is one of the k randomly selected
nearest neighbors of x, and rand(0,1) generates a random
number between 0 and 1.

SMOTE creates a new sample along the line between the
minority class sample and the selected nearest neighbors.
After SMOTE, the dataset maintains its intensive or sparse
characteristics, thus leading to poor performance when the
sample is located in the sparsely populated space. To solve
the problem, Random-SMOTE was proposed by Dong and
Wang [52]. In Random-SMOTE, two examples (y1 and y2)
are randomly selected from the minority class. Consequently,
a triangle is formed by the sample (x), y1 and y2. Then, based
on the oversampling rate N , several examples are created
randomly within the triangular area.

The detailed procedure for generating synthetic examples
is depicted below:

1. Generate a temporary example v1 on the line between
the two selected minority examples y1 and y2

v1 = y1 + rand (0, 1) ∗ (y2 − y1) ; (12)

2. Generate synthetic minority class examples pj (j =
1, 2, . . . ,N ) on the line between sample x and the
temporary sample vj

Pj = x + rand (0, 1) ∗
(
vj − x

)
. (13)

However, there are three cases for the relative locations
among x and the two temporary examples y1 and y2.

1. When the three points’ locations coincide, a copy of x
is obtained; This degenerates to random oversampling.

2. When two of the three points coincide, it is the same as
SMOTE.

3. When none of the points coincide with each other,
synthetic samples are generated in the triangular area
(this is the usual case).

In conclusion, Random-SMOTE is a more general method.
Random oversampling or SMOTE is a special case of
Random-SMOTE.

E. PREDICTION ALGORITHM
Support Vector Machine (SVM) [53] has been successfully
applied in protein sequence classification projects [54], [55],
in which a decision boundary that maximizes the margin
between positive and negative samples is found. [56]–[62].
The basic idea of SVM is to map the original data into
a higher-dimensional feature space using a kernel func-
tion, and then perform classification in this feature space
by finding the optimal separating hyperplane. We used
grid search to find the optimal parameters, and eventually,
the best parameter combination of kernel=’linear’, C=0.01,
and gamma=0.01 was found by 10-fold cross-validation.

F. PERFORMANCE EVALUATION
It is an important step to choose good performance met-
rics to measure whether the model works well. In this
paper, we use accuracy, sensitivity, specificity, andMatthew’s
correlation coefficients, which are calculated using a con-
fusion matrix obtained according to true and predicted
classes [61], [63]–[71]. The chosen metrics are defined as
below:

Sn=
TP

TP+ FN
(14)

Sp=
TP

TN + FP
(15)

Acc=
TP+ TN

TP+ TN + FP+ FN
(16)

MCC =
TP×TN−FN×FP

√
(TP+FP) (TP+FN ) (TN+FP) (TN+FN )

(17)

We categorized our dataset into two classes: the posi-
tive class and negative class. TP are defined as the positive
samples that are classified as positive instances, TN are the
negative samples that are categorized as negative, FP are the
negative samples that are categorized as positive, and FN
are the positive samples that are categorized as negative. Sn
measures the true positive rate, while Sp measures the true
negative rates, and these values are equally important for
evaluating the model. ACC reflects the predictor’s overall
accuracy, but when the dataset is imbalanced, ACC may
be misleading [72], while MCC will still be informative to
measure the model’s overall quality. MCC ranges −1 to 1,
where −1 represents that the predictor always predicts the
wrong result, 0 indicates a random guess, and 1 denotes that
the predictor predicts all samples accurately. Thus, MCC can
be seen as a correlation coefficient between the true and
predicted classes.

III. EVALUATION METRICS
There are many methods to evaluate the performance of
a computational model. Three cross-validation methods are
widely used in statistical prediction [28], [73]–[80]. These
are the jackknife cross-validation, 10-fold cross-validation,
and independent testing [81]. In this paper, we also use those
methods to evaluate our model.

In the jackknife test (also called leave-one-out cross-
validation), each protein sequence in the training set is held
out as an independent test sample. This is the most objective
and rigorous method, and it can yield unbiased results with
small variance values [82], but this method takes more time
to run because its execution time is equal to the number of
samples.

In 10-fold cross-validation, the dataset is divided into
10 parts, each of which are used for both training and testing
(9 are used for training and the other for testing during each
iteration). The average accuracy of the 10 results is seen as an
estimate of the algorithm’s overall accuracy. Usually, 10-fold
cross-validation is applied multiple times.
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FIGURE 2. Comparison histogram between the proposed model and
three previous models in three different evaluation metrics.

FIGURE 3. Comparison histogram between models without
Random-SMOTE and with Random-SMOTE in three different evaluation
metrics.

Independent testing, also known as holdout testing,
in which there is no overlap between the training and test
sets. In other words, the training set is completely different
from the testing set. When the testing set is divided from the
training set, the distribution of the testing set should be similar
to that of the training set; otherwise, the results of this testing
strategy may be misleading [83]. In this paper, we used two
different datasets collected independently: one for training
and the other for testing.

IV. RESULTS AND DISCUSSIONS
A. COMPARISON WITH EXISTING METHODS
To determine whether our method is more powerful or at least
comparable to state-of-the-art method, we performed a jack-
knife cross-validation, independent testing, 10-fold cross-
validation on the same datasets. The results are showed in
Figure 2. Our method gives the highest overall accuracy
and MCC using Jackknife cross-validation, independent test-
ing, and 10-fold cross-validation. Our accuracy was 96.5%,
96.5%, and 96.9% on the jackknife cross-validation, inde-
pendent testing, and 10-fold cross-validation, respectively,
and the MCC values were 0.93, 0.95, and 0.94, respectively.
Therefore, we conclude that the proposed method is a power-
ful classifier of sub-Golgi proteins.

B. EFFECTS OF RANDOM-SMOTE
To investigate the effectiveness of Random-SMOTE,
we show the experimental results of the models with and
without Random-SMOTE in Figure 3. We use MCC to eval-
uate their performance because it is more informative than
ACC when the data are imbalanced, as in this experiment.
The results verify the effectiveness of Random-SMOTE, with

FIGURE 4. Comparison histogram between models before feature
selection and after feature selection in three different evaluation metrics.

FIGURE 5. Comparison histogram between models with different feature
combinations in three different evaluation metrics.

MCC values of 0.93, 0.95, and 0.94 for the three types of
validation, respectively.

C. EFFECTS OF FEATURE SELECTION ON PseKNC
Figure 4 shows the experimental results before and after
feature selection for Jackknife cross-validation, independent
testing, and 10-fold cross-validation. Before feature selec-
tion, our accuracy was 70.3%, 93.7% and 71.1% and the
MCC values was 0.14, 0.80 and 0.14 for the three types
of validation, respectively. After feature selection, our accu-
racy was 92.7%,96.8% and 93.7% and the MCC values
was 0.81,0.90 and 0.84 for the three types of validation,
respectively. The results indicate that the model that uses
the AdaBoost classifier after feature selection is much more
effective because it has removed some redundant and irrele-
vant information.

D. EFFECTS OF DIFFERENT FEATURE COMBINATIONS
An analysis of different hybrid features is presented
in Figure 5. This set of experiments is performed to
select the best combination of different feature descriptors.
These hybrid feature sets are PseKNC, k-separated-bigrams,
PsePSSM, PseKNC + k-separated-bigrams, PseKNC +
PsePSSM, k-separated-bigrams + PsePSSM and PseKNC
+ PsePSSM + k-separated-bigrams. For the parameters in
the feature extraction technique of k-separated-bigrams and
PsePSSM, we set k = 1 and ξ = 1 respectively. The best
hybrid feature set is PseKNC + PsePSSM + k-separated-
bigrams, with accuracy of 96.5%, 96.5%, and 96.9% in
jackknife cross-validation, independent testing and 10-fold
cross-validation, respectively. The best hybrid feature set con-
tains 769 features, among which 329, 40, and 400 were from
PseKNC, PsePSSM, and k-separated-bigrams, respectively.
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V. CONCLUSION
In this paper, we developed a robust and powerful com-
putational model for classification of sub-Golgi proteins.
In this model, we extracted PseKNC, k-separated-bigrams,
and PsePSSM to represent protein sequences. The Adaboost
classifier was used to remove the redundant information con-
tained in the PseKNC descriptor, and the reduced PseKNC
features achieved a higher score than the full PseKNC.
Comparative experiments showed that the combination of
PseKNC, k-separated-bigrams, and Pse-PSSM was the most
effective combination. The random-SMOTE technique was
adopted to balance the datasets, and the prediction perfor-
mance of Random-SMOTE based models is much better
than that of those models that did not use Random-SMOTE.
Finally, we used SVM as our predictor. By comparing our
method with previous work, we conclude that our method is
much more powerful, with accuracy of 96.5%, 96.5%, and
96.9% in jackknife cross-validation, independent testing, and
10-fold cross-validation, respectively.
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