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ABSTRACT Older adults want to remain independent with dignity for as long as possible, especially the
solitary older adults. Activity recognition plays an essential role in elderly care and rehabilitation by detecting
activity shifts among the elderly population. Despite over a decade of research and development in activity
recognition, accurate and reliable systems for older adults in use are few. We propose an automatic data
collecting and labeling system by addressing the annotation issue, and a novel coarse-to-fine activities
of daily living(ADLs) recognition algorithm for older adults, by combining supervised and unsupervised
machine learning methods. The automatic data collecting and labeling system targets at the annotation issue
caused by the diversity of ADLs in free-living situations. Multiple sensors fusion strategy is employed to
interpret and annotate the ADLs. Leveraging supervised and unsupervisedmachine learningmethods, we can
discover and recognize ambulatory and trivial ADLS for older adults. The performance of the automatic data
collecting and labeling system is double-checked in a four days long test. With the reliable ground truth,
we evaluate the coarse-to-fine ADLs recognition algorithm. The performance of our algorithm is promising,
the recognition accuracy is larger than 91%.

INDEX TERMS Automatic labeling, coarse-to-fine ADLs recognition, multiple sensors fusion strategy,
solitary older adults.

I. INTRODUCTION
As the aging process of world’s population is accelerating,
the issue of population aging is an unavoidable social prob-
lem. Significant problems are reported in elderly care and
rehabilitation, associated with the waste of public medical
resources. Older adults, regardless of nationality, want to
remain independent with dignity for as long as possible,
especially the solitary older adults. Activity recognition plays
an essential role in this area by detecting activity shifts
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among the elderly population, which can alleviate stress
on limited medical resources, and help the older adults to
maintain functional ability and live independently longer,
by detecting and diagnosing early illnesses for early warning
[1]. Based on device diversity and sensor modality, previous
researches in activity recognition can be roughly categorized
into 4 classes: video-based, radar-based, WiFi signal-based,
and inertial sensor-based. Several good reviews can be found
in [1]–[6].

In the past decades, a large number of video datasets and
benchmarks for activity recognition have been released, and
various video-based activity recognition algorithms emerge
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one after another. Thus, the video-based methods are more
realistic and appropriate to recognize human postures and
activities, comparing with the other three classes. The video
data can be accurately labeled with the data itself manually.
Methods of the other three classes may still need video or
human journal for labeling. It is natural and intuitive to rec-
ognize human postures and activities from video data.

However, most existing video datasets are captured from
surveillance cameras, which always suffer from privacy
issue [2]. The privacy issue could be attended to with depth
video and infrared thermal video, which are also more resis-
tant to the illumination changes and the pool imaging light,
comparing with the visible video(RGB or gray). Therefore,
depth video and infrared video for action recognition have
gained much attention. However, there are still several chal-
lenges remain unsolved in the video-based activity recogni-
tion area, which are occlusion, annotation, visibility range,
and illumination variation. These challenges prevent the
video-based activity recognition methods from wildly use,
especially in the out-door situations.

Recent years, radar has been employed to detect, recog-
nize, and understand human activities, because of the effec-
tive sensing capability and penetration through obstacles [5].
Passive radar techniques for indoor human activity recogni-
tion have been extensively investigated [5], [7]–[10]. Most
of them show high precision performance (more than 85%
accuracy), in the non-line-of-sight environment, which is
the typical situation of activity recognition for older adults.
To ensure the high accuracy, ambient radar solution is essen-
tial for the radar-based methods, which requires a set of
ambient radar sensors. The number of sensors increases with
the environment size, while the cost explodes with it. More-
over, the complexity of multiple radar system also roars with
the number of radar, making it too sophisticated to handle.
As a result, trained professionals are need to interpret the
radar signals, which make the radar-based methods hard to
be implemented [4].

Nowadays, researchers employ wireless remote sens-
ing technologies with commercial off-the-shelf wireless
fidelity(WiFi) devices, to perceive and identify activities [4].
Instead of special and professional devices, common WiFi
devices are used in a passive manner for activity detecting,
which means cheap, universal, convenient, and unobtrusive.
WiFi signals propagate indoors and carry rich human body
information, which can be modeled for human tracking and
activity identifying. Multi-path fading rule is employed to
extract activity features from the channel state and the fre-
quency modulated wave [6]. Although the satisfactory accu-
racy and robustness are guarantied for the WiFi signal-based
methods, complex environment limits them from application
in real-world. Device placement scheme, coverage, multi-
target, and through-wall attenuation are all attached to the
challenges of the WiFi signal-based methods [4].

Thanks to the ubiquity of smart devices, such as mobile
phones, wrist bands, and smart watches, using inertial mea-
surement unit (IMU) sensors embedded in the smart devices

dominates the activity recognition area [1], [11]. Obvious
advantages of inertial sensors can be found over other sen-
sor modalities, ubiquity, cheap installation, unobtrusiveness,
usability, ease of use, and free of privacy issue. Since the
inertial sensors are attached to human body, they carry much
more body information than other sensors, which can infer
human activities in detail. Moreover, there is no occlusion
or visibility range issues exist in this case. Since activities
of daily living (ADLs) are ambulatory and trivial with high
level of diversity, unsupervised machine learning algorithms
are unlikely to identify ADLs. Thus, most activity recognition
algorithms are supervised learning based, where training data
with reliable labels is critical. However, the annotation pro-
cess of the training data requires huge human effort to scan
through the raw data for manual labels. In order to model
activities effectively and increase the generalization of the
model, large dataset with various human activity modalities
is needed, which makes the annotation process more chal-
lenging. The annotation issue is one of the major challenges
remains unsolved in the inertial sensor-based activity recog-
nition approaches.

In this paper, we propose an automatic data collecting
and labeling system by addressing the annotation issue, and
a novel coarse-to-fine ADLs recognition strategy for older
adults, by combining supervised and unsupervised machine
learning methods. Since older adults want to remain indepen-
dent with dignity for as long as possible, especially solitary
older adults, we aim at helping solitary older adults with
functional ability, to live independently longer, by model-
ing their activities. For this purpose, we collect data from
smart homes with multiple sensors, and annotate the data
automatically, by using a multiple sensors fusion strategy.
Previous studies tend to focus on differentiating solely among
ambulatory activities in controlled environments, which is
the most fundamental form of the problem in the activity
recognition sense. Although success has been achieved in
this regime, with reported high sensitivity rates and low
misclassification rates, this sort of scenario is too idealized
to be deployed. The diversity of ADLs in free-living situ-
ations may confuse the models trained in controlled envi-
ronments. Addressing this challenge, we propose a coarse-
to-fine strategy to discover activity clusters and recognize
them then. An unsupervised machine learning method is
employed to discover and segment the raw sensing data
into big clusters. This is a natural step to group the raw
sensing data into big clusters firstly, since large clusters
would be much easy for identification [12]. Then, a Hidden
Markov Model (HMM) is used to assign the clusters with a
well-defined activity set. Since HMM employs a mathemat-
ical model based random process, to describe the courses of
activities, the statistical property gives HMM the capability in
modeling a random signal sequence (activity) with multiple
features.

The rest of this paper is organized as follows. In Section II,
we describe the automatic data labeling system and the
coarse-to-fine ADLs recognition strategy. More specifically,
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we introduce the data collection protocol and smart
home settings for solitary older adults in Section II-A.
In Section II-B, we present the details of the proposed
automatic data collecting and labeling system. Section II-C
describes the coarse-to-fine ADLs recognition strategy. The
evaluation experiment setup and the experimental results are
shown in Section III. Finally, we make discussion on the
obtained results and draw conclusion in Section IV.

II. METHOD
In order to help solitary older adults remain indepen-
dent, maintain functional ability, and live at home longer,
we research the activity model of solitary older adults and
secure their safety at home. Collaborating with several local
independent aging facilities, we build a smart home for older
adults with an unobtrusive and continuous monitoring sys-
tem. This monitoring system consists multiple sensors, a two
dimensional (2D) laser scanner, a visual-depth information
(RGB-D) camera, and a smart watch. The 2D laser scanner
and the RGB-D scanner are environmentally mounted, while
the smart watch is worn on one hand.

Due to the limitations of environmentallymounted sensors,
such as occlusion and coverage, signals describing activities
in different angles are collected from different sensors, and
then are fused to interpret and model activities. The labeling
issue is one of the biggest challenges in interpreting and
modeling activities. Thus, we propose an automatic labeling
algorithm based on sensor fusion, and model the the activities
of older adults with IMU signals, to avoid the limitations of
environmentally mounted sensors.

A. SUBJECTS AND EXPERIMENT SETTING
15 healthy older adults: 8 males, 7 females, age 66.4±5.6
years, height 165.2±5.7 cm, body mass 68.6±13.8 kg,
and Body Mass Index (BMI) 24±7.2, entered our study
non-consecutively from August 2019 to November 2019.
They are recruited by the Office of Retirement Services of
Harbin Institute of Technology at Weihai. Ethics Committee
approval was obtained from the Institutional Ethics Commit-
tee of Harbin Institute of Technology at Weihai.

FIGURE 1. One apartment in the smart home with one older adult.

Since we target at modeling ADLs of older adults in
free-living situations, we do not have any training process for
the older adults. Each older adult was invited to an apartment
in the smart home, and lived there for a week or more,
as shown in Fig. 1. The smart watch was required to wear
on the non-dominant hand, to reduce the motion noise level.
And older adults were asked to charge the smart watches at
any time convenient to them, like taking a shower or having
dinner. Since several ADLs are rare in daily living, the envi-
ronment and layout of smart home is designed to guide the
activities of participants, by considering the integrality and
balance of the dataset we are going to create. The end table
is 0.55m away from the sofa, which is out of reach when
sitting/lying on the sofa. And the end table is about 0.42m
high, which means the participant has to get up and bend for
the things on the end table. An electric kettle is placed on the
ground. The participant needs to perform crouching activity
for a while when operating the kettle.

B. MULTIPLE SENSORS FUSION BASED AUTOMATIC DATA
COLLECTING AND LABELING SYSTEM
With great advances in embedded computing technologies,
smart wearable devices with inertial sensors play signif-
icant roles in our daily living, especially in health care.
Thanks to the pervasiveness of these wearable devices,
great potential has been demonstrated in characterizing
human activities and alleviating stress on limited medical
resources. The sensing data, such as acceleration and gyro-
scope, can be explored to model the activities for older
adults and uncover their health status. However, after a
decade of research in modeling activities of older adults,
accurate and reliable systems in use are few. In order
to train models, tremendous efforts have been placed in
data collecting and labeling. Many of them suffer from
huge human effort, technical and privacy limitations [13].
It is still challenging to collect accurate and reliable activity
data with labels. As a result, there is no commonly used
dataset for older adults exists. Addressing this challenge,
we propose a data collection system with an automatic anno-
tation strategy, to collect the ADL sensing data of older
adults and label it automatically. In the annotation process,
we focus on an activity set: standing, walking, bending, lying,
crouching, and sitting, which are ADLs closely related to
basic independent living.

1) HARDWARE DEVICES
The automatic data collecting and labeling system consists
of a 2D laser scanner (3irobotix lidar C0602), a RGB-D cam-
era (Intel RealSense camera D415), a smart watch (Huawei
watch 2), and a Raspberry Pi computer (Raspberry Pi 3B+),
as shown in Fig. 2. The 2D laser scanner is horizontally
mounted on the ground under the sofa, to capture the foot
locomotion. Ranging laser technology provides a continuous
stream of distance data, which takes advantages in wide field
of view and consistency of any lighting condition. It gives
us the potential to capture the foot locomotion rapidly and
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FIGURE 2. The automatic data collecting and labeling system for modeling ADLs of solitary
older adults. The 2D range data (2D laser scanner), the depth images (RGB-D camera), and
the IMU sensing data (smart watch) are collected and transfered to the AWS cloud for
storage, by using a Raspberry Pi computer. The data is downloaded to a local server,
annotated by using our automatic labeling system, subsequently.

measure walking speed precisely. Considering the high levels
of occlusion and part self-occlusion, sofas with thin legs
are chosen, and the laser scanners are mounted as far as
possible from the feet. The RGB-D camera is on the ceiling
above the television, facing the sofa in the living room. The
depth images captured by the RGB-D camera are used to
identify the posture of older adults. Since we intend to model
the ADLs of solitary older adults with the lowest invasive,
the smart watch is the only sensor to be amounted on the
body. As we discussed previously, the laser scanner and the
camera are environmentally mounted, they cannot collect
the activity data continuously, when the participant gets out
of the sights of the devices. Therefore, we tend to model the
activities of older adults with the smart watches, by com-
bining the laser scanners and the cameras. The Raspberry Pi
computer transfers the data collected to the AWS cloud. And
the de-identified and encrypted data on the AWS cloud can
be used for labeling and activity modeling. Finally, the ADLs
data is annotated by using our automatic labeling system,
to form the ADLs dataset for activity modeling.

The 2D range data is generated by the laser scanner at
6.2Hz with an angular resolution of 0.5◦, and stored in point
clouds. The range radius of the point cloud is 10m. The
RGB-D camera has two depth imagers, an infrared projector,
and a RGB module. Two depth imagers enhance the RGB-D
camera capability of capturing depth image with wide field
of view. And the infrared projector enables the camera to
work under poor lighting conditions, with a large distance
range from 0.2m to over 10m. Considering the computational
burden of Raspberry Pi computer, the transmission speed
limit of USB2.0, and the network bandwidth, we empirically
determine the resolution and the frequency of the camera to be
640×480 and 6Hz, respectively. We collect barometer signal

at frequency 20Hz, three axes of acceleration and gyroscope
at frequency 50Hz, from the smart watch. By switching off
the network and uploading the data when charging, we make
the smart watch maintain a reasonable battery life, the watch
operational cycle can reach as long as 28 continuous hours.
With the long battery life, participants can charge the watches
at any time convenient to them, like taking a shower. More-
over, the build-in memory of smart watch can store continu-
ous data for 14 days without uploading.

2) RANGE DATA BASED WALKING SPEED ESTIMATION
Ranging laser technology provides a continuous stream of
distance data, which gives us the potential of capturing foot
locomotion rapidly and measuring walking speed precisely.
When the point cloud is generated by the laser scanner,
K-means classifier [14] is employed to partition the point
cloud into different clusters (including the foot point cluster),
as shown in Fig. 3. In our work, a foot is assumed to have an
approximate circle shape. Since the laser scanner mounted on
the ground under the sofa environmentally, we just have the
foot silhouette in one direction. Thus, a point cluster has an
arc or convex shapewithin a reasonable ratiowill be classified
as foot. Based on this foot shape assumption, several foot
features are employed to identify and trace the two feet, which
are detailed below.

1) Reasonable distance ratio Fd . The central point of each
point cluster is calculated. The foot point cluster should be
within a reasonable Euclidean Distance, Fd , as follows:

Fd = |p− Pc| < 0.14 (1)

where | · | denotes the L2 norm; p = x, y is one point in
the point cluster P, {x, y} is the coordinate of point p; Pc is
the central of the point cluster P; the distance ratio is set to
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FIGURE 3. The foot silhouette in one direction generated by the laser
scanner. A point cluster is assumed to have an arc or convex shape, which
is a typical shape of foot. Other directions have the similar observations.

0.14m, which is the maximum distance from cluster edge to
the cluster center.

2) Foot length Fl . The length of one point cluster in moving
direction is estimated as foot length, as follows:

Fl = |pf − pb| (2)

where pf and pb are the two points with maximum distance
in the moving direction.

3) Foot circularity Fc. The radian of each point in the
cluster edge is calculated. And the mean value of the radians
is considered as approximate foot circularity, Fc, as follows:

Fc =
1

n−1

n∑
i=2

acos
|pi − Pc|2 + |pi−1 − Pc|2 − |pi − pi−1|2

2|pi − Pc| · |pi−1 − Pc|

(3)

where pi−1 and pi are two adjacent points in the cluster edge,
n is the number of points in the cluster edge.

4) Foot arc length Fa. The sum of the Euclidean Distance
between two adjacent points is calculated as foot arc length
as follows:

Fa =
n∑
i=2

|pi − pi−1| (4)

where pi−1 and pi are two adjacent points in the cluster edge,
n is the number of points in the cluster edge.

Due to the dynamics of walking speed and trivial foot
motion in daily living, estimating walking speed in daily
living is really challenging. Thus, we take a frame work
combining Random Forest and Kalman Filter to detect feet
and track them. In this frame work, we assume that the
background is static, and the foot appearance is fixed. Since
the real-world environment is with high diversity, accurate
walking speed estimation asks for identifying feet from other
moving objects, such as crutches and animals. RandomForest
is employed to detect feet, and results in foot candidates. Then
foot candidates are fed into Kalman Filter for foot tracking.
Finally, the walking speed is estimated based on the tracking
trajectory.

Random Forest is one of the top performers for classifi-
cation tasks. By organizing multiple decision trees in a cas-
cade manner, Random Forest embeds the randomness in the
training phase, which gives the Random Forest capability of
dealing missing data and unseen data by reducing overfitting.

In our research, missing data and unseen data were observed
in occlusion and part self-occlusion situations. And Random
Forest can help the foot tracking process keep accurate. There
are many open source implementations of Random Forest,
such as OpenCV for C language [15] and Scikit-learn for
Python language [16]. We combine OpenCV and Scikit-learn
to gain both detection accuracy and computational efficiency,
by executing the OpenCV implementation of Random Forest
algorithm, with partially modified Scikit-learn parameters.
Here, we change the default setting of maximum tree depth
to 20, and training iteration to 100.

In order to avoid human effort involved in the annotat-
ing process, we collect two training datasets, no-person and
single-person datasets. Three indoor environments have been
chosen. For each environment, single-person and no-person
datasets are collected, 12 minutes duration each. Since the
backgrounds are static and same in both single-person and
no-person datasets for each environment, it is easy to anno-
tate background (negative dataset) and human feet (positive
dataset).

With the trained Random Forest classifier, the foot can-
didates are detected for each frame of the point cloud. And
the centroids of the foot candidates are fed into the Kalman
Filter for foot tracking. Each centroid will be assigned to a
Kalman tracker (Kalman filter). The Kalman filter has been
proved to be effective and accurate in estimating a target’s
velocity and position [17]. Addressing the occlusion issue
in the foot tracking, we employ the Kalman filter [18] to
model the walking activity as a dynamic system, by using the
OpenCV implementation, as following:

Xk = AkXk−1 + Bkuk + wk
zk = HkXk + vk (5)

where Xk = [xk , yk , ẋk , ẏk ] is the state vector of a centroid ck
in frame k , and zk = [xk , yk ] is the measurement vector. xk
and yk are the position components, while ẋk and ẏk are the
velocity components; Ak is a state transition matrix; uk is the
control vector containing acceleration force; Bk is the control
matrix of acceleration effect; wk is the process noise; Hk is
the transformation matrix, mapping Xk into measurement zk ;
vk is the observed noise. Since the frequency of the 2D laser
scanner is 6.2Hz, the interval between two frames is 0.16s,
which is small for walking activity. Thus, we assume that the
foot velocity is constant. As a result, the control vector uk is
set to 0.

Here, the Kalman filtering process takes two stages: pre-
diction and measurement. Take one tracker for example. For
frame k , the centroid ck is predicted, based on the transi-
tion matrix Ak−1 and the centroid ck−1. Then, we search
for foot candidate around the predicted centroid ck . If the
foot candidate does exist in the predicted area, the centroid
ck will be updated. And the association between ck and
ck−1 is recorded in the transition matrix Ak , which will be
used for prediction in next iteration. If the foot candidate
does not exist in the predicted area, occlusion may happen.
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FIGURE 4. Foot tracking and walking speed estimation. Small white points are the point clouds, while dark
points and blue points indicate the detected background and the central points of foot clusters,
respectively. White lines are the distances between footprints. For demonstration purposes, point clouds
are shown every 8 frames.

The predicted centroid ck is reserved, and the transition
matrix Ak is also updated based on ck . This tracker is reserved
waiting for a foot candidate which matches the prediction.
If there is no match for the predictions in the following
frames, the tracker will be removed, and the detected centroid
ck−1 will be considered as the end of a walking activity.
The step length between footprints in the foot trail is used to
calculate the walking speed, as shown in Fig. 4. Left foot and
right foot are identified according to the moving direction and
the distance to the scanner. And the two feet are tracked sep-
arately. Finally, the average speed of the two feet is defined
as the walking speed for each step in the tracking period.
If one footprint is occluded (missing), another footprint is
used to calculate the walking speed. In the worst case, two
footprints are missing, next pair of footprints will be used
for calculation. In our experiment, we observed only one pair
of footprints missing. And it did not affect the accuracy in
walking speed estimation. The foot candidates in the first
frame are used as initial position, and the initial foot velocity
is set to 0.

3) DEPTH IMAGE BASED POSTURE ESTIMATION
The posture estimation runs parallel to the walking speed
estimation, recognizing activities from the perspective of
complementarity. Addressing the privacy issue, depth image
is chosen for posture estimation instead of RGB color image.
The pre-trained Convolutional Neural Network (CNN) of
OpenPose is fine-tuned to extract human skeleton structure,
by using transfer learning from RGB images to depth images.
OpenPose [19] is an open source library for multi-person
skeleton detection. It is worth to mention that, this per-
son skeleton detection system achieves high accuracy and
real-time performance. Then, the skeleton-based features are
fed into a Random Forest for posture recognition.

In the ADLs dataset we mentioned previously, depth
images and aligned RGB images are collected simultane-
ously. We employ a pretrained CNN of OpenPose to extract

human skeleton structures, by using the RGB images. The
extracted human skeleton structures are mapped to the corre-
sponding depth images. The obtained human skeleton struc-
tures and the corresponding depth images form the posture
dataset, to obtain our own CNN for depth images. Human
skeleton structure with 25 keypoints is used in this work,
which are nose, eyes, ears, neck, shoulders, elbows, wrists,
mid-hip, hips, knees, ankles, big toes, small toes, and heels,
as shown in Fig. 5. Less important keypoints are not shown
for demonstration purposes, such as eyes and heels. In order
to avoid confusion, the 6 activities in the activity set: stand-
ing, walking, bending, lying, crouching, sitting, are used as
postures here. The postures are marked by 3 human raters
independently. Since the dataset of depth images and aligned
RGB images is huge, labeling the postures by going through
the images frame by frame manually is time consuming and
unrealistic. We take a semi-automatic method to mark the
dataset, which is described later. Secondly, the pretrained
CNN of OpenPose is fine-tuned by using Caffe fine-tuning
toolkit [20] on our posture dataset. Our depth image based

FIGURE 5. Skeleton structure with keypoints extracted from depth image.
Keypoints of less importance, eyes, ears, toes, and heels, are not shown
here for demonstration purposes.
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FIGURE 6. The skeleton structures extracted by our tuned CNN and the 6 postures estimated by our posture estimation
algorithm.

task is related to the task of extracting human skeleton struc-
tures from RGB images. Thus, there is no need to train a
new model with costly relearning. What’s more, our posture
dataset is a relatively small collection, comparing with the
datasets used to train the CNN of OpenPose, MPII [21] and
COCO [22]. Due to a small size of our dataset, retraining
a brand new CNN could largely increase the possibility of
overfitting, whereas transfer learning requires much smaller
dataset [23]. The fine-tuning process is implemented in Mat-
lab 2017b with Caffe toolkit, and runs on a Titan GPU with
12GB video memory under Linux (Ubuntu 16.04).

Once the skeleton structure with 25 keypoints is extracted
from the depth image, as shown in Fig. 6, geometrical angles
and three dimensional (3D) pairwise distances are calculated
as posture features. The body trunk angle, atrunk , is designed
to identify bending and lying from other postures, which is
defined as the angle between the body trunk and the horizon-
tal plane. The definition of atrunk is given as following:

atrunk = acos
−→n · (pneck − pmid .hip)

|
−→n | · |pneck − pmid .hip|

(6)

where −→n = (1, 0, 0) is the normal vector of the horizontal
plane; pneck = {xneck , yneck , zneck} denotes the 3D coordinates
of keypoint neck (Fig.), xneck , yneck , and zneck are the x-
coordinate, y-coordinate, and intensity of keypoint neck in
the depth image.

The hip angle, ahip, is designed to classify sitting and
crouching from standing and walking, and the definition is
given as following:

ahip =
aleft.hip + aright.hip

2
aleft.hip(pneck , pleft.hip, pleft.knee)

= acos
(pneck − pleft.hip) · (pleft.knee − pleft.hip)
|pneck − pleft.hip| · |pleft.knee − pleft.hip|

(7)

where aleft.hip(pneck , pleft.hip, pleft.knee) denotes the angle
extracted from three adjacent keypoints, neck, left hip, and
left knee (Fig.); pleft.hip and pleft.knee are defined in the same
way of pneck ; aright.hip can be calculated from another three
adjacent keypoints, neck, right hip, and right knee. Consid-
ering occlusion or part self-occlusion, aleft.hip or pleft.knee is
used as ahip for further processing.
Defined in the same way, aleft.shoulder (pneck , pleft.shoulder ,

pleft.elbow), aright.shoulder (pneck , pright.shoulder , pright.elbow),
aleft.knee(pleft.hip, pleft.knee, pleft.ankle), and aright.knee(pright.hip,
pright.knee, pright.ankle) are employed to identify standing from
walking, bending from lying, and crouching from sitting.

Since occlusion and part self-occlusion frequently occur
in ADLs, distances between paired keypoints are calculated
for posture recognition in a complementary way. To calculate
distance features, we create two keypoint clusters L = {left
knee, right knee, left ankle, right ankle} andU = {left elbow,
right elbow, left wrist, right wrist}. Paired keypoints are
selected randomly from these two clusters and keypoint neck.
For example, right wrist and left knee are chosen from cluster
L and U , respectively. The distance between right wrist and
left knee, dright.wrist&left.knee, is calculated as following:

drightwrist&left.knee = |pright.wrist − pleft.knee|/s (8)

where s is a scaling parameter. The 3D distances are invariant
to rotation. However, they are with large variation in respect
to different people. To ensure the scale invariant, we normal-
ize the distances with a scaling parameter s. The distance
between two shoulder keypoints is defined as the scaling
parameter. The two shoulder keypoints are always visible for
our RGB-D camera. The distance between them is propor-
tionally related to the height of one particular person. And it
is stable and does not change dramatically through frames.
These are the reasons we choose two shoulder keypoints to
calculate the scaling parameter. Please notice that, keypoint
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missing caused by occlusion is inevitable. When keypoint
missing happens, features are set to Null.

The seven geometrical angle features are used to mark
the postures semi-automatically, under the supervision of
the human raters. atrunk , aleft.knee, aright.knee, aleft.hip, and
aright.hip can be employed to divide standing, lying, sitting,
and crouching into sever categories roughly according to con-
tinuous time, by using a threshold based method. Thresholds
for the features are decided empirically. atrunk , aleft.shoulder ,
and aright.shoulder are used for posture bending, while aleft.hip,
aright.hip, aleft.knee, and aright.knee are for posture walking.
Since the postures of older adults are continuous in time,
the human raters focus on the beginning and end of each
category, and mark the RGB images. The labels for depth
images can be obtained subsequently.

Once the features are calculated for one frame, a feature
vector is formed and fed to train a Random Forest classifier,
as we introduced in Section II-B.2. Since the Random Forest
implementation does not accept Null data, the Null features
are set to 2π and 100 for geometrical angles and 3D pairwise
distances, respectively. In our experiment, we found that
the posture estimation subsystem cannot identify standing
from walking accurately. As we can observe from Fig. 6
(standing and walking), two postures standing and walking
are very similar to each other. The walking speed estima-
tion subsystem can help in recognizing these two postures,
where walking speed more than 0.05m/s is considered as
walking.Moreover, the posture estimation subsystem also has
difficulties in identifying bending and crouching, because of
part self-occlusion. It’s worth mentioning that small part of
occlusion would not affect the skeleton extraction, see Fig. 6
standing and sitting.

4) AUTOMATIC IMU DATA LABELING
In this research, we try to model ADLs of older adults with
the streaming barometer, acceleration, and gyroscope data,
which are collected from smart watches. As we all know,
ADLs are more ambulatory and trivial than the activities in
labs. There is no clearly distinct boundary to separate them
from each other. In daily living, there are numerous situations,
in which one activity may be interrupted by other activities,
and divided into small activity segments. For example, walk-
ing is interrupted by short stops, such as standing. Traditional
activity recognition algorithms cluster the walking segments
and the stops as different activities, and fragment the walking
into several parts. The fragmenting walking activities with
different interruptions have different motion features, which
make the modeling algorithm confused.

Inspired by the unsupervised activity discovery algorithm,
Unbounded Unsupervised Activity Discovery using the Tem-
poral Behaviour Assumption (UnADevs) [24], we classify
the sensing data into big clusters, by defining the minimum
duration of ADLs. The UnADevs algorithm has the capability
in discovering activity clusters, corresponding to periodic and
stationary activities in sensing data, not limited to acceler-
ation and gyroscope data. There are three key parameters

of UnADevs, the number of active cluster, the duration that
a cluster can remain active (tolerance), and the minimum
duration of a cluster. The UnADevs discovers activities in a
growing way. Firstly, the data is segmented into overlapping
windows by using a sliding window technique [27]. Then,
feature vector [b, SMVacc, ax , ay, az, SMVgyro, gx , gy, gz] is
calculated for each window, where b is the barometer, SMVacc
is the signal magnitude vectors (SMV) [13] of acceleration,
ax , ay, and az are the three axes of acceleration, SMVgyro,
gx , gy, and gz are with the same definitions for gyroscope.
For one window waiting for clustering, the distances between
active clusters and the window are calculated. The cluster
withminimumdistancewill be chosen for growing, by adding
the window into the cluster. The number of active cluster
determines the deviation of the target window. The tolerance
parameter decides which cluster should be turned into inac-
tive, and moves a new cluster into active. At the meantime,
the minimum duration parameter prevents some small clus-
ters from creating. The size of the sliding window is set to
2s, and two consecutive windows overlap with each other
for 1s.

A voting strategy is employed to label the sensing data,
as shown in Fig. 7. For each discovered activity cluster,
the sliding window technique is used to segment the clus-
ter into overlapping windows. And the windows of walking
speed estimation vote for walking and still, while the win-
dows of posture estimation vote for other activities in a com-
plementary way, as we described at the end of Section II-B.3.
Since the walking speed estimation is with high accuracy,
the voting from walking speed estimation is with high prior-
ity. Although the walking speed estimation and the posture
estimation are combined to improve the labeling accuracy,
misclassifications were reported in several sling windows.
Because of the interruptions of other activities, the mis-
classifications in several windows are reasonable. What’s
more important, misclassifications with much lower detec-
tion rate do not affect the final labeling results (more details
in Section III-B and III-C).

Before the labeling process, the voting strategy is used to
tune the parameters of the UnADevs algorithm. The initial
parameters are set to 3, 22s, and 16s for the number of active
cluster, the tolerance, and the minimum duration of a cluster,
respectively. For each cluster, activitywith highest percentage
wins the vote. And the mean value of the highest percentages
for all clusters is used to tune the three key parameters.
The larger the mean value is, the better the parameters are.
We empirically change the value of the parameters, to achieve
the highest mean value. As a result, we got the parameter set:
7, 30s, and 25s for the three key parameters.

With the tuned parameters, the sensing data is classified
into clusters, as discovered activities. The voting strategy is
used again to label the clusters, as we described previously.
For one cluster, the activity with the highest voting percentage
will be assigned to this cluster. Finally, the sensing data
clusters with activity labels form the ADL dataset for older
adults.
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FIGURE 7. Voting strategy for labeling the sensing data. Y axis of acceleration is shown in different colors
(bottom), corresponding to the discovered activity clusters. Walking speed estimation is shown in the
middle, while the posture estimation is plotted on the top. Time axes are shown in hour:minute and
minute.second. The numbers {0,1,2,3,4,5} in the top line plot indicate the postures standing, walking,
bending, lying, crouching, and sitting, respectively. The red rectangles are the sliding windows.

C. COARSE-TO-FINE ADLS RECOGNITION STRATEGY
Since it is difficult to separate ADLs from each other as we
discussed previously, the coarse-to-fine strategy is employed
to classify ADLs into big clusters roughly, and refine them
subsequently. Firstly, the sensing data goes through the tuned
UnADevs algorithm. Clusters are generated as discovered
activities. Secondly, the clusters are divided into overlapping
windows, W = {...,wi, ...} by using the sliding window
technique. The overlapping windows are further divided into
small slots, which are defined as sampling periods. Let us
denote the slots as wi = {..., sij, ..}, where s

i
j is the jth slot in

window wi. We divide the window into ten slots in this work.
Since acceleration signal cannot identify activities with small
motions, such as standing, lying, and sitting, gyroscope signal
is combinedwith acceleration signal to detect the pose change
of forearm. And the barometer signal is employed to recog-
nize activities with different altitudes. Feature vectors with
nine features (we mentioned in Section II-B.4) are calculated
for slots. Thirdly, the feature vectors of slots are fed into the
HMM training process [29]. Finally, posterior probabilities of
activities in the activity set are estimated by the trained HMM
for the slots. For one slot, the activity with highest probability

will win and be assigned to this slot. Slots vote for windows,
and windows votes for clusters, subsequently.

The HMM can naturally identify the ADLs, by modeling
temporal dependencies between consecutive activities. And
numerous strong results have been obtained by using HMM
for modelling ADLs [28]. Thus, a HMM is employed to
recognize activities by using the sensing IMU data in this
research.

The HMM for activity recognition can be expressed in
a five item array as: φ = (M ,N , π,A,B), where M is
the number of invisible states (activities). Since there are
6 activities in the activity set, the number of invisible states is
set as M = 6; N is the number of observation values, which
will be described later; π is the initial state distribution cor-
responding to the invisible states, π = {πm}, m = 1, . . . ,M ,∑

m πm = 1; A is the state transition matrix with sizeM×M ,
which describes the transition probability between two states;
B is the emission matrix with size N × M , which describes
the emission distribution of the HMM. The ADLs dataset for
older adults we created is used to train the HMM.

The implementation of the HMM for our research has
been carried out by using Seqlearn for Python language.
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The initialization condition for training a HMM is summa-
rized as following: 1) The number of invisible states M = 6,
since we take 6 activities into consideration; 2) The number of
observation values N = 26; 3) The initial state distribution:
π1 = 1, πj = 0, j = 2, . . . , 6, corresponding to the
6 activities; 4) The initial state transition matrix A obeys
uniform distribution by general principle [10]; 5) The initial
emission matrix B also obeys uniform distribution.

III. EXPERIMENTS AND RESULTS
A. EVALUATION ON WALKING SPEED ESTIMATION
SUBSYSTEM
Various protocols in measuring walking speed exist in the
literature, such as Timed-Up and Go (TUG) and Timed
25 Feet Walk (T25FW). These physical performance instru-
ments are frail for elderly populations, suffering from signifi-
cant intra-individual test-retest variability [25]. Habitual Gait
Speed (HGS) is reported to be reliable and considered as an
useful indicator in clinical trails [30]. The measuring process
of HGS is easy in implementation, which requires no doctor
or clinical equipment. Therefore, HGS is chosen and used as
ground truth, to evaluate the range data based walking speed
estimation subsystem. As we proposed an automatic labeling
system, which consists of two subsystems, walking speed
estimation subsystem and posture estimation subsystem. And
we are going to evaluate these two subsystems separately.

15 older adults were recruited to take part in the evaluation
experiment. Distance in HGS measurement is the main fact
in influencing the accuracy of measuring gait speed. HGS
over 4metres has been reported excellent reliability in clinical
trails [30]. In our experiment, the participants were asked to
walk a 5.5 metres path with their normal speed, and repeat
the test 5 times. Before the experiment, the participants could
practice walking on the path. The 2D laser scanner was
mounted on the ground just beside the walking path, as shown
in Fig.8. The range data was collected, when the participants
were walking on the path. At the mean time, we timed the
walkings to calculate the ground truth walking speed by using
a stopwatch.

Since we estimate the walking speed of each step, abso-
lute error range, mean absolute error, and error variance are
employed to validate the walking speed estimation subsys-
tem, as shown in Table 1. All intraclass mean absolute error
is 0.06m/s. Slightly higher mean absolute error value was
reported for the youngest female participant (age 57, walker),
with the highest error of 0.11m/s. However, the highest error
is small according to the mean absolute errors (0.06m/s),
which is an evidence of the accuracy of the walking speed
estimation subsystem. The slower the walking is, the more
accurate the estimation is. As far as we know, most walking
activities of older adults are slow in free-living situations,
slower than 0.60m/s. Considering manual operation error
(timing with a stopwatch), the accuracy of our walking speed
estimation subsystem is reasonable and acceptable for label-
ing the dataset in the complementary way.

FIGURE 8. Range data based walking speed estimation subsystem. The
2D laser scanner was mounted on the ground just beside the walking
path. A Raspberry Pi computer was used to upload the range data, which
was supplied by a power bank. Please see the enlarged area (blue
rectangle) for details.

TABLE 1. Mean absolute errors and error variance for evaluation on
walking speed estimation. Male (M) and Female (F).

B. EVALUATION ON THE POSTURE ESTIMATION
SUBSYSTEM
The posture estimation is designed as a subsystem of the
automatic labeling system, and runs parallel to the walk-
ing speed estimation in a complementary manner, since the
posture estimation is assumed to be not accurate due to the
slowmovements and the occlusion issue. Thus, the evaluation
here is designed to check the complementary between the
walking speed estimation and the posture estimation. Firstly,
the classification accuracy is employed to locate the limita-
tions of the posture estimation subsystem, by using the ADLs
dataset we created. Then, the complementary is checked in
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TABLE 2. Confusion matrix, illustrating the accuracy of the posture estimation. The classification accuracies of the 6 postures are shown in bold, while
noticeable misclassification rates are shown in gray areas.

FIGURE 9. Problematic areas of posture estimation in identifying standing and walking. Red rectangles
indicate the misclassification areas. The speed estimation can help in refining the estimated postures. Time
axis is shown in minute.second.

the misclassification areas, to find out whether the posture
estimation can be refined by the estimated walking speeds.

The confusion matrix of classification accuracy is used to
locate the limitations, as shown in Table 2. The classification
accuracies of the six postures are shown in bold, while notice-
able misclassification rates are shown in gray areas. It can be
easily observed that, the accuracy of the posture estimation
subsystem is high (average accuracy 89.3%). As the posture
estimation is designed as a subsystem of a ground truth label-
ing system, let us look into the gray areas (misclassification
areas), to check the complementary between the walking
speed estimation and the posture estimation. The biggest lim-
itation of the posture estimation subsystem focuses on identi-
fying walking from standing, bending, and crouching, which
is with the lowest recognition accuracy (78.5%). A graphical
user interface (GUI) was developed to help us look into the
misclassification areas, as shown in Fig. 9. It can be easily
observed that, with the help of speed estimation, walking
postures can be easily identified from the other three postures
(walking speed larger than 0.1m/s). With the still estimation,
walking speed 0m/s, standing posture can be refined from
walking misclassification, Fig. 9 the first two rectangles.

The remaining limitations focus on identifying bending and
crouching. Since these two postures rest at relatively quiet sta-
tus, the walking speed could not refine the posture estimation.
We further looked into the classification areas of these two
postures, and found that the misclassifications did not gather
together. With much lower misclassification rates than the
accuracy rates, the misclassifications of these two postures
do not affect the final voting labels.

C. DOUBLE-CHECK ON THE AUTOMATIC LABELING
SYSTEM
Since the automatic labeling system is designed to be with
extremely high accuracy, we double-checked the reliability
of the system by running a long test (four days) under the
supervision of the three human raters, before generating the
reliable ground truth. The three raters went through the labels
generated by the automatic labelling system with the help of
the GUI. The GUI organizes the labels along with the dis-
covered activity clusters, the voting percentages, the walking
speeds, and the estimated postures, as shown in Fig. 10. The
raters can zoom in and out to check the details or skip quickly.
They can also click at one point to take a view of RGB images,
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FIGURE 10. Double-check process with the GUI. The GUI organizes the labels along with the discovered
activity clusters, the voting percentages, the walking speeds, and the estimated postures. Two red circles
indicate two clicks, corresponding to the following two RGB images. Labels with the voting percentages are
shown in acronyms: standing (S), walking (W), bending (B), lying (L), crouching (C), and sitting (S).

TABLE 3. Confusion matrix, illustrating the accuracy of the the coarse-to-fine ADLs recognition algorithm.

to confirm the final label. In the long test, only 32 cases with
lower largest voting percentages (around 74%)were reported,
due to occlusion and part self-occlusion, as shown in Fig. 11.
In this long test, we confirmed that they did not affect the
final labels. We believe that the automatic labeling system is
reliable to generate ground truth for training and testing.

D. EVALUATION ON THE COARSE-TO-FINE ADLS
RECOGNITION ALGORITHM
Table 3 gives the evaluation on the coarse-to-fine ADLs
recognition algorithm in confusion matrix form. It can
be easily observed that, the recognition algorithm outputs
promising results, accuracy over 91%. Lower accuracies are
obtained in recognising bending and crouching, which are

similar to the results generated by the posture estimation.
The similar results proves that it is challenging in identifying
bending and crouching. As we know, older adults pay most
of their time in lying and sitting, standing and walking come
the second, bending and crouching the least. According to the
results shown in the table, we come to a conclusion, the longer
the activity duration is, the more accurate the activity recog-
nition is. Comparing with bending and crouching, accuracy in
identifying standing and walking is higher. Since recognizing
these two activities is more important in modeling activity
shifts among the elderly population, higher accuracy makes
our ADLs recognition algorithm more valuable for imple-
mentation. The highest accuracies are obtained in recognizing
lying and sitting, which are rest-activities with small motions
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FIGURE 11. Misclassifications reported in identifying bending and
crouching. Red words are the misclassifications, and white words are the
manual labels.

(less energy consumption). Duration statistics of these two
activities are useful for habit preference modeling.

IV. DISCUSSION AND CONCLUSION
Targeting at the challenges in ground truth generation,
we propose an automatic data collecting and labeling system.
An unsupervised machine learning method is employed for
activity discovery, to deal with the ambulatory and trivial
ADLs. Then, a multiple sensors fusion strategy is used to
interpret and annotate the discovered ADLs. This system is
double-checked to be reliable in a long test. The unsupervised
machine learning method is the key to the automatic labeling
system. Due to the ambiguous boundary in the definition
of ADLs, it is impossible for human rater to discover and
annotate ADLs. The unsupervised machine learning method
gives us the opportunity to interpret ADLs as a whole.

The unsupervised machine learning method is also the key
to the coarse-to-fine ADLs recognition algorithm, since the
fragmenting activities make the ADLs modeling unrealistic.
Moreover, discovering and recognising activity is more nat-
ural than recognising activity directly. Another advantage of
our coarse-to-fine recognition algorithm is the high accuracy.
As discovering activities into big clusters, misclassifications
of several slidingwindowswould not affect the final detection
results.

Although the automatic data collecting and labeling system
is considered to be reliable, the activity discovering model
does not change among people. In order to deploy personal-
ized activity discovery and target identification, we plan to
model the three key parameters of the unsupervised machine
learning method associated to other sensing signals, such as
heart rate and blood pressure. Moreover, we plan to work
with local independent aging facilities to create a big ADLs
dataset, and make it available online.
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