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ABSTRACT In many cases, the final path selection of travellers’ is not the shortest path, due to the limited
computing power and high cost of path search. To solve the problem, this paper proposes a day-to-day (DTD)
stochastic traffic flow assignment model that regulates the traffic flow based on the travel time (travel cost)
and residual congestion of optional paths. The regulation mechanism is called the mixed regulation. Then,
the authored proved the existence, uniqueness and stability of the model solution. The proposed model was
verified through simulation on a Nguyen-Dupuis road network. The results show that traffic flows and travel
times of all paths reached the equilibrium state, thanks to the DTD mixed regulation for 20 ∼ 30 days.
From the traffic flows and congestion degrees of different sections, it can be seen that our model with mixed
regulation diverts the traffic flow to the sections with a low congestion degree, and encourages travellers
to drive through the sections with a low traffic flow. In addition, the congestion degrees of the four most
congested sections decreased by 5.8%, 4%, 7% and 1.2%, respectively, and the entire road network exhibited
a slight downward trend in mean congestion degree. These results prove that our model can uniformize the
traffic flow, improve the operation efficiency and alleviate the congestion of the road network. These findings
shed new light on the control, guidance and planning of traffic flow in road networks.

INDEX TERMS Path selection, traffic assignment, residual congestion, stability, Nguyen-Dupuis road
network.

I. INTRODUCTION
In the road network, the traffic flow is often unequilibrated
under external or internal factors [1]. If there are multiple
paths ahead, the traffic flow will be assigned to different
paths, depending on the path selection of travellers. To dis-
close the effect of travellers’ path selection, it is necessary to
explore how the traffic flow gradually evolves from disequi-
librium state to equilibrium state.

In urban road network, the path selection is a complex
noncooperative game [2], [3]. To maximize their personal
interests, numerous travellers constantly adjust their travel
paths according to historical selections or traffic information.
The adjustments based on historical selections exhibit as the
behavioural inertia, while those based on traffic information

The associate editor coordinating the review of this manuscript and
approving it for publication was Dalin Zhang.

reflects the travellers’ learning ability. Through these adjust-
ments, the unequilibrated traffic flow gradually evolves to an
equilibrium. The dynamic evolution of traffic flow should
be fully examined to gain insights into the operation of
traffic network, and promote urban traffic planning and
management.

The early models on traffic flow evolution generally
assume the travellers can grasp the traffic information well
and minimize their travel costs. However, their results are
impractical because real-world travellers have bounded ratio-
nality (BR) [4], [5]. To solve the problem, many scholars
started to investigate traffic flow evolution under the BR.
One of the most representative results is the BR behaviour
principle put forward by Simon.

Meanwhile, the traffic flow evolution has been modelled
based on the impact of changing external environment on
travellers’ path selections. For example, Peeta [6] simulated
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the dynamic traffic flow in a day, adjusted the weight of
travellers’ path selection rules in the light of real-time road
conditions, and established a hybrid model of intra-day and
day-to-day (DTD) path selections by travellers. The hybrid
model can predict the travellers’ path selections according
to real-time information. Considering the hysteresis of traffic
information, Guo and Huang [7] introduced the concept of
path selection cost, and constructed a dynamic evolution
model of traffic flow in the presence of automatic traffic
information system (ATIS).

Assuming that travellers’ path selections are based on
expected total travel time and local traffic information (rather
than global traffic information), Shengxue et al. [8] set up
a dynamic evolution model of traffic flow through dynamic
projection, which includes a formula to update path flow
and a formula to estimate the shortest travel time. Liu and
Guan [9] held that travellers with BR select paths based
on the difference between the travel time via the current
path and that via the shortest path, and created a travel time
update formula and a path selection model under complete
and incomplete information.

Drawing on behavioural game theory, He and Peeta [10]
constructed a marginal cost function to describe the shadow
price incurred by path change, defined the numerical differ-
ence between marginal profit and marginal cost as marginal
utility, and then developed a DTD traffic flow evolution
model under marginal utility. Iryo [11] believed that the
existing DTDmodels only cover travellers’ behaviours under
incomplete information, and designed a DTD model for
dynamic traffic flow evolution that collects travellers’ infor-
mation under complete and incomplete information.

Cantarella and Watling [12] prepared a deterministic pro-
cess model of simple discrete time and continuous time based
on exponential smoothing, and relied on the model to study
how travellers empirically predict the current service level
and select paths based on the prediction. Lou et al. [13]
established a DTD dynamic traffic flow evolution model for
three types of travellers: risk-averse travellers, risk-taking
travellers without the ATIS, and risk-taking travellers with
the ATIS. Considering the impact of congestion charge on
travellers’ path selections, Li and Guan [14] assumed that the
charge is positively correlated with the travel time in con-
gested section, and introduced the congestion charge policy
to the DTD dynamic evolution model of traffic flow.

To date, most of the existing traffic flow evolution mod-
els, which consider the BR and heterogeneity of travellers,
take account of the difference between travellers in time
value [15]–[17]. In real-world road network, the travel cost
is a random variable. Gao et al. [18] pointed out that the
final path selection of travellers’ is not the shortest path,
due to the limited computing power and high cost of path
search. In other words, the travellers are unable to estimate the
theoretical minimum travel time through path selection. The
inability directly causes many differences in travel behaviour.

As a matter of experience, the travellers are more sensitive
to travel time than any other factor in path selection. Unable

to estimate the theoretical minimum travel time, the travellers
often focus on the most congested sections. With the aid of
the ATIS, the congestion information is directly accessible
to all travellers with a smartphone. Therefore, it is assumed
here that travellers can obtain the congestion degree of each
section and select the preferred path, i.e., the path selections
completely depend on the congestion conditions.

Of course, the congestion-based path selections reflect the
BR. On the one hand, the path selections might be irrational,
due to the limited computing power and high cost of path
search. On the other hand, some travellersmay detour through
less congested sections, because they pursue the freedom and
comfort of driving.

To sum up, unbounded rational travellers make path selec-
tions purely based on travel cost, i.e. the time difference
between different paths, while bounded rational travellers
with complete information constantly adjust their selections
through DTD learning of the real-time traffic information
until the traffic flow reaches a new equilibrium.

Based on non-Walrasian equilibria [19]–[21] and path con-
gestion degree, this paper proposes a DTD stochastic traffic
flow assignment model that regulates the traffic flow based
on the travel time (travel cost) and residual congestion of
optional paths. The regulation mechanism is called the mixed
regulation. This simple and stable model can reasonably
describe how some travellers choose the paths based on con-
gestion information, and lead to the equilibrium of the traffic
flow.

II. PRELIMINARIES
A. CONGESTION DEGREE AND RESIDUAL CONGESTION
The congestion degree of a path is the weighted sum of the
congestion degrees of multiple key sections. The key sections
are the most crowded segments of the path, i.e. the sections
that attract the most travellers. The residual congestion refers
to the residual capacity of a path, i.e. the difference between
the saturation state or congestion state and the current state.

The congestion degree of section a can be computed by
fa/Ka(fa ≤ Ka), where fa is the traffic flow of section a,
and Ka is the traffic capacity of section a. Then, the residual
congestion va on the n-th day of section a can be defined as:

va(fa(n)) = $ −
fa(n)
Ka

(1)

where, $ is the maximum traffic flow. If the section is
saturated,$ = 1; if the section is oversaturated,$ ≥ 1.

B. HYPOTHESES
The following two hypotheses were put forward on travellers’
path selections:
Hypothesis 1: The travellers only consider the most con-

gested sections in path selection. The residual congestion vr
of the path and the residual congestion va of a section of the
path should satisfy:

vr (hr (n)) = min
a∈A
{δarva(fa(n))}, δarva(fa(n) > 0 (2)
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where, A is the set of sections within the path ; hr (n) is
the flow of path r on the n-th day; δar is the coefficient of
association between the path and the section. If a ∈ r , then
δar = 1; otherwise, δar = 0.
Hypothesis 2: In path selection, the residual congestion vr

of the path equals the weighted sum of the residual conges-
tions va of multiple key sections. The residual congestions of
all sections in the path can be sorted in ascending order as:

δa1rva1 (fa1 (n)) ≤ δa2rva2 (fa2 (n)) ≤

· · · ≤ δalrval (fal (n))

≤ δal+1r val+1 (fa(n)) ≤ · · ·

≤ δak rvak (fa(n))

δak rva(fa(n) > 0, ak ∈ B (3)

where, B is the set of sections within path r . Then, the top-L
sections in the ranking are selected to compute the residual
congestion of the path:

vr (hr (n)) = ω1δa1rva1 (fa1 (n))

+ω2δa2rva2 (fa2 (n))+ . . .

+ωlδalrval (fal (n))
∑l

i=1
ωi = 1,

0 ≤ ωi ≤ 1 (4)

where, ωi is defined as the correlation coefficient between
section congestion and path congestion, indicating the impor-
tance of section congestion affecting path selection. Gener-
ally speaking, the more congested the section, the greater the
value.

III. MODEL CONSTRUCTION
A. DTD STOCHASTIC TRAFFIC FLOW ASSIGNMENT MODEL
BASED ON RESIDUAL CONGESTION
The expected residual congestion Vr on the n-th day is
defined as the weighted sum of the expected residual conges-
tion and the residual congestion of the path on the (n-1)-th
day:

Vr (n) = ηVr (n− 1)+ (1− η)vr (hr (n− 1)) (5)

where, η ∈ [0, 1) is a parameter related to travel charac-
teristics, and the dependence of travellers’ path selections
on the residual congestion of the path on previous day. The
higher the value of η, the less dependence. On the contrary,
the smaller the value of η, the greater dependence. According
to the stochastic user equilibrium model, suppose that the
random variables εr and εk are independent and obey the
same Gumbel distribution, the probability pr that path r is
selected on the n-th day can be computed by:

pr (n) = P(Vr (n)+ εr ≥ ∪
k∈Rw

(Vk (n)+ εk ))

=
1

1+
∑

k 6=r e
−ϕ(Vk (n)−Vr (n))

, ∀k, r ∈ Rw (6)

where, ϕ > 0 is the travellers’ sensitivity to the expected
residual congestion. The higher the value ofϕ, themore sensi-
tive the congestion degree of the path, and the less random the

traveler to choose the path. On this basis, the DTD stochastic
traffic flow assignment model based on residual congestion
can be established as:

pr (n) =
1

1+
∑

k 6=r e
−ϕ(Vk (n)−Vr (n))

hr (n) = dwpr (n)
Vr (n) = ηVr (n− 1)+ (1− η)vr (hr (n− 1))

(7)

where dw is the distance between a pair of origin (O) and
destination (D) among the set of OD pairs w; εr is the random
error in path r ;

∑
r∈Rw pr (n) = 1.

B. DTD STOCHASTIC TRAFFIC FLOW ASSIGNMENT MODEL
BASED ON MIXED REGULATION
As mentioned before, the mixed regulation refers to regu-
lating the traffic flow based on the travel time and residual
congestion of optional paths. According to the theory on
stochastic traffic flow assignment, the travel time cr of a path
and the travel time ca of a section of the path satisfies:

cr (hr (n)) =
∑

a∈A
δarca(fa(n)) (8)

Similarly, the traffic flow hr (n) of a path and the traffic flow
fa of a section of the path satisfies:

fa(n) =
∑
w∈W

∑
r∈Rw

δarhr (n) (9)

The expected travel time Cr of the path on the n-th day
equals the weighted sum of the expected travel time and the
travel time of the path on the (n-1)-th day:

Cr (n) = κCr (n− 1)+ (1− κ)cr (hr (n− 1)) (10)

where, κ ∈ [0, 1) is the dependence of travellers’ path
selections on the travel time of the path on the previous day.

The total travel cost sr of the path on the n-th day is
defined as the weighted sum of the travel time cr and residual
congestion vr of the path:

sr (hr (n)) = λcr (hr (n))− (1− λ)vr (hr (n)) (11)

where, λ ∈ [0, 1] is the travellers’ sensitivity to the travel
time and residual congestion of the path.

The travel time cr and residual congestion vr of the path
have different dimensions. Hence, the two variables can be
normalized by:

c̃r (hr (n)) =
cr (hr (n))− min

r∈Rw
{cr (hr (n))}

max
r∈Rw
{cr (hr (n))} − min

r∈Rw
{cr (hr (n))}

ṽr (hr (n)) =
vr (hr (n))− min

r∈Rw
{vr (hr (n))}

max
r∈Rw
{vr (hr (n))} − min

r∈Rw
{vr (hr (n))}

(12)

Then, formula (11) can be rewritten as:

sr (hr (n)) = λc̃r (hr (n))− (1− λ)ṽr (hr (n)) (13)
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The expected total travel cost Sr of the path on the n-th day
equals the weighted sum of the expected travel time cr and
the expected residual congestion vr of the path:

Sr (n) = λC̃r (n)− (1− λ)Ṽr (n) (14)

According to the stochastic user equilibrium model,
the probability pr that path r is selected on the n-th day can
be computed by:

pr (n) = P(Sr (n)+ εr ≤ ∪
k∈Rw

(Sk (n)+ εk ))

=
1

1+
∑

k 6=r e
−θ{[λC̃k (n)−(1−λ)Ṽk (n)]−[λC̃r (n)−(1−λ)Ṽr (n)]}

,

∀k, r ∈ Rw (15)

where, ϕ > 0 is the travellers’ sensitivity to the expected
total travel cost. On this basis, the DTD stochastic traffic
flow assignment model based on mixed regulation can be
established as:
pr (n)=

1

1+
∑

k 6=r e
−θ{λC̃k (n)−(1−λ)Ṽk (n)−[λC̃r (n)−(1−λ)Ṽr (n)]}

hr (n) = dwpr (n)
C̃r (n) = κC̃r (n− 1)+ (1− κ)c̃r (hr (n− 1))
Ṽr (n) = ηṼr (n− 1)+ (1− η)ṽr (hr (n− 1))

(16)

IV. STABILITY ANALYSIS
A. EXISTENCE OF A UNIQUE SOLUTION
Theorem 1: If the travel time of a path is a continuous and

strictly monotonically increasing function of the traffic flow
of the path, and if the residual congestion of the path is a
continuous and strictly monotonically decreasing function of
the traffic flow of the path, there exists a unique solution for
the DTD stochastic traffic flow assignment model based on
mixed regulation under fixed travel demand.

Proof: The first step is to prove the existence of solu-
tion(s). Since the travel demand is bounded, the feasible set
of traffic flows of the path is a non-empty bounded closed
convex set. By the definitions of travel time and residual
congestion, the feasible set of travel time and the feasible
set of residual congestion of the path are also non-empty
bounded closed convex sets. Then, model (16) is a continuous
mapping from non-empty bounded closed convex set to itself.
According to Brouwer fixed-point theorem, model (16) must
have at least one solution.

The next step is to prove the uniqueness of solution. Let
C̃r (n) = C̃r (n − 1) = C∗r be the expected travel time at a
stable place, Ṽr (n) = Ṽr (n−1) = V ∗r be the expected residual
congestion, and hr (n) = hr (n − 1) = h∗r be the path flow.
Then, we have:

C∗r = c̃r (h∗r ) (17)

V ∗r = ṽr (h∗r ) (18)

h∗r =
dw

1+
∑

k 6=r e
−θ{λC∗k−(1−λ)V

∗
k−[λC

∗
r −(1−λ)V ∗r ]}

(19)

The above fixed-point problem can be converted into the
variational inequality below:∑

w∈W

∑
r∈Rw

[λc̃r (h∗r )− (1− λ)ṽr (h∗r )

+
1
θ
lnh∗r ](hr − h

∗
r ) ≥ 0 (20)

Assuming that the model (16) has two different solutions,
namely, (C1∗

r ,V
1∗
r , h

1∗
r ) and (C2∗

r ,V
2∗
r , h

2∗
r ), the following

can be derived from inequality (20):∑
w∈W

∑
r∈Rw

[λc̃r (h1∗r )− (1− λ)ṽr (h1∗r )

+
1
θ
lnh1∗r ](h2∗r − h

1∗
r ) ≥ 0 (21)∑

w∈W

∑
r∈Rw

[λc̃r (h2∗r )− (1− λ)ṽr (h2∗r )

+
1
θ
lnh2∗r ](h1∗r − h

2∗
r ) ≥ 0 (22)

Adding up inequalities (21) and (22), we have:∑
w∈W

∑
r∈Rw

[λ(c̃r (h1∗r )− c̃r (h2∗r ))

− (1− λ)(ṽr (h1∗r )− ṽr (h2∗r ))

+
1
θ
(lnh1∗r − lnh

2∗
r )](h1∗r − h

2∗
r ) ≤ 0 (23)

Since the travel time function of the path is strictly mono-
tonically increasing, c̃r (hr ) must be strictly monotonically
increasing with respect to hr . Likewise, ṽr (hr ) is strictly
monotonically decreasing with respect to hr . In addition, lnhr
is strictly monotonically increasing with respect to hr :∑

w∈W

∑
r∈Rw

[λ(c̃r (h1∗r )− c̃r (h2∗r ))

− (1− λ)(ṽr (h1∗r )− ṽr (h2∗r ))

+
1
θ
(lnh1∗r − lnh

2∗
r )](h1∗r − h

2∗
r ) > 0 (24)

Inequality (24) contradicts inequality (23), indicating that
model (16) has a unique solution.

B. STABILITY OF SOLUTION
Suppose there are m paths between each OD pair in w. Since
model (16) is stable, C̃r (n) = C∗r , Ṽr (n) = V ∗r , hr (n) =
h∗r , and ∀r = 1, · · · ,m. Let

c′r =
∂ c̃r (n)
∂hr (n)

∣∣∣∣
(C∗r ,V ∗r ,h∗r )

(25)

Theorem 2: If model (16) has a unique solution
and satisfies

∣∣∣κ + (1− κ)dw(c′rp
′
rCr − c

′

1p
′

1Cr
)
∣∣∣ < 1 and∣∣∣η − (1− η)dw(p′rVr − p

′

1Vr
)
∣∣∣ < 1 for each r , the only solu-

tion of the model must be asymptotically stable.
Proof: According to the nonlinear dynamic stability

theory is introduced, the equilibrium point of a system is
asymptotically stable at the equilibrium point of the nonlinear
discrete system, if the moduli of all the eigenvalues of Jaco-
bianmatrix are less than 1. Here, the unique solution of model
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(16) can be regarded as an equilibrium point. The Jacobian
matrix J of model (16) can be expressed as:

J =
(
J11 J12
J21 J22

)
(28)

where,

J11 =


∂C̃1(n)

∂C̃1(n− 1)
· · ·

∂C̃1(n)

∂C̃m(n− 1)
...

. . .
...

∂C̃m(n)

∂C̃1(n− 1)
· · ·

∂C̃m(n)

∂C̃m(n− 1)


=

 κ+dw(1−κ)c
′

1p
′

1C1
· · · dw(1−κ)c′1p

′

1Cm
...

. . .
...

dw(1−κ)c′mp
′
mC1

· · · κ+dw(1−κ)c′mp
′
mCm


(29)

J12 =


∂C̃1(n)

∂Ṽ1(n− 1)
· · ·

∂C̃1(n)

∂Ṽm(n− 1)
...

. . .
...

∂C̃m(n)

∂Ṽ1(n− 1)
· · ·

∂C̃m(n)

∂Ṽm(n− 1)


=

 dw(1− κ)c′1p
′

1V1
· · · dw(1− κ)c′1p

′

1Vm
...

. . .
...

dw(1− κ)c′mp
′
mV1

· · · dw(1− κ)c′mp
′
mVm


(30)

J21 =


∂Ṽ1(n)

∂C̃1(n− 1)
· · ·

∂Ṽ1(n)

∂C̃m(n− 1)
...

. . .
...

∂Ṽm(n)

∂C̃1(n− 1)
· · ·

∂Ṽm(n)

∂C̃m(n− 1)


=

 −dw(1− η)p
′

1C1
· · · −dw(1− η)p′1Cm

...
. . .

...

−dw(1− η)p′mC1
· · · −dw(1− η)p′mCm


(31)

J22 =


∂Ṽ1(n)

∂Ṽ1(n− 1)
· · ·

∂Ṽ1(n)

∂Ṽm(n− 1)
...

. . .
...

∂Ṽm(n)

∂Ṽ1(n− 1)
· · ·

∂Ṽm(n)

∂Ṽm(n− 1)


=

 η − dw(1− η)p
′

1V1
· · · −dw(1− η)p′1Vm

...
. . .

...

−dw(1− η)p′mV1 · · · η − dw(1− η)p′mVm


(32)

It can be seen from equation sets (26) and (27), as shown
at the bottom of this page, that p′rC1

+ · · · + p′rCm = 0 and
p′rV1 + · · · + p′rVm = 0. The eigen-polynomial of Jacobian
matrix J can be expressed as:

det |J − λE|

= (κ − λ)[κ + dw(1− κ)(c′2p
′

2C2
− c′1p

′

1C2
)− λ]

· · · [κ + dw(1− κ)(c′mp
′
mCm − c

′

1p
′

1Cm )− λ]

· (η − λ)[η − dw(1− η)(p′2V2 − p
′

1V2 )− λ]

· · · [η − dw(1− η)(p′mVm − p
′

1Vm )− λ] (33)



p′rCr =
∂pr (n)

∂C̃r (n)

= −θλ

∑
k 6=r e

−θ{[λC̃k−(1−λ)Ṽk ]−[λC̃r−(1−λ)Ṽr ]}(
1+

∑
k 6=r e

−θ{[λC̃k−(1−λ)Ṽk ]−[λC̃r−(1−λ)Ṽr ]}
)2
∣∣∣∣∣∣∣
(C∗r ,V ∗r ,h∗r )

p′rCk =
∂pr (n)

∂C̃k (n)

= θλ
e
−θ
{[
λC̃k−(1−λ)Ṽk

]
−

[
λC̃r−(1−λ)Ṽr

]}
(
1+

∑
k 6=r e

−θ
{[
λC̃k−(1−λ)Ṽk

]
−

[
λC̃r−(1−λ)Ṽr

]})2

∣∣∣∣∣∣∣∣∣
(C∗r ,V ∗r ,h∗r )

, ∀k 6= r

(26)



p′rVr =
∂pr (n)

∂Ṽr (n)
= θ (1− λ)

∑
k 6=r e

−θ{[λC̃k−(1−λ)Ṽk ]−[λC̃r−(1−λ)Ṽr ]}(
1+

∑
k 6=r e

−θ{[λC̃k−(1−λ)Ṽk ]−[λC̃r−(1−λ)Ṽr ]}
)2
∣∣∣∣∣∣∣
(C∗r ,V ∗r ,h∗r )

p′rVk =
∂pr (n)

∂Ṽk (n)
= −θ (1− λ)

e−θ{[λC̃k−(1−λ)Ṽk ]−[λC̃r−(1−λ)Ṽr ]}(
1+

∑
k 6=r e

−θ{[λC̃k−(1−λ)Ṽk ]−[λC̃r−(1−λ)Ṽr ]}
)2
∣∣∣∣∣∣∣
(C∗r ,V ∗r ,h∗r )

, ∀k 6= r

(27)
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FIGURE 1. The Nguyen-Dupuis road network.

TABLE 1. Parameters of the travel cost function for each section.

Equation (33) shows that the Jacobian matrix J has 2m eigen-
values, namely, λ1 = κ , λ2 = κ + dw(1 − κ)(c′2p

′

2C2
−

c′1p
′

1C2
),. . . , λm = κ + dw(1 − κ)(c′mp

′
mCm − c′1p

′

1Cm
),

λm+1 = η, λm+2 = η − dw(1 − η)(p′2V2 − p′1V2 ),. . . ,
λ2m = η − dw(1 − η)(p′mVm − p′1Vm ). Since |κ| <

1, |η| < 1,
∣∣∣κ + (1− κ)dw(c′rp

′
rCr − c

′

1p
′

1Cr
)
∣∣∣ < 1 and∣∣∣η − (1− η)dw(p′rVr − p

′

1Vr
)
∣∣∣ < 1, the moduli of all the

eigenvalues of Jacobian matrix J are less than 1. Therefore,
the unique solution of model (16) must be asymptotically
stable.

V. ROAD NETWORK TEST
To verify its operation effect, the proposed model was tested
in the Nguyen-Dupuis road network [22]–[25]. As shown
in Figure 1, the network contains 13 nodes, 19 sections and
4 OD pairs.

Table 1 lists the relationship between each OD pair and
each section/path, and the values of relevant parameters. The
cost function of each section is ca(fa) = Aa + Ba(

fa(t)
Ka

)4.
During the road network test, the path selections were

made according to Hypothesis 2 and formula (4). If a path has
five or more sections, its residual congestion was computed
as the weighted sum of the three smallest section residual
congestions, with the weight coefficients being 0.5, 0.3 and
0.2, respectively; if a path has four sections, its residual
congestion was computed as the weighted sum of the two
smallest section residual congestions, with the weight coef-
ficients being 0.6 and 0.4, respectively; if a path has fewer
than four sections, its residual congestion was computed as
the smallest section residual congestion.

In our model, the weight λ of residual congestion is
50%. Meanwhile, the demand function for an OD pair is

TABLE 2. Adjusted model parameters.

TABLE 3. The traffic flows, travel times and congestion degrees of the
paths in the equilibrium road network.

D12,D13,D42,D43 = (25, 20, 15, 20). The adjusted model
parameters are listed in Table 2.

After a period of testing, the traffic flows and travel times
of all paths reached the equilibrium state. Figures 2 ∼ 7
present the dynamic evolution of traffic flow on paths 1 ∼ 8.
It can be seen that our model achieved the equilibrium of
traffic flow through mixed regulation after 20 ∼ 30 days.

Table 3 lists the traffic flows, travel times and congestion
degrees of the paths between different OD pairs after the road
network reached the equilibrium state (λ = 0.5). Note that
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FIGURE 2. Traffic flow evolution on paths 1 ∼ 8 (λ = 0.5).

FIGURE 3. Congestion evolution on paths 1 ∼ 8 (λ = 0.5).

FIGURE 4. Traffic flow evolution on paths 1 ∼ 8 (λ = 1).

λ = 1 is the result of the travel time (travel cost) regulation
mechanism while λ = 0 is the result of the residual conges-
tion regulation mechanism.

From the traffic flow and residual congestion curves of
paths 1 ∼ 6, it can be seen that the significance of residual
congestion regulation lies in diverting the traffic flow to less
congested paths.

To further illustrate the significance of residual congestion
regulation, the congestion conditions of each section under

FIGURE 5. Congestion evolution on paths 1 ∼ 8 (λ = 1).

FIGURE 6. Traffic flow evolution on paths 1 ∼ 8 (λ = 0).

FIGURE 7. Congestion evolution on paths 1 ∼ 8 (λ = 0).

travel time (travel cost) regulation were compared with those
under mixed regulation (Figures 8 and 9).

From Figures 8 and 9, it is learned that our model with
mixed regulation diverts the traffic flow to the sections with
a low congestion degree, and encourages travellers to drive
through the sections with a low traffic flow. For four most
congested sections (9,2,6,11), their congestion degrees were
adjusted from 0.9421, 0.8553, 0.7851 and 0.7688 to 0.8874,
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FIGURE 8. Comparison of congestion degree.

FIGURE 9. Comparison of traffic flow.

0.8214, 0.7302 and 0.7597, respectively, that is, falling by
5.8%, 4%, 7% and 1.2%, respectively. Meanwhile, for the
four least congested sections (10, 8, 16, 13), their conges-
tion degrees were adjusted from 0.1067, 0.2019, 0.3074 and
03228 to 0.1200, 0.2359, 0.3016 and 0.3352, respectively.
In general, 16 sections witnessed slight declines in congestion
degree, while the other three sections saw an increase in
congestion degree by 12.4%, 16.8% and 3.8%, respectively.
The entire road network exhibited a slight downward trend in
mean congestion degree (−0.4%).

VI. CONCLUSION
Because the travel time (travel cost) is highly stochastic,
the final path selection of travellers’ is not the shortest path,
due to the limited computing power and high cost of path
search. To solve the problem, this paper proposes a DTD
stochastic traffic flow assignment model based on mixed
regulation.

The proposed model was verified through simulation on a
Nguyen-Dupuis road network. The results show that traffic
flows and travel times of all paths reached the equilibrium
state, thanks to the DTD mixed regulation for 20 ∼ 30 days.
From the traffic flows and congestion degrees of different
sections, it can be seen that our model with mixed regulation
diverts the traffic flow to the sections with a low congestion
degree, and encourages travellers to drive through the sec-
tions with a low traffic flow. Therefore, in the traditional reg-
ulation mechanism, can only keep adjusting the travel paths
and learning the congestion information of sections, owing

to the limited computing power or incomplete information.
In our model, however, the λ value, i.e. the proportion of
travellers’ relying on residual congestion regulation in path
selection, can be calibrated flexibly depending on the actual
situation.

Compared with the travel time (travel cost) regulation,
the residual congestion regulation can alleviate the conges-
tion in the most congested sections and balance the conges-
tion conditions in the road network. ourmodel can uniformize
the traffic flow, improve the operation efficiency and alleviate
the congestion of the road network. These findings shed new
light on the control, guidance and planning of traffic flow in
road networks.

Based on our findings, the future research will further
explore the dynamic evolution of traffic flow from three
angles: First, the weights of travel time and residual conges-
tion will be further investigated; Second, the DTD stochastic
traffic flow assignment model will be calibrated according
to the actual state of the road network to reflect the changes
in the actual traffic flow; Third, the proposed model will
be extended to road networks with elastic travel demands,
and the relationship between dynamic evolution and traffic
information other than congestion will be discussed.
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