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ABSTRACT In this paper, we study the two-stage stochastic linear semi-infinite programming with recourse
to handle uncertainty in data defining (deterministic) linear semi-infinite programming. We develop and
analyze volumetric barrier cutting plane interior point methods for solving this class of optimization
problems, and present a complexity analysis of the proposed algorithms. We establish our convergence
analysis by showing that the volumetric barrier associated with the recourse function of stochastic linear
semi-infinite programs is a strongly self-concordant barrier and forms a self-concordant family on the first-
stage solutions. The dominant terms in the complexity expressions obtained in this paper are given in terms
of the problem dimension and the number of realizations. The novelty of our algorithms lies in their ability
to kill the effect of the radii of the largest Euclidean balls contained in the feasibility sets on the dominant
complexity terms.

INDEX TERMS Semi-infinite programming, stochastic linear programming, interior-point methods, volu-
metric barrier, cutting plane.

I. INTRODUCTION
The purpose of this paper is to introduce and analytically
study the two-stage stochastic linear semi-infinite program-
ming (SLSIP in brief) with recourse in the dual standard form

max cTx+ E [Q(x, ω)]

s.t. aT
γ x ≤ bγ , ∀γ ∈ 0, (1)

where x ∈ Rm1 is the first-stage decision variable, 0 is an
index set, the vectors c, aγ ∈ Rm1 and bγ ∈ R (γ ∈ 0) are
deterministic data, and Q(x, ω) is the maximum value of the
problem

max d(ω)Ty

s.t. wλ(ω)Ty ≤ hλ(ω)− tλ(ω)Tx, ∀λ ∈ 3, (2)

where y ∈ Rm2 is the second-stage variable, 3 is an index
set, the vectors d(ω),wλ(ω), tλ(ω) ∈ Rm2 and hλ(ω) ∈
R (λ ∈ 3) are random data whose realizations depend on
an underlying outcome ω in an event space � with a known
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probability function P , and

E[Q(x, ω)] :=
∫
�

Q(x, ω)P(dω).

To the best of our knowledge, the optimization problem
introduced in (1) and (2) has not been studied yet, although it
is the simplest nontrivial stochastic semi-infinite optimization
problem. A linear semi-infinite program is an optimization
problemwith a linear objective function and linear constraints
in which either the number of unknowns or the number of
constraints is finite. Clearly, the SLSIP problem (1) and (2)
has a finite number of unknowns and an infinite number of
constraints.

It can be seen that the SLSIP generalizes the ordinary
stochastic linear programming by allowing infinite number
of constraints on one hand, and the deterministic linear semi-
infinite programming by allowing uncertainty in data on the
other hand. The SLSIP is also a special case of the stochastic
semi-infinite programming (or, more generally, the stochastic
infinite-dimensional programming) by enforcing linearity in
the objective function and the constraints. The very broad and
direct applications of each of linear programs, semi-infinite
programs (see for example [1]–[7]) and two-stage stochastic
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programs (see for example [8]–[14]) attracted us to study
and analyze SLSIPs as a promising class of optimization
problems applicable to a wide range of real-life problems. See
the models in [15]–[17] which describe some applications in
radiation transfer theory, neutron transport theory, and waste
management.

Interior-point algorithms [18]–[30] are one of the most
intensively developed methods of convex optimization.
Luo et al. [22] (see also [23], [24]) derived a logarithmic bar-
rier decomposition-based interior point algorithm for deter-
ministic linear semi-infinite programming. An alternative to
the logarithmic barrier is the volumetric barrier of Vaidya [25]
(see also [26]). It has been found [14] that some cutting plane
algorithms for stochastic linear programming problems based
on the volumetric barrier perform practically better than those
based on the logarithmic barrier. For this reason, a number
of volumetric barrier Benders’ decomposition-based interior
point algorithms have been developed recently for solving
stochastic (linear, second-order, and semidefinite) cone opti-
mization problems. Below we briefly outline these algo-
rithmic results. In 2007, Ariyawansa and Zhu [27] derived
a volumetric barrier decomposition interior point algorithm
for two-stage stochastic (convex) quadratic linear program-
ming. In 2011, Ariyawansa and Zhu [28] generalized their
work in [27] to derive a volumetric barrier decomposition
interior point algorithm for two-stage stochastic semidefinite
programming. In 2015, Alzalg [29] exploited the work of
Ariyawansa and Zhu in [27], [28] to derive a volumetric
barrier decomposition interior point algorithm for two-stage
stochastic second-order cone programming.

Note that the setting in this paper is similar to that of
Ariyawansa and Zhu [27] for stochastic quadratic linear pro-
grams, but the linearity is assumed in the objective func-
tion, and, most notably, the semi-infiniteness is involved in
the constraints of our setting. The current setting is also
similar to that of Luo et al. [22] for deterministic linear
semi-infinite programming but the stochasticity with discrete
support is assumed here. In this paper, we utilize the work
of Luo et al. [22] for deterministic linear semi-infinite pro-
gramming on one hand and the work of Ariyawansa and
Zhu [27] for ordinary stochastic quadratic linear program-
ming on the other hand to derive volumetric barrier cutting
plane decomposition algorithms for two-stage SLSIP prob-
lem with recourse.

We establish our convergence analysis by showing that the
volumetric barrier associated with the recourse function of
stochastic linear semi-infinite programs behaves a strongly
self-concordant barrier and forms a self-concordant family on
the first-stage solutions.Wewill see that the self-concordance
analysis is established in this work in a different way than
that in Section 3 of [27]. In fact, as (convex) quadratic linear
programming is a special case of semidefinite programming,
the authors in [27] re-wrote the stochastic quadratic linear
programming problem as a stochastic semidefinite program-
ming problem (by formulating the linear inequalities as linear
matrix inequalities) and heavily made use of their own results

in [28, Section 4] for stochastic semidefinite programming.
In comparison, we approach the self-concordance proofs
from a linear programming point of view, which gives more
explicit and direct proofs because we use more elementary
arguments.

We establish polynomial complexity of the resulting meth-
ods. The dominant terms of the complexity expressions
obtained in this work are given in terms of the problem dimen-
sion and the number of realizations. Unlike the complexity
expression obtained for the logarithmic barrier algorithm
in [22], the dominant complexity terms for our volumetric
barrier algorithm are not affected by the radii of the largest
Euclidean balls contained in the feasibility sets. From this
advantage comes the importance of the development of this
paper. We will see that this significant advantage stems from
the use the volumetric barrier instead of using the logarithmic
barrier. We will also see that the ‘‘rich flavor’’ hidden inside
the volumetric barrier can be tasted in the proposed algo-
rithm of this work more than in their counterparts algorithms
in [27]–[29].

We mention how this paper is structured. In Section II,
we present our problem formulation, discretization, some
assumptions, and introduce the volumetric barrier problem
associated with SLSIP problem. In Section III, we first show
that the problem of finding an approximate minimizer of the
SLSIP problem can be reduced to that of finding an approx-
imate minimizer of the discretized problem under a certain
condition on themeasure of proximity of the current point x to
the central path. Then, we compute the gradient and Hessian
of the barrier functions in the second part of Section III.
In Section IV, we show that the set of volumetric barrier
functions for positive values of barrier parameter forms a
self-concordant family. Based on this property, we present
a class of volumetric barrier cutting plane interior point
algorithms and provide their convergence and complexity in
Section V. Section VI contains some concluding remarks.
The proofs of the convergence and complexity results are
given in Appendix VI.

We end this section by introducing some notations that will
be used in the sequel. LetRm×n denote the vector space of real
m×nmatrices. We use� to denote the Hadamard product of
matrices; i.e. (U � V )ij = uijvij for U ,V ∈ Rm×n. Let Rn∨n

denote the vector space of real symmetric n × n matrices.
For U ,V ∈ Rn∨n, we write U � 0 (U � 0) to mean
that U is positive semidefinite (positive definite) and U �
V or V � U to mean thatU−V � 0. For any strictly positive
vector x ∈ Rn, we define ln x := (ln x1, . . . , ln xn)T,

√
x :=

(
√
x1, . . . ,

√
xn)T and x−1 := (x−11 , . . . , x−1n )T. We also use

X := diag (x1, . . . , xn) to denote the n × n diagonal matrix
whose diagonal entries are x1, . . . , xn.

II. PROBLEM FORMULATION AND ASSUMPTIONS
In this section, we first present the extensive formulation
of the SLSIP problem (1) and (2) with discretization. Then,
we present the volumetric barrier problem for SLSIPs.
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A. THE SLSIP PROBLEM FORMULATION
AND DISCRETIZATION
We examine (1) and (2) when the event space � is finite. Let{(

d (k)0 ,w
(k)
λ , t

(k)
λ , h

(k)
λ

)
: k = 1, . . . ,K , λ ∈ 3

}
be the set of the possible values of the random variables
(d0(ω),wλ(ω), tλ(ω), hλ(ω)) and let

pk :=P (d0(ω),wλ(ω), tλ(ω), hλ(ω))=
(
d (k)0 ,w

(k)
λ , t

(k)
λ , h

(k)
λ

)
be the associated probability for k = 1, 2, . . . ,K . Then,
the two-stage SLSIP problem (1) and (2) becomes

max cTx+
K∑
k=1

pk%(k)(x)

s.t. aT
γ x ≤ bγ , ∀γ ∈ 0, (3)

where, for k = 1, 2, . . . ,K , %(k)(x) is the maximum value of
the problem

max d (k)
T
y(k)

s.t. w(k)T
λ y(k) ≤ h(k)λ − t

(k)T
λ x, ∀λ ∈ 3, (4)

We re-define d (k) as d (k) := pkd (k) for k = 1, 2, . . . ,K .
Further, in order to conveniently make use of the results
in [26], we rewrite the SLSIP problem (3) and (4) in the
following equivalent form:

min cTx+
K∑
k=1

%(k)(x)

s.t. aT
γ x ≥ bγ , ∀γ ∈ 0, (5)

where, for k = 1, 2, . . . ,K , %(k)(x) is the minimum value of
the problem

min d (k)
T
y(k)

s.t. w(k)T
λ y(k) ≥ h(k)λ − t

(k)T
λ x, ∀λ ∈ 3. (6)

Without loss of generality, we assume the vectors c and
aγ , γ ∈ 0, are normalized so that ‖c‖ = ‖aγ ‖ = 1, for all
γ ∈ 0. We also assume the vectors d (k) and w(k)

λ and t(k)λ , γ ∈
0, are normalized so that ‖d (k)‖ = ‖w(k)

λ ‖ = ‖t
(k)
λ ‖ = 1, for

all λ ∈ 3 and k = 1, 2, . . . ,K . Let

F1 :=
{
x : aT

γ x ≥ bγ , γ ∈ 0
}
;

F (k)
2 (x) :=

{
y(k) : w(k)T

λ y(k)≥h(k)λ − t
(k)T
λ x

}
, k=1, . . . ,K ;

F2 :=
{
x : F (k)

2 (x) 6= ∅, k = 1, 2, . . . ,K
}
;

F := F1
⋂

F2.

Then F denotes the feasible set of the SLSIP problem (5)
and (6). Throughout the paper, we make the assumptions that
F1 is contained in the unit hyperbolic [0, 1]m1 , F (k)

2 (x) is
contained in the unit hyperbolic [0, 1]m2 andF has nonempty
interior.
For any subsets Q1 ⊂ 0 and Q2 ⊂ 3, we can define

a corresponding discretization (or relaxation) of the SLSIP
problem (5) and (6) by considering only those constraints

indexed by Q1 in the subproblem (5) and only those con-
straints indexed by Q2 in the subproblem (6). So, we can
consider the following discretization of the SLSIP problem
(5) and (6).

min cTx+
K∑
k=1

%(k,n2)(x)

s.t. aT
i x ≥ bi, i = 1, 2, . . . , n1, (7)

where, for k = 1, 2, . . . ,K , %(k,n2)(x) is the minimum value
of the problem

min d (k)
T
y(k)

s.t. w(k)T

j y(k) ≥ h(k)j − t
(k)T

j x, j = 1, 2, . . . , n2. (8)

We construct the above discretization by choosing n1 (n1 ≥
2 m1) linear constraints from the constraint set {aT

γ x ≥ bγ :
γ ∈ 0} and n2 (n2 ≥ 2 m2) linear constraints from the
constraint set {w(k)T

λ y(k) ≥ h(k)λ − t(k)
T

λ x : λ ∈ 3} for
each k = 1, 2, . . . ,K . As will be illustrated thoroughly later
in the next section, the problem of finding an approximate
minimizer of the SLSIP problem (5) and (6) can be reduced
to that of finding an approximate solution: x ∈ F , y(1) ∈
F (1)
2 (x), . . . , y(K )

∈ F (K )
2 (x) of the discretized problem (7)

and (8) provided a certain bound on the measure of proximity
of the current point x to the central path holds.

For the sake of simplicity in presentation, we write A(n1) ∈
Rm1×n1 to denote the matrix whose ith column is the vector
ai ∈ Rm1 for i = 1, 2, . . . , n1. Likewise, W (k,n2) ∈ Rm2×n2

and T (k,n2) ∈ Rm1×n2 denote the matrices whose jth columns
are the vectors w(k)

j ∈ Rm2 and t(k)j ∈ Rm1 , respectively,
for j = 1, 2, . . . , n2 and k = 1, 2, . . . ,K . We also write
b(n1) ∈ Rn1 for the vector whose the ith component is bi
for i = 1, 2, . . . , n1, and write h(k,n2) ∈ Rn2 for the vector
whose the jth component is h(k)j , for j = 1, 2, . . . , n2 and
k = 1, 2, . . . ,K . With these simplified notations, the SLSIP
problem (5) and (6) becomes

min cTx+
K∑
k=1

%(k,n2)(x)

s.t. A(n1)
T
x ≥ b(n1), (9)

where, for k = 1, 2, . . . ,K , %(k,n2)(x) is the minimum value
of the problem

min d (k)
T
y(k)

s.t. W (k,n2)Ty(k) ≥ h(k,n2) − T (k,n2)Tx. (10)

The SLSIP problem (9) and (10) can be equivalently writ-
ten as a DSILP:

min cTx+
K∑
k=1

d (k)
T
y(k)

s.t. A(n1)
T
x ≥ b(n1)

W (k,n2)Ty(k) ≥ h(k,n2) − T (k,n2)Tx,

k = 1, 2, . . . ,K . (11)

VOLUME 8, 2020 4997



B. Alzalg et al.: Volumetric Barrier Cutting Plane Algorithms for Stochastic Linear Semi-Infinite Optimization

Note that the dual of the SLSIP problem (11) is the problem

max b(n1)
T
ν +

K∑
k=1

(
h(k,n2) − T (k,n2)Tx

)T
ν(k)

s.t. A(n1)ν +
K∑
k=1

T (k,n2)ν(k) = c

W (k,n2)ν(k) = d (k), k = 1, 2, . . . ,K

ν ≥ 0, ν(k) ≥ 0, k = 1, 2, . . . ,K ,

where ν is the first-stage dual multiplier and (ν(1); . . . ; ν(K ))
is the second-stage dual multiplier.

B. THE VOLUMETRIC BARRIER PROBLEM FOR SLSIPs
First, we define

F◦1 :=
{
x : s(n1)1 (x) := A(n1)

T
x− b(n1) > 0

}
;

F◦(k)2 (x) :=
{
y(k) : s(k,n2)2

(
x, y(k)

)
:= W (k,n2)Ty(k)

+T (k,n2)Tx− h(k,n2) > 0
}
for k = 1, . . . ,K ;

F◦2 :=
{
x : F◦(k)2 (x) 6= ∅, k = 1, 2, . . . ,K

}
;

F◦ := F◦1
⋂

F◦2 .

For simplicity, we write s1 and s2 for s(n1)1 (x) and
s(k,n2)2 (x, y(k)), respectively, when it does not lead to confu-
sion. Then we make the following assumptions:
Assumption 1: The matrices A(n1),T (k,n2) and W (k,n2) for

all k have full row rank.
Assumption 2: The set F◦ is nonempty.
Assumption 1 is for convenience. Assumption 2 guarantees

strong duality for first- and second-stage SLSIPs.
The logarithmic barrier for F◦1 is the function `(n1)1 :

F◦1 → R defined by

`
(n1)
1 (x) := −

n1∑
i=1

ln s1i(x), ∀ x ∈ F◦1 .

The volumetric barrier forF◦1 is the function v(n1)1 : F◦1 →
R defined by

v(n1)1 (x) :=
1
2
ln det

(
∇

2
xx`

(n1)
1 (x)

)
, ∀ x ∈ F◦1 .

Also under Assumption 2, F◦2 is nonempty and for x ∈ F◦2 ,
F◦(k)2 (x) is nonempty for k = 1, 2, . . . ,K . The logarithmic
barrier for F◦(k)2 (x) is the function `(k,n2)2 : F◦(k)2 (x) → R
defined by

`
(k,n2)
2

(
x, y(k)

)
:= −

n2∑
j=1

ln s2
(k)
j

(
x, y(k)

)
,

for all y(k) ∈ F◦(k)2 (x) and x ∈ F◦2 .
The volumetric barrier for F◦(k)2 (x) is the function v(k,n2)2 :

F◦(k)2 (x)→ R defined by

v(k,n2)2

(
x, y(k)

)
:=

1
2
ln det

(
∇

2
y(k)y(k)`

(k,n2)
2

(
x, y(k)

))
,

for all y(k) ∈ F◦(k)2 (x) and x ∈ F◦2 .
The volumetric barrier problem associated with the SLSIP

problem (9) and (10) is the problem

min η(n1,n2)(µ, x) :=cTx+
K∑
k=1

ρ(k,n2)(µ, x)+µ ς1v
(n1)
1 (x),

(12)

where, for k = 1, 2, . . . ,K , ρ(k,n2)(µ, x) is the minimum
value of the problem

min d (k)
T
y(k) + µ ς2v

(k,n2)
2

(
x, y(k)

)
. (13)

Here ς1 > 0 and ς2 > 0 are constants whose values will be
defined more precisely in the sequel, and µ > 0 is a barrier
parameter. If for some k, Problem (13) is infeasible, then we
define

∑K
k=1 ρ

(k,n2)(µ, x) := ∞.
The SLSIP problem (12) and (13) can be equivalently

written as a DSILP:

min

η(n1,n2)(µ,x)︷ ︸︸ ︷
cTx+µ ς1v

(n1)
1 (x)+

K∑
k=1

(
d (k)

T
y(k)+µ ς2v

(k,n2)
2

(
x, y(k)

))
︸ ︷︷ ︸

ρ(k,n2)(µ,x)

.

(14)

Throughout the paper, we denote the optimal solu-
tion of Problem (14) by (x(µ), s(µ), y(1)(µ, x), s(1)2 (µ, x),
. . . , y(K )(µ, x), s(K )

2 (µ, x)). The central path is defined as the
solution set (y(k)(µ, x), s(k)2 (µ, x)) for µ ≥ 0 and x = x(µ).
Proposition 1: Let µ > 0 be fixed. Then (x(µ), s(µ);

y(1)(µ), s(1)2 (µ); . . . ; y(K )(µ), s(K )(µ)) is the optimal solu-
tion of (14) if and only if (x(µ), s(µ)) is the opti-
mal solution for (12) and (y(1)(µ), s(1)2 (µ); y(2)(µ), s(2)2 (µ);
. . . ; y(K )(µ), s(K )

2 (µ)) are the optimal solutions for (13) for
given µ and x = x(µ).

In the next section, we compute the gradient∇xη(µ, x) and
Hessian ∇2

xxη(µ, x) which are used to determine the Newton
direction defined by

1 :=1x :=−
{
∇

2
xxη

(n1,n2)(µ, x)
}−1
∇xη

(n1,n2)(µ, x) (15)

for our algorithms. We can also determine the measure of
proximity of the current point x to the central path, which is
defined by

δ := δ(µ, x) :=

√
1
µ
1xT ∇2

xxη
(n1,n2)(µ, x) 1x. (16)

Note that if (x, s; y(1), s(1)2 ; . . . ; y
(K ), s(K )) is feasible for

(14), then (x, s; y(1), s(1)2 ; . . . ; y
(K ), s(K )) = (x(µ), s(µ);

y(1)(µ), s(1)2 (µ); . . . ; y(K )(µ), s(K )(µ)) ⇐⇒ δ(µ, x) = 0.

III. RELATIONSHIPS AND COMPUTATIONS
In this section, we first study the aspect of the relationship
between the SLSIP problem and its discretization. Then,
we obtain expressions for the derivatives of the recourse
functions required in the rest of the paper.
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A. RELATIONSHIP OF THE SLSIP PROBLEM TO THE
DISCRETIZED PROBLEM
In this part, we show that the problem of finding an approx-
imate minimizer of the SLSIP problem (5) and (6) can be
reduced to that of finding an approximate solution: x ∈
F , y(1) ∈ F (1)

2 (x), . . . , y(K )
∈ F (K )

2 (x) of the discretized
problem (7) and (8) under a certain condition on the measure
of proximity δ of the current point x to the central path.

We need the following lemma in Lemma 2 in order to be
able to relate the approximate solutions of the SLSIP problem
to the discretized problem.

We need the following lemma in Lemma 2 in order to be
able to relate the approximate solutions of the SLSIP problem
to the discretized problem.
Lemma 1: Let (x, s; y(1), s(1)2 ; . . . ; y

(K ), s(K )) be a feasible
solution of the SLSIP problem (9) and (10) such that δ ≤
1. Then the first- and second-stage dual multipliers ν and
(ν(1); . . . ; ν(K )) satisfy

A(n1)ν+
K∑
k=1

T (k,n2)ν(k)=c,W (k,n2)ν(k)=d (k),

ν ≥ 0, ν(k) ≥ 0,

for k = 1, 2, . . . ,K . Moreover,

cTx−b(n1)
T
ν+

K∑
k=1

(
d (k)

T
y(k) −

(
h(k,n2)−T (k,n2)Tx

)T
ν(k)

)
≤ µ(K + 1)

(
n1 + n2 + δ

√
n1 + n2

)
.

Proof: The first statement follows by applying the first
statement in [31, Theorem 2.4] to the DSILP problem (11)
which is indeed equivalent to the SLSIP problem (9) and (10).

To prove the second statement, we now apply the second
statement in [31, Theorem 2.4] to the subproblem (9) to get

cTx− b(n1)
T
ν ≤ µ

(
n1 + δ

√
n1
)

≤ µ
(
n1 + n2 + δ

√
n1 + n2

)
, (17)

and to the subproblem (10) to get

d (k)
T
y(k) −

(
h(k,n2) − T (k,n2)Tx

)T
ν(k)

≤ µ
(
n2 + δ

√
n2
)

≤ µ
(
n1 + n2 + δ

√
n1 + n2

)
, k = 1, 2, . . . ,K . (18)

The result follows by summing over the right-hand side
inequality in (17) and all the K right-hand side inequalities
in (18). �

Lemma 1 demonstrates that if one can find (x, s, ν; y(1), s(1)2 ,

ν(1);. . . ;y(K ), s(K ), ν(K )) for which the point (x; y(1); . . . ; y(K ))
is feasible for the discretized problem (7) and (8)
and if there holds δ ≤ 1 with µ ≤ ε/((K +
1)(n1 + n2 +

√
n1 + n2)), then (x; y(1); . . . ; y(K )) is an

ε-minimizer of the discretized problem (7) and (8). The fol-
lowing lemma takes one more step forward by demonstrating
that (x; y(1); . . . ; y(K )) is an ε-minimizer of the original SLSIP
problem (5) and (6) provided that (x; y(1); . . . ; y(K )) satisfies

the additional condition of being feasible for the problem
(5) and (6). The idea of the proof of the following lemma
is motivated by that of [22, Lemma 2.2].
Lemma 2: Let ε ∈ (0, 1) and let N1 := {1, 2, . . . , n1} and

N2 := {1, 2, . . . , n2} be finite subsets. Suppose that 0 and 3
are compact, the mappings γ → aγ and γ → bγ are contin-
uous in γ on the set 0, and the mappings λ→ w(k)

λ , λ→ t(k)λ
and λ → h(k)λ are continuous in λ on the set 3 for k =
1, 2, . . . ,K . If x ∈ F , y(1) ∈ F (1)

2 (x), . . . , y(K )
∈ F (K )

2 (x)
satisfy δ ≤ 1 with µ ≤ ε/((K + 1)(n1 + n2 +

√
n1 + n2)) is

an ε-minimizer of the SLSIP problem (5) and (6).
Proof: By Lemma 1, (x; y(1); . . . ; y(K )) is an ε-minimizer

of the discretized problem (7) and (8) defined by the index
sets N1 := {1, 2, . . . , n1} and N2 := {1, 2, . . . , n2}, and the
dualmultiplier (ν(n1)(µ, x); ν(1,n2)(µ, x);. . . ; ν(K ,n2)(µ, x)) ∈
Rn1 × Rn2 × · · · × Rn2 satisfies

A(n1)ν(µ, x)+
K∑
k=1

T (k,n2)ν(k)(µ, x) = c,

W (k,n2)ν(k)(µ, x) = d (k),

ν(µ, x) ≥ 0, ν(k)(µ, x) ≥ 0, k = 1, 2, . . . ,K .

Now, we consider any finite index sets Q1 ⊂ 0 and
Q2 ⊂ 3 such that N1 ⊂ Q1 and N2 ⊂ Q2. Let
q1 and q2 be the cardinalities of Q1 and Q2, respectively.
We claim that (x; y(1); . . . ; y(K )) is an ε-minimizer of the
discretized problem (5) and (6) defined by the index sets
Q1 and Q2. To see this, we construct the dual multiplier
(ν̄(q1)(µ, x); ν̄(1,q2)(µ, x); . . . ; ν̄(K ,q2)(µ, x)) ∈ Rq1 × Rq2 ×

· · · × Rq2 with

ν̄(q1) :=

(
ν(n1)(µ, x)

0

)
and ν̄(k,q2) :=

(
ν(k,n2)(µ, x)

0

)

for k = 1, 2, . . . ,K . Recall that A(q1) (respectively, b(q1))
denotes a matrix (a vector) whose ith column (component)
is given by ai (respectively, bi), i ∈ Q1. Similarly, T (k,q2)

andW (k,q2) (respectively, h(k,q2)) denote(s) matrices (vector)
whose jth columns (component) are (is) given by t(k)j and w(k)

j

(respectively, h(k)j ), j ∈ Q2.
Because Nl ⊂ Ql , for each l = 1, 2, the matrices

A(q1),T (k,q2) and W (k,q2) contain A(n1),T (k,n2) and W (k,n2),
respectively, as submatrices. It follows that

A(q1)ν̄(q1)+
K∑
k=1

T (k,q2)ν̄(k,q2) = A(n1)ν(n1)

+

K∑
k=1

T (k,n2)ν(k,n2) = c,

W (k,q2)ν̄(k,q2) = W (k,n2)ν(k,n2) = d (k),

ν̄(q1) ≥ 0, ν̄(k,q2) ≥ 0,

k = 1, 2, . . . ,K .
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This proves that (ν̄(n1); ν̄(1,n2); . . . ; ν̄(K ,n2)) is dual feasible.
In addition, we have

cTx− b(q1)
T
ν̄(q1)

+

K∑
k=1

(
d (k)

T
y(k) −

(
h(k,q2) − T (k,q2)Tx

)T
ν̄(k,q2)

)
= cTx− b(n1)

T
ν

+

K∑
k=1

(
d (k)

T
y(k) −

(
h(k,n2) − T (k,n2)Tx

)T
ν(k)

)
.

Thus, the duality gap remains unchanged. By Lemma 1 again,
we obtain

%(q1,q2) −

(
cTx+

K∑
k=1

(
d (k)

T
y(k)

))

= %
(q1)
1 − cTx+

K∑
k=1

%
(k,q2)
2 −

K∑
k=1

(
d (k)

T
y(k)

)
≤ cTx− b(q1)

T
ν̄(q1) +

K∑
k=1

(
d (k)

T
y(k) −

(
h(k,q2)

−T (k,q2)Tx
)T
ν̄(k,q2)

)
≤ (K + 1)

(
n1 + n2 +

√
n1 + n2

)
µ

≤ ε,

where %(q1)1 is the minimum value of the discretized subprob-
lem min

x
{cTx : aT

i x ≥ bi, 1 ≤ i ≤ n1} defined by the index set

Q1, %
(k,q2)
2 is the minimum value of the discretized problem

(8) defined by the index set Q2, for k = 1, 2, . . . ,K , and
%(q1,q2) := %

(q1)
1 +

∑K
k=1 %

(k,q2)
2 is the minimum value of the

discretized problem (7) defined by the index sets Q1 and Q2.
Recall that %(k) denotes the global minimum of the original

problem (6). Let % denote the global minimum of the origi-
nal problem (5). Now, we are ready to apply a theorem of
Gustafson [32] which concludes that under the compactness
assumptions on 0 and 3 and the assumptions that the maps
γ → aγ ,γ → bγ , λ → w(k)

λ , λ → t(k)λ and λ → h(k)λ are
continuous, the minimum value %(k,q2)2 converges to %(k) for a
certain sequence of index set Q2 with increasing cardinality,
and the minimum value %(q1,q2) converges to % for a certain
sequence of index setsQ1 andQ2 with increasing cardinality.
Taking the limit along the sequences of index sets Q1

and Q2 in the above inequality, we get showing that
(x, y(1), . . . , y(k)) is indeed an ε-minimizer of the SLSIP prob-
lem (5) and (6). The proof is complete. �
By Lemma 2, we can reduce the problem of finding an

approximate minimizer of problem (5) and (6) to that of
finding an approximate solution (x, y(1), . . . , y(K )) of the dis-
cretized problem (9) and (10) such that x ∈ F , y(1) ∈
F (1)
2 (x), . . . , y(K )

∈ F (K )
2 (x) and δ(µ, x) ≤ 1. So, in the pro-

posed algorithms, we always maintain these two conditions,
and we should be able to guarantee that we can successfully

reduce the barrier parameter µ and the algorithms terminate
finitely. Resolving this is, in fact, the substance of Section V.

B. COMPUTATION OF ∇xη(µ, x) AND ∇2
xxη(µ, x)

In this part, we compute the gradient and the Hessian of
η(n1,n2)(µ, x), which in turn requires obtaining a representa-
tion for the gradient and the Hessian of the barrier functions.

In order to compute the derivatives of η we need to deter-
mine the derivatives of the function ρ, k = 1, 2, . . . ,K . This
requires computing the derivatives of `(n1)1 and v(n1)1 and the
partial derivatives of `(k,n2)2 and v(k,n2)2 with respect to x for
k = 1, 2, . . . ,K . Throughout the rest of this section and the
next, we will drop the superscripts (k), (n1) and (k, n2) when
it does not lead to confusion.

First, we compute the gradient and the Hessian of the
logarithmic barriers `1(x) and `2(x, y) with respect to x and y.
Note that

∇xs1(x) = ∇x(ATx− b) = AT,

∇xs2(x, y) = ∇x(W Ty+ T Tx− h) = T T,

and that

∇xs−11 (x) = −S−21 ∇xs1 = −S
−2
1 AT,

∇xs−12 (x, y) = −S−22 ∇xs2 = −S
−2
2 T T.

This implies that

∇x`1(x) = −(∇xs1)Ts−11 = −As
−1
1 ,

∇x`2(x, y) = −(∇xs2)Ts−12 = −T s
−1
2 ,

and that

∇
2
xx`1(x) = −A∇xs

−1
1 = AS−21 AT,

∇
2
xx`2(x, y) = −T∇xs

−1
2 = TS−22 T T.

Note that the Hessian matrices are positive definite under
Assumption 1 and the assumptions that s1 = s1(x) > 0 and
s2 = s2(x, y) > 0.
Next, we compute the gradient and the Hessian of the

volumetric barriers v1(x) and v2(x, y) with respect to x.
Throughout this section, we define

P1 := P1(s1) := S−11 AT(AS−21 AT)−1AS−11 ,

P2 := P2(s2) := S−12 W T(WS−22 W T)−1WS−12 .

Note that P1 and P2 act as the orthogonal projections onto the
ranges of AS−11 ,TS−12 and WS−12 , respectively.
Let σ 1 := σ 1(s1) and σ 2 := σ 2(s2) denote the vectors

equal to the diagonal of the projection matrices P1 and P2,
respectively. In other words, σ1i = P1ii and σ2j = P2jj,
respectively, for i = 1, 2, . . . , n1 and j = 1, 2, . . . , n2.
Following our notations in Section I, let 61 := diag(σ 1) and
62 := diag(σ 2).
Derivations in the Appendix of Anstreicher [33] can be

reconstructed and similar details contained therein can be
adopted for our setting to obtain

∇xv1(x) = −AS−11 σ 1,

∇xv2(x, y) = −TS−12 σ 2. (19)

5000 VOLUME 8, 2020



B. Alzalg et al.: Volumetric Barrier Cutting Plane Algorithms for Stochastic Linear Semi-Infinite Optimization

and

∇
2
xxv1(x) = AS−11 (361 − 2P1 � P1)S

−1
1 AT,

∇
2
xxv2(x, y) = TS−12 (362 − 2P2 � P2)S

−1
2 T T. (20)

We now compute the first and second order derivatives of
ρ with respect to x.

Define ϕ : R+ × F◦ × F (k)(x) −→ R by

ϕ(µ, x, y) := dTy+ µ ς2 v2(x, y).

By (13) we then have

ρ(µ, x) = min
y∈F (k)(x)

ϕ(µ, x, y)

and

ρ(µ, x) = ϕ(µ, x, y)|y=ȳ = ϕ(µ, x, ȳ),

where ȳ is the minimizer of (13). Observe that ȳ is a function
of x and is defined by

∇yϕ(µ, x, y)|y=ȳ = 0. (21)

Note that, by (21), we have

∇ȳv2(x, ȳ) = ∇yv2(x, y)|y=ȳ = −
1
µς2

d.

This implies that

∇
2
ȳxv2(x, ȳ) = ∇x∇ȳv2(x, ȳ) = 0,

∇
3
ȳxxv2(x, ȳ) = ∇

2
xx∇ȳv2(x, ȳ) = 0.

Weare now in a position to calculate the first and second order
derivatives of ρ with respect to x. We have

∇xρ(µ, x) = [∇xϕ(µ, x, y)+∇yϕ(µ, x, y) ∇xy]|y=ȳ
= ∇xϕ(µ, x, y)|y=ȳ +∇yϕ(µ, x, y)|y=ȳ∇xy|y=ȳ
= ∇xϕ(µ, x, y)|y=ȳ
= µ ς2∇xv2(x, y)|y=ȳ
= µ ς2∇xv2(x, ȳ),

and

∇
2
xxρ(µ, x) = µ∇x{∇xv2(x, ȳ)}

= µ ς2{∇
2
xxv2(x, ȳ)+∇

2
ȳxvn2 (x, ȳ)(∇xy)|y=ȳ}

= µ ς2∇
2
xxv2(x, ȳ).

In summary, we obtain

∇xρ
(k)(µ, x) = µ ς2∇xv

(k)
2 (x, ȳ(k)),

∇
2
xxρ

(k)(µ, x) = µ ς2∇2
xxv

(k)
2 (x, ȳ(k)), (22)

and therefore, by (14), we get

∇xη(µ, x) = c+ µ ς1∇xv1(x)+
K∑
k=1

µ ς2∇xv
(k)
2 (x, ȳ(k)),

∇
2
xxη(µ, x) = µ ς1∇

2
xxv1(x)+

K∑
k=1

µ ς2∇
2
xxv

(k)
2 (x, ȳ(k)),

(23)

where ∇xv1(x) and ∇2
x v

(k)
2 (x, y(k)) are calculated in (19) and

∇xxv1(x) and ∇2
xx v

(k)
2 (x, y(k)) are calculated in (20).

IV. FUNDAMENTAL PROPERTIES OF THE VOLUMETRIC
BARRIER RECOURSE
In this section, we establish fundamental properties of the
recourse function η(µ, x) that lead to nice performance of
Newton’s method used for the proposed algorithms. More
specifically, we prove that the recourse function with volu-
metric barrier is a strongly self-concordant function leading
to a strongly self-concordant family with appropriate param-
eters. This allows us to develop volumetric barrier decom-
position interior point algorithms for solving SLSIPs and
establish their convergence and complexity analysis. As we
mentioned in the introduction, our proofs in this section are
different from those in Section 3 of [27], for which the authors
heavily made use of their own results in [28, Section 4] after
re-writing the underlying problem as a stochastic semidef-
inite programming problem. In comparison, although our
proofs are not totally self-contained, the self-concordance
results for the current setting are completely proven in the
context of linear programming, which has the advantage of
allowing very explicit and direct proofs.

First, we prove that η(µ, ·) is a strongly self-concordant
barrier on F◦. We have the following definition.
Definition 1 (Nesterov and Nemirovskii): [30, Defini-

tion 2.1.1] Let E be a finite-dimensional real vector space,
G be an open nonempty convex subset of E , and let g be a
C3, convex mapping from G to R. Then g is called α-self-
concordant onGwith the parameter α > 0 if for every x ∈ G
and h ∈ E , the following inequality holds:

|∇
3
xxxg(x)[h,h,h]| ≤ 2α−1/2(∇2

xxg(x)[h,h])
3/2.

An α-self-concordant function g on G is called strongly
α-self-concordant if g tends to infinity for any sequence
approaching a boundary point of G.
We note that in the above definition the set G is assumed to
be open. However, relative openness would be sufficient to
apply the definition. See also [30, Item A, Page 57].

Throughout this section, we define

Q := Q(x, y) := TS−12 62S
−1
2 T T,

1̂ := 1̂x := −
{
∇

2
xxv2(x, y)

}−1
∇xv2(x, y),

δ̂ := δ̂(x, y) :=
√
1̂T ∇2

xx v2(x, y) 1̂.

The proof of self-concordance of η(µ, ·) depends on the
following three lemmas.
Lemma 3: For any (x, y) having s2(x, y) > 0, we have 0 �

Q(x, y) � ∇2
xxv2(x, y) � 3Q(x, y).

Lemma 4: For every p ∈ Rm1 , we have δ̂(x, y) ≤
n1/42
√
Q(x, y)[p, p] ≤ n1/42

√
∇2
xxv2(x, y)[p, p].

Lemma 5: Let x̂ := x+ 1̂x and ŷ := y(x̂) where δ̂ < 0.1.
Then for every p ∈ Rm1 , we have∣∣∣(∇2

xxv2(x̂, ŷ)−∇
2
xxv2(x, y)

)
[p, p]

∣∣∣≤ 30δ̂

(1− δ̂)4
Q(x, y)[p, p].
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For proofs of Lemmas 3 and 4, similar details contained
in the derivations of Equations (2.3) and (2.18) in [26] can
be adopted and reconstructed for current setting. The proof
of Lemma 5 is very similar to that of Theorem 2.3 in [26]
except that our setting is based on stochasticity which brings
the second-stage variable y besides x.
We can now state and prove the characterization the self

concordance of v1(·) and v2(·, ·) for F◦1 and F◦2 , respectively.
Then, we state and prove the following results which charac-
terize the self-concordance of ρ(µ, ·) and η(µ, ·) for F◦.
Theorem 1: Let ς1 := 225

√
n1 and ς2 := 225

√
n2. The

functions µς1 v1(·) and µς2 v2(·, ·) are µ-self-concordant
barriers on F◦1 and F◦2 , respectively, for any fixed µ > 0.
Proof: Let µ > 0 be fixed. Now, we verify that µς2 v2(·, ·)

is µ-self-concordant on F◦2 . Clearly, the map µς2 v2 goes to
infinity on any sequence approaching a boundary point ofF◦2 .
By definition,

∇
3
xxx v2(x, y)[p, p, p]

= lim
τ→0

∇
2
xxv2(x+ τp, y(x+ τp))[p, p]−∇

2
xx v2(x, y)[p, p]

τ

By using Lemmas 3, 4 and 5, with 1̂ = τp, we immediately
get

∇
3
xxxv2(x, y)[p, p, p]

≤ lim
τ→0

30τn1/42

√
∇2
xxv2(x, y)[p, p]

τ
(
1− τn1/42

√
∇2
xxv2(x, y)[p, p]

)4∇2
xxv2(x, y)[p, p]

= 30n1/42

(
∇

2
xxv2(x, y)[p, p]

)3/2
. (24)

The result follows by examining the effect on (24) when
v2(·, ·) is multiplied by the factor µς2. Thus µς2 v2(·, ·)
is µ-self-concordant on F◦2 . By applying similar argu-
ment on similar grounds, we can verify that µς1 v1(·)
is also µ-self-concordant on F◦1 . The proof is complete.

�
Theorem 2: For any fixed µ > 0, ρ(µ, ·) is µ-self-

concordant on F◦, for k = 1, 2, . . . ,K .
Proof: By using (22) we have

∇
3
xxxρ(µ, x) = µς2∇x{∇

2
xxv2(x, ȳ)}

= µς2{∇
3
xxxv2(x, ȳ)+∇

3
ȳxxv2(x, ȳ)(∇xy)|y=ȳ}

= µς2∇
3
xxxv2(x, ȳ).

It follows that∣∣∣∇3
xxxρ(µ, x) [p, p, p]

∣∣∣ = µς2 ∣∣∣∇3
xxx v2(x, ȳ) [p, p, p]

∣∣∣
≤ 30µς2 n

1/4
2 (∇2

xxv2(x, ȳ) [p, p])
3/2

= 2µ−1/2(µς2∇2
xx v2(x, ȳ) [p, p])

3/2

= 2µ−1/2(∇2
xxρ(µ, x) [p, p])

3/2.

This completes the proof. �
Theorem 3: For any fixed µ > 0, η(µ, ·) is a µ-self-

concordant function on F◦.

Proof: The theorem follows from Theorems 1 and 2 and
[30, Proposition 2.1.1]. �

Next, we show that the family of functions {η(µ, ·) :
µ > 0} is a strongly self-concordant family with appropriate
parameters. We have the following definition.
Definition 2 (Nesterov and Nemirovskii): [30, Defini-

tion 3.1.1] LetR++ be the set of all positive real numbers. Let
G be an open nonempty convex subset of Rn. Let µ ∈ R++
and let gµ : R++ × G → R be a family of functions
indexed by µ. Let α1(µ), α2(µ), α3(µ), α4(µ) and α5(µ) :
R++ → R++ be continuously differentiable functions on µ.
Then the family of functions {gµ}µ∈R++ is called strongly
self-concordant with the parameters α1, α2, α3, α4, α5, if the
following conditions hold:
(i) The function gµ is continuous on R++ × G, and for

fixedµ ∈ R++, gµ is convex onG. The function gµ has
three partial derivatives on G, which are continuous on
R++ × G and continuously differentiable with respect
to µ on R++.

(ii) For any µ ∈ R++, the function gµ is strongly
α1(µ)-self-concordant.

(iii) For any (µ, x) ∈ R++ × G and any h ∈ Rn,

|{∇xgµ(µ, x)[h]}′ − {ln α3(µ)}′∇xgµ(µ, x)[h]|

≤ α4(µ)α1(µ)
1
2
(
∇

2
xx gµ(µ, x)[h,h]

) 1
2 ,

{∇
2
xx gµ(µ, x)[h,h]}

′
− {ln α2(µ)}′∇2

xx gµ(µ, x)[h,h]|

≤ 2α5(µ)∇2
xx gµ(µ, x)[h,h].

The proof of self-concordancy of the family {η(µ, ·) : µ >
0} depends on the following two lemmas.
Lemma 6: For any µ > 0 and x ∈ F◦, we have

|{∇
2
xxη(µ, x)}

′[p, p]| ≤
1
µ
∇

2
xxη(µ, x)[p, p], ∀ p ∈ Rm1 .

Proof: By differentiating ∇2
xxη(µ, x) in (23) with respect

to µ, we get

{∇
2
xxη(µ, x)}

′
= ∇

2
xxv1(x)+

K∑
k=1

{
∇

2
xxv2(x, ȳ)

+µ ∇3
xxȳv2(x, ȳ) · ȳ

′

}
= ∇

2
xxv1(x)+

K∑
k=1

∇
2
xxv2(x, ȳ)

=
1
µ
∇

2
xxη(µ, x).

Note that ∇2
xxη(µ, x) � 0, and hence 1

µ
∇

2
xxη(µ, x)[p, p] ≥ 0

for any p ∈ Rm1 . The proof is complete. �
Lemma 7: For any µ > 0 and x ∈ F◦, we have∣∣∣∇xη′(µ, x)T[p]∣∣∣ ≤

√
(m1ς1 + m2ς2)(1+ K )

µ
∇

2
xxη[p, p],

for all p ∈ Rm1 .
Proof: Since P2 is a projection onto an m2-dimensional

space, we have P2 = u1uT
1 + u2uT

2 + · · · + um2u
T
m2
,
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where u1,u2, . . . ,um2 are orthonormal eigenvectors of P2
corresponding to the nonzero eigenvalues of P2.
Using Lemma 3 we have {∇2

xxv2(x, y)}
−1
� {Q(x, y)}−1.

This implies that

∇xv2(x, y)T{∇2
xx v2(x, y)}

−1
∇xv2(x, y)

≤ ∇xv2(x, y)T{Q(x, y)}−1∇xv2(x, y)

= σ T
2 S
−1
2 T T

(
TS−12 62 S

−1
2 T T

)−1
TS−12 σ 2

=
√
σ 2

T
(
6

1/2
2 S−12 T T

(
TS−12 62 S

−1
2 T T

)−1
TS−12 6

1/2
2

)
√
σ 2

≤
√
σ 2

T√
σ 2

= ‖u1‖2 + ‖u2‖2 + · · · + ‖um2‖
2

= m2.

The above bound is equivalent to

|∇xv2(x, ȳ)[p]|≤
√
m2∇2

xxv2(x, ȳ)[p, p], ∀p ∈ Rm1 . (25)

Similarly, we can show that

|∇xv1(x)[p]|≤
√
m1∇2

xxv1(x)[p, p], ∀p ∈ Rm1 . (26)

By differentiating ∇xη(µ, x) in (23) with respect to µ,
we have

∇xη
′(µ, x)

= ς1∇xv1(x)+
K∑
k=1

ς2{∇xv2(x, ȳ)+ µ∇2
xȳ v2(x, ȳ) · (ȳ)

′
}

= ς1∇xv1(x)+
K∑
k=1

ς2∇xv2(x, ȳ) .

It follows that, for all p ∈ Rm1 , by using (25) and (26) we
obtain |∇xη′(µ, x)[p]| as shown at the bottom of this page,
The proof is complete. �

Theorem 4: The family {η(µ, ·) : µ > 0} is a strongly
self-concordant family with the following parameters

α1(µ) = µ, α2(µ) = α3(µ) = 1,

α4(µ) =

√
(1+ K )(m1ς1 + m2ς2)

µ
, α5(µ) =

1
2µ
.

Proof: It can be easily seen that condition (i) of Definition 2
is satisfied. Theorem 3 shows that condition (ii) holds
and Lemmas 6 and 7 show that condition (iii) holds.

�

V. VOLUMETRIC BARRIER CUTTING PLANE ALGORITHMS
AND COMPLEXITY
Based on the self-concordance analysis established in
Section IV, we develop a volumetric barrier cutting
plane algorithm for SLSIPs, which is formally stated in
Algorithm 1.

In Algorithm 1, we use µ = µ0 as the starting value
for the barrier parameter, ε as the desired accuracy of the
final solution, and γ as the reduction parameter. We also use
β as a threshold for the measure of the proximity δ of the
current point x to the central path. We start with x0 as a given
first-stage interior point (possibly infeasible) that satisfies
the initial set of 2m1 constraints A(2m1)Tx ≥ b(2m1) with an
initial constraint matrix A(2m1) and an initial right-hand side
vector b(2m1). We obtain second-stage interior points (pos-
sibly infeasible) ȳ(1), ȳ(2), . . . , ȳ(K ) by solving Problem (10)
projected to the initial set of 2m2 constraintsW (k,2m2)Ty(k) ≥
h(k,2m2)−T (k,2m2)Tx with initial constraint matricesW (k,2m2)

and T (k,2m2) and an initial right-hand side vector h(k,2m2) for
each k = 1, 2, . . . ,K .

|∇xη
′(µ, x)[p]| =

∣∣∣∣∣
(
ς1∇xv1(x)+

K∑
k=1

ς2∇xv2(x, ȳ)

)
[p]

∣∣∣∣∣
≤ |ς1∇xv1(x)[p]| +

K∑
k=1

|ς2∇xv2(x, ȳ)[p]|

≤

√
m1ς

2
1∇

2
xx v1(x)[p, p]+

K∑
k=1

√
m2ς

2
2∇

2
xx v2(x, ȳ)[p, p]

≤

√
(m1ς1)ς1∇2

xx v1(x)[p, p]+
K∑
k=1

√
(m2ς2)ς2∇2

xx v2(x, ȳ)[p, p]

≤

√√√√(1+ K )(m1ς1 + m2ς2)

(
ς1∇2

xxv1[p, p]+
K∑
k=1

ς2∇
2
xx v2[p, p]

)

=

√
(1+ K )(m1ς1 + m2ς2)

µ
∇

2
xxη(µ, x)[p, p].
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Algorithm 1 A Volumetric Barrier Cutting Plane Algo-
rithm for SLSIP

Begin algorithm
1: Initialize ε, γ, θ, β, µ0, x0

2: Initial set of 2m1 constraints A(2m1)Tx ≥ b(2m1)

3: Initial set of 2m2K constraints
W (k,2m2)Ty(k) ≥ h(k,2m2)−T (k,2m2)Tx, k = 1, . . . ,K

Ensure: ε > 0, γ ∈ (0, 1), θ > 0,β > 0,µ0 > 0, x0 ∈ F◦
4: Set n1 := 2 m1, n2 := 2m2, µ := µ

0, x := x0

5: While µ ≥ ε/((K + 1)(n1 + n2 +
√
n1 + n2)) do

6: For k = 1, 2, . . . ,K do
7: Solve (10) to obtain ȳ(k)

8: End for
9: Compute 1x using (23) and (15)
10: Compute δ(µ, x) using (23) and (16)
11: Set x := x+ θ1x
12: ] Add a constraint
13: If ∃i ∈ 0 such that si < 0 then
14: Compute b̃i := aiTx− βξi,

ξi :=

√
ς1 aT

i

{
∇2
xx v

(n1)
1 (x)

}−1
ai,

15: Set A(n1+1) :=
(
A(n1), ai

)
,

b(n1+1) :=
(
b(n1)

b̃i

)
16: Set n1 := n1 + 1
17: While δ > β do
18: For k = 1, 2, . . . ,K do
20: Solve (10) to obtain ȳ(k)

21: End for
22: Compute 1x using (23) and (15)
23: Compute δ using (23) and (16)
24: Set x := x+ θ1x
25: End while
26: End if
27: For k = 1, . . . ,K do
28: ] Add a constraint
29: If ∃j ∈ 3 such that s(k)j < 0 then

30: Compute h̃(k)j := w(k)
j

T
y(k)+ t̃(k)

T

j x−βζ (k)j ,

ζ
(k)
j

:=

√
ς2 w

(k)T
j

{
∇2
xx v

(k,n2)
2

(
x, y(k)

)}−1
w(k)
j

31: Set W (k,n2+1) :=

(
W (k,n2),w(k)

j

)
,

T (k,n2+1) :=

(
T (k,n2), t(k)j

)
,

h(k,n2+1) :=

(
h(k,n2)

h̃(k)j

)
32: Set (k, n2) := (k, n2 + 1)
33: While δ > β do
34: For k = 1, 2, . . . ,K do
35: Solve (10) to obtain ȳ(k)

36: End for
37: Compute 1x using (23) and (15)
38: Compute δ using (23) and (16)

Algorithm 1 (continued.)AVolumetric Barrier Cutting Plane
Algorithm for SLSIP
39: Set x := x+ θ1x
40: End while
41: End if
42: End for
43: Set µ := γµ
44: End while
End algorithm

For convenience, because it is our assumption that x0 ∈
F◦1 ⊆ [0, 1]m1 , we consider the set {0 ≤ x0i ≤ 1, i =
1, 2, . . . ,m1} as our initial set of 2m1 constraints; these
constraints can be written as A(2m1)Tx ≥ b(2m1). Similarly,
because it is our assumption that ȳ(k) ∈ F◦(k)2 ⊆ [0, 1]m2 ,
we consider the set {0 ≤ ȳ(k)i ≤ 1, i = 1, 2, . . . ,m2} as
our initial set of 2m2 constraints; these constraints can be
written as W (k,2m2)Ty(k) ≥ h(k,2m2) − T (k,2m2)Tx, for each
k = 1, 2, . . . ,K .
Impacted by the manner of selecting the parameter γ in

Algorithm 1, we have two variants of algorithms: The short-
step algorithm and the long-step algorithm. Below we iden-
tify suitable values for the algorithmic parameters γ and β
introduced in Algorithm 1.

γ : =

1−
0.1

√
(1+ K )(m1ς1 + m2ς2)

, in short-step alg.

an arbitrary value in (0, 1), in long-step alg.

β : =

{(
2−
√
3
)/

2, in short-step alg.

1/6, in long-step alg.
(27)

Note that if the current point x is too far away from the cen-
tral path in the sense that δ > β, Newton’s method is applied
to find a point close to the central path, then the value of µ is
reduced by a factor γ and the whole process is repeated until
the value of µ is within the tolerance ε. Algorithm 1 approxi-
mately traces the central path asµ approaches zero. This ends
up in a strictly feasible ε-optimal solution of the problem.
Note also that when an iterate becomes infeasible, a new cut
is introduced and the algorithm attempts to move to a new
central point.

Theorems 5 and 6 present the complexity analysis
for the short-step algorithm and the long-step algorithm,
respectively.

In the short-step algorithm, the barrier parameter in each
iteration is decreased by the factor γ given in (27). The
k th iteration of the short-step algorithm is performed as
follows: At the beginning of the iteration, we have µ(k−1)

and x(k−1) on hand and x(k−1) is close to the center path,
i.e., δ(µ(k−1), x(k−1)) ≤ β. After we reduce the barrier
parameter µ from µ(k−1) to µk := γµ(k−1), we have that
δ(µk , x(k−1)) ≤ 2β. Then we take a full Newton step with
size θ = 1 to produce a new point xk with δ(µk , xk ) ≤ β. The
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TABLE 1. Comparison of complexities between the logarithmic and volumetric barriers for SLSIP with dimensions m1 and m2 in the first- and
second-stage problems, respectively, and for K number of realizations, when the maximum numbers of cuts generated are n1 max and n2 max in the first-
and second-stage problems, respectively.

following theorem presents the complexity result for short-
step algorithm.
Theorem 5: Assume that the maximum numbers of cuts

generated by Algorithm 1 are finite and are denoted by
n1max and n2max in the first- and second-stage problems,
respectively. If the starting point x0 is sufficiently close to the
central path, i.e., δ(µ0, x0) ≤ β, then the short-step algorithm
reduces the barrier parameterµ at a linear rate and terminates
with at most

O
(√

(1+K ) (m1ς1+m2ς2)

× ln
(
(1+K ) (n1max+n2max) µ

0

ε

))
iterations.
Proof: See Sub-appendix VI-A. �
In the long-step algorithm, we decrease the barrier param-

eter by an arbitrary constant factor γ ∈ (0, 1). It has a
potential for larger decrease on the objective function value,
however, several damped Newton steps might be needed for
restoring the proximity to the central path. The k th iteration
of the long-step algorithm is performed as follows: At the
beginning of the iteration we have a point x(k−1), which is
sufficiently close to x(µ(k−1)), where x(µ(k−1)) is the solution
to (12) for µ := µ(k−1). We reduce the barrier parameter
from µ(k−1) to µk := γµ(k−1), where γ ∈ (0, 1), and
then start the searching to find a point xk that is sufficiently
close to x(µk ). The long-step algorithm generates a finite
sequence consisting of N points in F0, and we finally take
xk to be equal to the last point of this sequence. The fol-
lowing theorem presents the complexity result for long-step
algorithm.
Theorem 6: Assume that the maximum numbers of cuts

generated by Algorithm 1 are finite and are denoted by n1max
and n2max in the first- and second-stage problems, respec-
tively. If the starting point x0 is sufficiently close to the central
path, i.e., δ(µ0, x0) ≤ β, then the long-step algorithm reduces
the barrier parameter µ at a linear rate and terminates with at
most

O
(
(1+K ) (m1ς1+m2ς2) ln

(
(1+ K ) (n1max+n2max) µ

0

ε

))
iterations.
Proof: See Sub-appendix VI-B. �
It is clear that the dominant terms in the complexity expres-

sions in Theorems 5 and 6 are given in terms of the problem
dimension and the number of realizations, and, most notably,

they are not given in terms of maximum numbers of cuts
to be generated. Table 1 compares the complexities between
the logarithmic and volumetric barriers for SLSIP. In case
the logarithmic barriers `1 and `2 are used instead of the
volumetric barriers v1 and v2 in the first- and second-stage
problems, respectively, it can be shown that the complexity
expressions in Theorems 5 and 6 become those shown in the
middle column of Table 1, which have more complexity than
those obtained in Theorems 5 and 6 because of contributing
n1max and n1max in the leading terms and bounding them is
generally difficult.

Note that the complexity results in Theorems 5 and 6
are the counterparts of those in Theorems 6 and 7 in [27]
for two-stage stochastic quadratic linear programs with
recourse, those in Theorems 3 and 4 in [29] for two-stage
stochastic second-order programs with recourse, and those in
Theorems 4 and 5 in [28] for two-stage stochastic semidefi-
nite programs with recourse. Note also that the ‘‘rich flavor’’
hidden inside the volumetric barrier can be tasted in
Theorems 5 and 6 more than in their counterpart theorems
in [27]–[29]. The reason for this is that there are no cuts to be
generated in the optimization problems studied in [27]–[29],
which in turns makes no big difference by replacing m1 and
m2 with n1 and n2 in case the volumetric barrier is not used
in [27]–[29].

Since the maximum numbers of cuts to be generated con-
tribute in the log-terms in the complexity expressions, we
also bound the numbers n1max and n2max. Luo et al. [22]
proved the existence of an upper bound on the number of
cuts to be generated by the short-step algorithm. Taking into
account such a bound in [22] and applying this to our problem
setting, we conclude the following result which bounds the
number of cuts to be generated by the short-step algorithm.
The following theorem follows directly from the definition of
self-concordance and [22, Theorem 4.2].
Theorem 7: Assume the hypothesis of Lemma 2 holds.

Let r1 be the radius of the largest Euclidean ball contained
in F1 and r2 be the radius of the largest Euclidean ball
contained in F (k)

2 for each k = 1, 2, . . . ,K . Assume also
that the short-step algorithm is used in Algorithm 1. Then
for ε > 0, Algorithm 1 terminates with an ε-minimizer
of Problem (5) and (6) after generating a total of at
most

O?

m2
1

r21
e
4

√
m1

ε


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cuts for the first-stage subproblem, and generating a total of
at most

O?

m2
2

r22
e
4

√
m2

ε


cuts for the second-stage subproblem, where the superscript
‘‘?’’ indicates that lower-order terms have been ignored.
We conclude from Theorem 7 that the log-terms in the

complexity expressions Theorems 5 and 6 are given in
terms of the problem dimension and the radii of the largest
Euclidean balls contained in the feasibility sets. On the other
side, we also conclude from the above discussion that the
dominant complexity terms are not affected by the radii of
the largest Euclidean balls contained in the feasibility sets.

VI. CONCLUSION
In this paper, we have studied the two-stage stochastic linear
semi-infinite programming problem with discrete support.
We have develop and analyzed volumetric barrier cutting
plane interior point algorithms for solving this class of opti-
mization problems. We have proved the convergence results
by showing that the volumetric barrier associated with the
recourse function forms a self-concordant family. We have
also described and analyzed short- and long-step variants of
the algorithm that follow the primal central trajectory of the
first-stage problem.

We have seen that, for a stochastic linear semi-infinite
program with dimensions m1 and m2 in the first- and
second-stage problems, respectively, and for K num-
ber of realizations, when the maximum numbers of
cuts generated are n1max and n2max in the first- and
second-stage problems, respectively, we need at most
O(
√
(1+ K )(m1ς1 + m2ς2) ln((1+K ) (n1max+ n2max) µ0/

ε)) Newton iterations in the short-step algorithm to fol-
low the central path from a starting value of the barrier
parameter µ0 to a terminating value ε/((K + 1) (n1max +

n2max +
√
n1max + n2max)), and we need at most O((1 +

K )(m1ς1 + m2ς2) ln((1 + K ) (n1max + n2max) µ0/

ε)) Newton iterations in the long-step algorithm for this
recentering, where ε is the desired accuracy of the final solu-
tion. Note that the dominant terms in the above complexity
expressions are given in terms of the problem dimension and
the number of realizations, and, most notably, they are not
given in terms of maximum numbers of cuts to be gener-
ated, which means that they are not affected by the radii
of the largest Euclidean balls contained in the feasibility
sets.

Our framework is attractive from analytical and complexity
points of view. Nevertheless, there are several issues that
need further work to develop practical implementations. This
includes, but not limited to, developing a practical first-stage
length selection procedure and adapting addition of scenarios.
A rigorous computational framework of these issues and
others is a topic of future research.

APPENDIX
COMPLEXITY PROOFS
In this appendix, we present proofs for the complex-
ity results stated in Section V that bound the number
of iterations. The general scheme of our proofs follows
the lines of the proofs from [29] and [28]. The proof
of Theorem 5 for the short-step algorithm is given in
Sub-appendix VI-A, and the proof of Theorem 6 for the long-
step algorithm is given in Sub-appendix VI-B. Throughout
this appendix, we will drop the superscripts (k), (n1) and
(k, n2) when it does not lead to confusion.
The proofs make use of the following proposition which is

due to [30, Theorem 2.1.1].
Proposition 2: For any µ > 0 and x ∈ F0. Then for δ <

1, τ ∈ [0, 1] and any p ∈ Rm1 we have

∇
2
xxη(µ, x+ τ1x)[p, p] ≤ (1− τδ)−2∇2

xxη(µ, x)[p, p].

The following lemma describes the behavior of the Newton
method as applied to η(µ, ·). This lemma is essentially [30,
Theorem 2.2.3].
Lemma 8: For any µ > 0 and x ∈ F0, let x+ :=

x + 1x, 1x+ be the Newton direction calculated at x+,
and δ(µ, x+) :=

√
1
µ
∇2
xxη(µ, x+)[1x+,1x+]. Then the

following relations hold:

(i) If δ < 2−
√
3, then δ(µ, x+) ≤

(
δ

1− δ

)2

≤
δ

2
.

(ii) If δ ≥ 2−
√
3, then η(µ, x)− η(µ, x+ θ̄1x) ≥ µ(δ −

ln(1+ δ)), where θ̄ = (1+ δ)−1.

A. COMPLEXITY PROOF OF THE SHORT-STEP ALGORITHM
The proof of Theorem 5 makes use of the following proposi-
tion which is a restatement of [30, Theorem 3.1.1].
Proposition 3: Let

χκ (η;µ,µ+) :=
(
1+

√
(1+ K )(m1ς1 + m2ς2)

κ

)
lnγ−1.

Assume that δ(µ, x) < κ and µ+ := γµ satisfies

χκ (η;µ,µ+) ≤ 1−
δ(µ, x)
κ

.

Then δ(µ+, x) < κ.

We also need the following lemma.
Lemma 9: Let µ+ = γµ. Then δ(µ+, x) ≤ 2β.
Proof: Let κ := 2β = 2 −

√
3. Since δ(µ, x) ≤ κ/2, one

can verify that for σ ≤ 0.1, µ+ satisfies

χκ (η;µ,µ+) ≤
1
2
≤ 1−

δ(µ, x)
κ

.

By Proposition 3, we have δ(µ+, x) ≤ κ . �
From Lemmas 8(i) and 9, we deduce that we can reduce

the parameter µ by the factor γ given in (27), at each iter-
ation, and that only one Newton step is sufficient to restore
proximity to the central path. Hence, Theorem 5 follows.
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B. COMPLEXITY PROOF OF THE LONG-STEP ALGORITHM
For x ∈ F0 and µ > 0, we define the function φ(µ, x) :=
η(µ, x(µ))−η(µ, x), which represents the difference between
the objective value η(µk , x(k)) at the end of k th iteration and
the minimum objective value η(µk , x(µk−1)) at the beginning
of k th iteration. Then the task is to find an upper bound on
φ(µ, x). To do so, we first give upper bounds on φ(µ, x) and
φ′(µ, x) respectively.

The proof of Theorem 6makes use of the following lemma,
in which its proof is quite similar to that of [28, Lemma 6].
Lemma 10: Let µ > 0 and x ∈ F0, we denote 1̃x :=

x− x(µ) and define

δ̃ := δ̃(µ, x) =

√
1
µ
∇2
xxη(µ, x)[1̃x, 1̃x].

For any µ > 0 and x ∈ F0, if δ̃ < 1, then the following
inequalities hold:

φ(µ, x) ≤ µ

(
δ̃

1− δ̃
+ ln(1− δ̃)

)
,

|φ′(µ, x)| ≤ −
√
(1+ K )(m1ς1 + m2ς2) ln(1− δ̃).

The proof of Theorem 6 makes also use of the following
lemma, in which its proof is quite similar to that of [28,
Lemma 7].
Lemma 11: Let µ > 0 and x ∈ F0 be such that δ̃ < 1,

where δ̃ is as defined in Lemma 10. Let µ+ := γµ with γ ∈
(0, 1). Then

η(µ+, x)− η(µ+, x(µ+)) ≤ O((1+ K )(m1ς1 + m2ς2))µ+.

Observe that the previous lemma requires δ̃ < 1. However,
evaluating δ̃ explicitly may not be possible. Now we will see
that δ̃ is actually proportional to δ, which can be evaluated.
The following lemma is due to [28, Lemma 8].
Lemma 12: For any µ > 0 and x ∈ F0, we denote 1̃x :=

x− x(µ) and define

δ̃ := δ̃(µ, x) =

√
1
µ
∇2
xxη(µ, x)[1̃x, 1̃x].

If δ < 1/6, then 2
3δ ≤ δ̃ ≤ 2δ.

Theorem 6 follows directly by combining Lemmas 8(ii),
11, and 12.
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