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ABSTRACT Head pose estimation is an important sign in helping robots and other intelligence machines
understand human. It plays a vital role in designing human computer interaction systems because many
applications rely on precise results of head pose angles such as human behavior analysis, gaze estimation,
3D head reconstruction etc. This study presents a robust approach for estimating the head pose angles in
a single image. More specifically, the proposed system first encodes the global features extracted from
Histogram of Oriented Gradients in a multi stacked autoencoders neural network. Based on the hidden nodes
in deep layers, Autoencoder has been proposed for feature reduction while maintaining the key information
of data. A scalable gradient boosting machine is then employed to train and classify the embedded features.
Experiences have evaluated on the Pointing 04 dataset and show that the proposed approach outperforms the
state-of-the-art methods with the low head pose angle errors in pitch and yaw as 6.16° and 7.17°, respectively.

INDEX TERMS Head pose estimation, autoencoder, feature reduction, gradient boosting, global features.

I. INTRODUCTION
Recent the past few years, head pose estimation is one of
the active problems in facial analysis [1]-[7] that attracts lots
of attention from researchers due to its various application
in human-computer interaction, face recognition, 3D face
modeling, driver monitoring, etc. Specifically, head pose esti-
mation is the task of inferring the orientation of human head
from various sources such as: single or sequences 2D images,
videos or kinetic sensor with depth information, to name few.
A popular problem is to estimate head pose angles from a
single 2D image or 2D video and retrieve the computed head
pose angles which might include in 3 axes: pitch (x-axis), yaw
(y-axis) and roll (z-axis). Although recent researches have
been witnessed in many achievements in face recognition, the
accuracy of head pose estimation is not satisfied due to many
constrains in environment such as illumination condition,
facial expression, partially occluded head region, variation
head angle changing and other latent variables.

Numerous approaches have been proposed to address with
the automatic head pose estimation. These methods could be
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grouped into several main categories: template-based meth-
ods, regression-based methods, deformable model-based
methods and manifold based methods. Template based meth-
ods [8]-[10] address the head pose estimation as the clas-
sification problem where the pose angles are classified to
a class of given known pose label. Regression based meth-
ods [11]-[14] propose a linear or nonlinear function to
map from the training image or extracted features to dis-
crete or continuous pose estimation which often might be
affected with noise in environment. Many approaches are
derived from deformable model which use a set of paramet-
ric models to capture a face model which then is used to
match with the testing face [15]-[17]. These methods are
often demanded on the facial landmark points to estimate
the specific shape which could lead to the constraint to
extent and apply in such of low-resolution images. Recently,
many approaches have granted success in head pose estima-
tion with promising results by looking a low dimensional
representation of head pose angle from high dimensional
space. Manifold based methods [18]-[21] assume that dis-
criminative head pose angles lie on the lower dimensional
manifold embedded which could be found by the unsu-
pervised or supervised learning. The biggest challenge in
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manifold learning is to obtain an embedded view which
contains the changes due to the pose and ignore other image
variation sources such as lightning and noise.

Among those dimensional reduction methods, Autoen-
coder becomes a promising candidate with many great results
achieved in the past few years [22]-[24]. Autoencoder is a
combination of two parts: the encoder part for compressing
the data in the latent space and the decoder part for recon-
structing it to the original information. In dimensionality
reduction, Autoencoder tries to find a compact representa-
tion of the input through minimizing the error reconstruction
between the input and the reconstructed output in neural
nodes. Recent researches have shown that Autoencoder could
produce meaningful features inside high dimensional data
from the embedded space [23], [25], [26].

In recent years, tree-based ensemble methods have got
a celebrity status in prediction problem. Instead of using
a single model, they combine many weak regression trees
with poor performance to improve the prediction accuracy.
Another advantage is that they could fix various types of
predictor variable while requiring little data preprocessing
and handle with nonlinear function. Among with many trees-
based ensemble methods and their extensions, Extreme Gra-
dient Boosting (XGB) is a recent proposed method which
has been applied in many problems and got many promising
results [27] in classification problems.

This paper presents a framework called Stacked Auto
Encoder with Extreme Gradient Boosting (SAE-XGB) to
estimate the head pose angles from a single 2D image. Face
region is first detected and cropped before putting in the
preprocessing step. In the preprocessing step, feature infor-
mation which defines characteristic of pose angle is extracted.
In computer vision, global features such as Histogram of
Oriented Gradients (HOG), Scale-Invariant Feature Trans-
form (SIFT), Local Binary Pattern (LBP) etc. include the
shape description, contour representation and texture fea-
tures, which are invariant with noise and illumination change.
In this paper, we choose HOG extracted from the face region
detected as the input feature vectors. We proposed a multi
stacked autoencoder neural network to compress the feature
vector from the high dimensional space to a low dimensional
representation. The head pose angles are predicted by training
the embedded feature vectors with XGB model to improve
the accuracy. Overall, our main contribution could be sum-
marized as follows: As far as our best knowledge, this is the
first work to propose to use autoencoder neural network for
dimensionality reduction in head pose estimation. The model
is improved the prediction by employing a scalable gradi-
ent boosting system. Finally, the experiments prove that our
method outperforms the state-of-the-art head pose estimation
methods.

The rest of the paper is organized as follows.
Section 2 presents the related work. The proposed framework
is presented in Section 3. Experiment will be conducted and
discussed in section 4. Finally, section 5 summarizes the
results and gives some conclusions.
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Il. RELATED WORKS

Head pose estimation is an interesting problem which has
attracted researches and reviews in a long period of time.
Most of popular works mainly use the 2D RGB image data.
As mentioned in previous section, those methods could be
grouped into several main approaches: template-based meth-
ods, regression-based methods, deformable based method
and manifold learning methods.

A. HEAD POSE ESTIMATION

Template based methods treat the problem as the classifica-
tion problem where splitting the training image into several
groups with corresponding labels and train a classifier for
those groups. Some of well-known works are Yan ef al. [8]
and Li et al. [9]. Recent approach from Geng and Xia [10]
introduced the concept of soft labelling by considering the
neighbor labels around the true pose to alleviate the subjec-
tion in collecting training images. Although those approaches
could provide sufficient results, they are heavily affected with
noise and overfitting.

Regression based methods optimize a mapping from
linear or nonlinear functions from feature inputs to contin-
uous or discrete pose value, with possible candidate models
such as Support Vector Regressor from work of Ma et al. [11],
Gaussian Processes Regressors from Ranganathan et al. [12].
Another work from Haj et al. [13] proposed to correct the
misalignment of head location in image by using Partial Least
Square (PLS). Recently, Drouard et al. [14] proposed to use
a mix method from unsupervised learning and regressor in
head pose estimation. The regressor model called Partially
Latent Mixture of Linear Regressor maps extracted features
from high dimensional space to latent space of head pose
angles and bounding-box shifts. With many developments in
artificial neural networks and convolutional neural network
(CNN), various methods proposed to use CNN to compute the
head pose estimation, which could be considered as a recent
approaches of regression methods. Liu er al. [28] proposed
to use CNN network to train on a simulated synthetic head
image first and then used it to evaluate on the real data. Recent
approach from Ranjan et al. [29] proposed a complete system
to detect even face, landmark localization, pose estimation
and gender by using a trained CNN to extract the inter-
mediate features to put it in multi-task learning algorithms.
The approach achieved promising results in different problem
fields, but it requires a large scale of image to train CNN.

Deformable Based Methods: Another main approach is
called deformable based methods where they try to use a
statistical model and optimize the model parameters which
could describe well with head pose. Commonly method is
Active Shape Models (ASMs) [15]. Constraint Local Models
[16] tries to minimize the disparity between the 2D feature
points and projected 3D points in 2D plane through a rotation
process. Another work was from Sun ef al. [17] when they
proposed to use Non-Least Square Model to compute the
depth estimation from 3D view for estimating the head pose
angles. Those methods are often demanded on landmark
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points which made them sensitive to several uncontrol factors
such as change of identity, occluded part region, or facial
expression.

Manifold Learning Methods: In recent years, manifold
learning is becoming a promising approach to solve the
head pose estimation when many works proposed to use
from simple such as PCA, LDA [18] to other advanced
embedded methods like Isomap [19], Locally Linear Embed-
ding (LLE) [20]. The idea is root from the assumption that
the meaningful pose angles lie in a low-dimensional space.
Wang et al. [21] proposed a method called Supervised Sparse
Manifold Regression to combine the supervised learning and
sparse regression into manifold space. Another work from
Wang and Song [30] when they improve the head pose
accuracy by incorporating the pose angles information into
manifold learning space.

The recent advent of depth cameras enabled a new
approach for head pose estimation using depth-based
information. Depth data helps to improve the weakness in
using RGB image only such as noise, illumination change,
expression. For an instance, Seemann et al. [31] proposed to
incorporate the depth information at head region with color
histogram to train a neural network. In a different approach,
Venturelli et al. [32] used Siamese architecture in improving
a deep neural network training in a Kinect head pose data.
Recently, Zhang et al. [33] used a multi-stream multitask
neural network to estimate head pose angle in RGB-D videos,
which is 2D videos containing with depth information.
In many situations, depth is considered as an addition infor-
mation added with photometric data and cannot be used
alone.

B. AUTOENCODER FOR DIMENSIONAL REDUCTION
Autoencoder is one of advanced neural networks that have
many applications, one of these is dimensionality reduction.
Wang et al. [24] took a quantitatively survey to compare the
ability to reduce dimensionality of autoencoder and others
state-of-the-art dimensionality reduction methods. The work
has shown that the autoencoder can indeed learn meaningful
somethings in the latent space. Jiang et al. [34] proposed to
use supervised information to further guide the autoencoder
in finding the latent space. Another work [35] combined
the hand craft feature extracted in features and latent fea-
tures extracted by autoencoder to get fast image retrieval
in domains. Although this network has been used to solve
the dimensionality reduction in various problem [36]-[38],
there is no recent works in head pose estimation and related
problems.

C. GRADIENT BOOSTING MODELS

Gradient Boosting is an important tool in the field of
machine learning, providing with great achievements in per-
formance on classification, regression and ranking tasks.
Among all different gradient boosting algorithms, gradient
tree boosting [39] is a highly effective and widely used
method. It has been shown to achieve the state-of-the-art
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accuracy on many classification benchmarks [40]. However,
to the best of our knowledge, research on gradient tree-based
boosting in head pose estimation has not been fully docu-
mented to date. Driven by the successful application of meth-
ods in various problem field such as travel time prediction
[41], predicting symptom severity [42], tracking algorithm
[43] etc., we proposed to use a recent advanced tree-based
boosting called Extreme Gradient Boosting (XGB) [27] to
predict the head pose angles encoded in the embedded space
generated by Autoencoder.

llIl. THE PROPOSED FRAMEWORK

In this section, the proposed method called SAE-XGB is
described in detail. The overview framework is given in
Figure 1. This model estimates the pitch head pose angles
and the yaw head pose angles from a 2D image. Given
single query image, the face region in image is detected
using Single Shot Multibox Detector [53] and cropped to
size 150 x 150 pixels. After that, the Histogram of Oriented
Gradient (HOG) features in image are extracted. In this paper,
we use both unsigned and signed histogram bin. In addition,
additional energy functions are used to provide the robust
information for image. In specific:

o Image is divided in 9 x 9 blocks

o Use 9 unsigned bins, 18 signed bins and 4 energy fea-
tures to compute the feature vectors

« In total, that gives us a one-dimensional vector v €
R™P withD =9 x 9% (9 + 18 4+ 4) = 2511.

To further reduce dimensionality, multi fully connected hid-
den layers with different hidden units are stacked for forming
a Stacked Autoencoder (SAE), as shown in Figure 2. Autoen-
coder is an unsupervised learning neural network having
structure very similar to the multiplayer perceptron (MLP)
network which often have an input layer, an output layer. It is
noticed that the output layer would have the same node as
the input layer to reconstruct its own input. The autoencoder
has two parts: encoder part and decoder part. In this study,
we reduce them through two fully connected layer having
hidden units 512 and 256, respectively. Each fully connected
layer is followed by Rectifier layer (ReLU), a nonlinear layer
help model generalizes with variety of data. Next, a Dropout
layer is put to randomly drop 20% probability of hidden units
in training process for preventing the overfitting problem.
The SAE network in trained by Adam optimized method
in 10 epochs with batch size 30 at learning rate 0.001. The
reduced features extracted from the second fully connected
layer would have the length of 256.

Next, those features vectors are then trained a classifier
namely XGB to classify two classes pitch and yaw angle
respectively in 100 iterations at learning rate 0.05. XGB is
a supervised learning model, proposed by Chen and Guestrin
[27]. Tts core uses Gradient Boosting Machine model which
combines weak “learner” into strong classifier in an iterative
process.

In the testing phase, face region is detected and extracted
from the single query image. In the following step,
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FIGURE 1. The proposed SAE-XGB model for head pose estimation.
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FIGURE 2. Overview on SAE network.

HOG features are extracted and flatten into vector where it is
put to trained stack autoencoder model (SAE). The encoder of
SAE helps to encode the vector into the more compact form
with length of 256. The predicted head pose angle, specific to
pitch and yaw rotation are estimated by putting the reduced
feature vector through the trained XGB model.

IV. EXPERIMENT STUDY

A. POINTING 04 DATASET

In this section, we describe the description about Pointing
04 dataset [44]. It consists of 15 sets of people which have
various poses. There are 13 yaw angles {—90, —75, —60,
—45, =30, —15, 0, 15, 30, 45, 60, 75, 90} and 9 pitch
angles {—90, —60, —30, —15, 0, 15, 30, 60, 90} degrees.
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FIGURE 3. Sample images with corresponding pitch and yaw head pose
angles in the Pointing 04 dataset, respectively.

The pose angles are recorded by asking the participant to look
at 93 markers which is corresponding to a specific pose in two
times. There are 93 poses available for each person, which
makes total 93 x 15 x 2 = 2790 images. The dataset is man-
ually annotated with a face bounding box. Figure 3 presents
some samples from the Pointing 04 dataset with their pitch
and yaw head pose angles, respectively.

1) DATA TRAINING

We perform the cross-validation on the dataset where it is
divided to six folds. Five of six subsets are used to train the
SAE-XGB model while the last subset is used for testing. This
procedure is repeated 6 times. The SAE-XGB model con-
tains two training components: the stack autoencoder (SAE)
component and the XGB component. In each repetition,
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FIGURE 4. Training loss and validation loss when training SAE component.

we use five of six subsets to train SAE with 80% of dataset
for training and 20% for validation. Figure 4 present the
loss when training SAE component of one running repetition
time. As we can see that, the training loss and validation loss
decrease dramatically just after a few epochs and become
stable after 4 epochs, which has proven that the SAE model
could quickly train and find the generalization of dataset.

After training, the encoder of SAE model is used to trans-
form the dataset of all six folds from original feature space
to a latent feature space of 256. It is notice that dataset
in the last fold is kept separately and is not used in the
training procedure. We found that the new latent feature input
transformed SAE model could present a more meaningful
meaning. Figure 5 shows the feature reduction applied on
the dataset of six folds using some popular manifold learning
methods such as principal component analysis (PCA), linear
discriminant analysis (LDA) compared with feature reduction
using our stack autoencoder model. It is clearly to see that the
embedded input transformed from SAE model could group
data points of same classes to the same regions much better
than using other feature reduction methods. This has proven
that using SAE, we could represent data in a new compact
feature space with much more meaningful than the original
data. However, when we reduce the input from the original
feature space to a lower feature space, the information of data
will be lost. In this case, the three-dimensional space might be
good for visualization, but the information of dataset will be
affected significantly. We balance between the lower feature
space of data and the lost information by choosing a higher
feature space of 256.

The feature input transformed from SAE model will be
trained using XGB component. Again, five of six folds will
be used to train XGB model while the last fold is used for
testing. The mean absolute error (MAE) and the accuracy of
the predicted head pose angle and the ground truth pose will
be calculated and reported. We trained XGB with 100 epochs
and measure the logarithmic loss in the training process,
which is defined as followed:

1 N
L=—5 > [yilogpi+ (1 = ylog —p]. (1)

i=1
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FIGURE 5. Feature reduction of input dataset in three-dimensional space
using various methods. (a) LDA method (b) PCA method (c) SAE model.
The embedded feature points got from SAE model could be grouped in
same regions much better than using other feature reduction methods
such as PCA, LDA.

where N is the number of training samples, y; is the outcome
of the i-th instance and p; would be the probability of the i-th
instance having the value y;. Figure 6 presents the log loss of
XGB model training in one validation of the cross-validation.
The figure shows that the training log loss decreases quickly
and becomes stable under 0.25 after 40 epochs.

B. EXPERIMENTAL RESULTS

In the first experiment, we report the accuracy of the proposed
model in cross-validation. Table 1 provides detail classifica-
tion accuracy of the predicted pitch angles and yaw angles
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FIGURE 6. The log loss of XGB training procedure in one-fold.

TABLE 1. The accuracy of pitch and yaw head pose angles in each fold.

Accuracy (%)

Fold Pitch Yaw
Fold 1 67.31 61.51
Fold 2 68.82 59.14
Fold 3 69.89 55.27
Fold 4 70.54 51.18
Fold 5 70.54 60.65
Fold 6 66.88 55.70

in each fold. As could be seen in table, the pitch head pose
prediction performs slightly better than the yaw angle.

In greater detail, the confusion matrices (in %) computed
in one-fold of the proposed methods on pitch and yaw respec-
tively are reported in Figure 7. As been shown clearly, most
incorrect predictions are adjacent to the proper ground truth
angle. This suggests that although the model predicts the
wrong head pose angles, the differences between the pre-
dicted values and ground truth values are small and accept-
able in practical problems when the constrains of head pose
angles are in differences of 5 degrees. In additional, the errors
tend to become increasing at the larger head pose angles.
It is noticed that the model performs badly at the —90°
pitch angles than other since there are much fewer training
examples for this angle.

In the next following experiment, we do the leave-one-out
testing where using 14 subjects for training while keeping the
last subject separately in the testing (unknown testing). The
validation process is taken and repeated the testing subject
randomly 6 times. Table 2 represents the mean of accuracy
= standard deviation of the validation and several state-of-
the-art methods reported on head pose estimation problem
including neural network based method [45], [46], the method
using partial least square approach [47] and the approach
using a tensor model to evaluate head pose angles based on
the location of nose-tip [48] and even the start-of-the method
using CNNs model [52]. The best mean performance is high-
lighted by bold face. According to experimental results, our
proposed method achieves better than all other compared
methods on evaluation measure.
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FIGURE 7. The confusion matrices (in %) of proposed method on (a) pitch
angles and (b) yaw angles.

TABLE 2. Head pose estimation classification accuracy of various
methods on the Pointing 04 dataset.

Accuracy (%)

Method Pitch Yaw
SAE-XGB 68.99+1.46 57.24+3.56

Patacchiola (CNNs) [52] 61.4 62.33

Stiefelhagen [45] 66.3 52.0

Haj (Linear PLS) [13] 58.70 45.57

Human Performance [46] 59.0 40.7

Gourier (Associative Memories) [46] 439 50.0

Tu (High-order SVD) [48] 54.84 49.25

Tu (PCA) [48] 57.99 55.20

Tu (LEA) [48] 50.61 45.16

When dealing with head pose estimation, the problem is
often evaluated based on the regression measures between
the predicted pose and ground truth pose values. The popular
used measure metric is mean absolute error (MAE), which is
defined as follow.

1 N
MAE = =% 1% —xil, @

with x; is the predicted head pose and x; is the ground truth
head pose angle.
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TABLE 3. The MAE for pitch and yaw angles of various methods

performed in Pointing 04 dataset.

Head Pose Estimation (Degrees)

is compared with many state-of-the-art head pose estimation
algorithms on the Pointing 04 dataset and yields significantly
better results not only in accuracy but the MAE scores also.
Specifically, SAE-XGB achieves in accuracy 68.99% for
pitch angles prediction and 57.24% for yaw angles prediction.
In additional, it gets the MAE with 6.160 for pitch and 7.170
for yaw angles, respectively. In future works we will use
the results of this study, head pose estimation, to improve
the accuracy of gaze tracking module embedded in human

Method Pitch Yaw
SAE-XGB 6.16+0.31 7.17+0.66
SAE-XGB(SIFT) 8.17 9.45
SAE-XGB(LBP) 10.11 11.47
Patacchiola (CNNs) [52] 10.57 7.74
Stiefelhagen [45] 9.7 9.5
Haj (Linear PLS) [13] 10.52 11.29
Human Performance [46] 9.4 11.8
Gourier (Associative
Memories) [46] 15.9 10.1
Tu (High-order SVD) [48] 17.97 12.9
Tu (PCA) [48] 14.98 14.11
Tu (LEA) [48] 17.44 15.88
Drouard [14] 8.47+10.35 7.93+7.9
GPR [50] 11.94+10.19 15.04+12.24
PLS [47] 12.25+9.73 13.38+10.8
SVR [49] 11.25+9.42 12.82+10.99

Then, the proposed method is compared with some previ-
ous mentioned above methods. We additionally benchmarked
the following support vector regression [49], Gaussian regres-
sion model [14], [50] as they are widely popular and used in
classification and regression problem. As be shown clearly
in Table 3, SAE-XGB model yields the lowest errors for both
pitch and yaw in compared with all other methods. Clearly,
it shows that features vectors reduced from stack autoencoder
network contribute to the discrimination of head pose angles
information in the vector space. In additional, the XGB model
has proven the stability in predicting head pose angles under
various head poses.

In addition, we provide an extensive comparison between
the feature we use HOG with other common visual descrip-
tors including Scale-invariant Feature Transform (SIFT) and
Local Binary Pattern (LBT) denoted by SAE-XGB(SIFT) and
SAE-XGB(LBT), respectively. While HOG computes the
number of occurrences of gradient orientation in the crop face
image, SIFT finds key points of in images by applying Dif-
ference of Gaussian and finding local extrema over scale and
space. LBP, in the other hand, constructs histogram formed
a binary coding vector surrounding pixel center. Looking at
the Table 3, we could see that using HOG in SAE-XGB
achieve a better performance than other methods in capture
the description of head pose information.

V. CONCLUSION

This paper presents a robust framework called SAE-XGB
to estimate head pose angles in various poses. Face images
are collected and then extracted the prominent information
to create feature vectors. The framework proposed a stack
autoencoder neural network training on those features vectors
for learning a dimensional reduction way to reduce features
vectors from high dimensional to lower representation. The
reduced features are trained on a classifier which use XGB
model to predict head pose angles. Experiments have shown
the effectiveness of SAE-XGB method. The proposed method
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