
Received November 25, 2019, accepted December 23, 2019, date of publication December 30, 2019,
date of current version January 8, 2020.

Digital Object Identifier 10.1109/ACCESS.2019.2962791

Classification of 3D Terracotta Warrior Fragments
Based on Deep Learning and Template Guidance
HONGJUAN GAO 1,2 AND GUOHUA GENG 1
1School of Information Science and Technology, Northwest University, Xi’an 710127, China
2Xinhua College, Ningxia University, Yinchuan 750021, China

Corresponding author: Guohua Geng (ghgeng@nwu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61731015, Grant 61672103, and
Grant 61673319, and in part by the National Key Research and Development Projects under Grant 2017YFB.

ABSTRACT The Terracotta Warriors are terracotta sculptures created for China’s first emperor more
than 2,000 years ago. They are among the most precious unearthed cultural relics of China. However,
these relics have been predominantly found in fragments. Fragment classification is currently performed
manually on enormous quantities of fragments, which is a time-consuming, inaccurate, and subjective task
for archaeologists and conservators. In this study, an automatic method based on a deep learning network
combined with template guidance is proposed to classify 3D fragments of the Terracotta Warriors. The
fragments are initially classified using PointNet. Then, misclassified fragments are secondly categorized
based on their best match to a complete Terracotta Warrior model. Extensive experiments were performed
to verify the effectiveness of the proposed method. The promising results demonstrate that the method is the
most accurate technique for classifying 3D Terracotta Warrior fragments to date. Moreover, the proposed
method can significantly increase the efficiency of future fragment reassembly for the Terracotta Warriors.

INDEX TERMS Data preprocessing, deep learning, 3D fragments classification, intrinsic shape signatures,
point cloud, random sample consensus, signature of histograms of orientations, Terracotta warriors.

I. INTRODUCTION
Cultural relics are the embodiment of a national culture and
are thus highly valuable for their historical, artistic, and sci-
entific significance. China, an ancient country with a civ-
ilization older than 5000 years, has produced a variety of
cultural artifacts. For example, the Terracotta Warriors of
Qin Shihuang, as shown in Fig. 1, are among the greatest
discoveries in the world of archaeological history.

In March 1974, when Chinese farmers were sinking wells
for farmland irrigation construction near Xi’an (Shaanxi
province), they discovered numerous terracotta fragments.
Archaeological excavation showed that the fragments
belonged to terracotta figures of warriors and horses dating
back to the First Emperor of the Qin dynasty, Shi Huang
Di. The figures, facing east and ‘‘ready for battle,’’ were
individually modeled with their own peculiar characteristics.
They were accompanied by their weapons, chariots, and
objects of jade and bone. In 1987, the TerracottaWarriors and
Horses pit was approved by the United Nations Educational,

The associate editor coordinating the review of this manuscript and

approving it for publication was Shadi Alawneh .

Scientific and Cultural Organization to be included in the
world heritage list and to be known as ‘‘the eighth wonder
of the world.’’

From 1978 to 1984, the Qin Terracotta Army Archae-
ological Team of Shaanxi Archaeology Institute excavated
Pit No. 1 of these terracotta relics. The excavation area
was 2000 square meters, and 1,087 pottery figurines were
unearthed. However, after thousands of years of weathering
erosion and the collapse of the building, a large number of the
excavated relics have been damaged and gathered in piles.
As a result, the fragments were more numerous and disor-
dered. At the time of excavation, archaeological technology
was unable to restore the unearthed Terracotta Warriors and
Horses. In 1985, an archaeological team conducted a second
excavation of pit No. 1. Unfortunately, owing to imperfec-
tions in the technology and equipment at the time, the excava-
tion lasted only one year. Many of these relics were found in a
disintegrated state, requiringmany years to restore them, even
by experienced archaeologists. This endeavor was especially
challenging since some pieces were missing. Consequently,
in the first two excavations, only a small number of frag-
ments were manually restored. More recently, with the rapid
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FIGURE 1. Terracotta Warriors.

development of three-dimensional (3D) electronic and com-
puter visualization technologies, the restoration of cultural
relics has no longer entirely relied on manual methods.
In 2009, Pit No. 1 was excavated for the third time.
At this point, the Visualization Institute of Northwest Uni-
versity, Shaanxi Province, China worked with Emperor
Qinshihuang’s Mausoleum Site Museum to restore the dam-
aged Terracotta Warrior fragments by computer technology.

Computer-aided restoration of damaged Terracotta
Warriors is divided into two major tasks. The first task is the
classification of the fragments into different groups according
to their body part. The second is the reconstruction of those
fragments into the original archaeological objects. In this
study, we considered the first task. Fragment classification
is a crucial step in the restoration process. The classification
accuracy of fragments directly affects the precision and
efficiency of the subsequent fragment reassembly.

The remainder of this paper is organized as follows.
In Section 2, existing methods for classification of archaeo-
logical fragments are examined. In Section 3, data processing
methods are described. In Section 4, the use of PointNet
architecture is introduced. In Section 5, details of the pro-
posedmethod are provided. In Section 6, experimental results
and analysis are presented. Finally, conclusions are given
in Section 7.

II. RELATED WORK
A. CLASSIFICATION OF ARCHAEOLOGICAL FRAGMENTS
In the restoration of cultural relics, fragment classification
is a precondition of fragment reassembly. To date, various
methods have been proposed to reassemble archaeological
sherds. Nevertheless, few researchers have strived to classify
archeological fragments.

Researchers have achieved the classification of fragments
by taking into account their shape, color, texture, decoration,
technological elements, and material characteristics. Kampel
and Sablatnik [1] classified archaeological sherds by estimat-
ing their color. This method requires color calibration with
known illuminants. Therefore, color estimation is very sensi-
tive to lighting variations. Kampel et al. [2] proposed the use

of two-dimensional (2D) profiling and segmenting the full
profile into relevant subparts to classify archeological pottery
sherds. Smith et al. [3] approached the problem on the basis of
color and texture characteristics. Color similarity and texture
similarity between sherd images are determined by estimat-
ing a color histogram and applying geometric total variation
energy (TVG). Then, a sherd image descriptor vector is gener-
ated as a combination of TVG and color histograms. The pro-
posed descriptor accurately represents texture. Nevertheless,
it achieved poor classification rates for images with low
amounts of texture and minor color and intensity variations.
Qi and Wang [4] applied Gabor wavelet transformations to
extract image features based on texture. They then classified
the sherds using a fuzzy C-means algorithm. Karasik and
Smilansky [5] focused on the classification of ceramic assem-
blages on the basis of their profilemorphology. The technique
proposed herein is based on the assumption that the shapes
of sherds can be entirely characterized by their profiles.
Similarly, Zhou et al. [6] focused on the color features of
porcelain image and developed a system for Yao Zhou’s
porcelain classification. Makridis and Daras [7] extracted
color information and local texture features, while employing
a bag-of-words technique to construct a global vector repre-
senting the whole sherd image. Their technique exploits both
front and back views of the sherds to increase their classifi-
cation accuracy. Oxholm and Nishino [8] reassembled thin
artifacts through the photometric properties of the boundary
contours. Rasheed and Nordin [9] used intersections of RGB
colors among archeological fragments to extract the fragment
texture features. They obtained a high level of accuracy by
classifying Euclidean distances between the texture and color
features. Sablatnig et al. [10] proposed a bottom-up method
to classify fragments using a description language comprised
of primitives (with certain properties, such as length) and
relations among these primitives (such as the curvature of
connecting points and positions). Kang et al. [11] proposed
a classification method based on salient geometric features,
which theymatched by utilizing an empirical mode decompo-
sition (EMD)method. The experimental results demonstrated
that their method is highly accurate for the classification
of Terracotta Warrior fragments. Yang et al. [12] extracted
texture features of the fragment images by using a pub-
lic scale-invariant feature transform (SIFT) algorithm. They
classified the fragments using a support vector machine.
The experimental results indicated that this method can sig-
nificantly improve the accuracy of fragment classification.
Na [13] proposed a semi-supervised classification algorithm
of a manifold regularization multi-core model to classify
fragment images. This method enabled the subsequent splic-
ing and restoration of the Terracotta Warriors. Wang [14]
proposed placing 2D images of the Terracotta Warriors into a
convolutional neural network for data training. This approach
avoids artificial feature extraction. Liu [15] proposed a
3D residual neural network algorithm for determining the
parts of the Terracotta Warriors to which the sherds belong.
In the fragment identification task, their experimental results
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showed that the recognition accuracy rate of their 3D residual
neural network method was 83.59%, thereby fulfilling the
requirement for fragment identification.

B. DEEP LEARNING METHODS FOR 3D DATA
Traditional convolutional neural networks (CNNs) require
samples to appear at fixed spatial orientations and distances
in order to facilitate the convolution. From a data structure
point of view, a point cloud is an irregular and unordered set
of vectors. Thus, directly convolving kernels against features
associated with the points will result in the loss of shape
information and variance to point ordering.

Most work in deep learning focuses on regular input rep-
resentations, such as voxels, images, and meshes. Various
authors [16]–[18] have applied 3DCNNs to voxelized shapes.
However, volumetric representation is limited by its reso-
lution on account of the computational complexity of 3D
convolution and data sparsity. Multiview CNNs, proposed
in [19], apply 2D CNNs to classify a collection of 2D images
that from 3D shapes rendered views, and have achieved
good performance on shape classification and retrieval tasks.
A couple recent studies [20]–[21] used spectral CNNs on
meshes. However, these approaches are currently constrained
on manifold meshes, such as organic objects. In another
study [22], 3D data were converted into a vector, extracting
concise but geometrically informative shape descriptors to
guide the deep neural network training. Nonetheless, this
method may be constrained by the representative power of
the features extracted.

In the above applications, point cloud data are often con-
verted to voxel or mesh representations before they are
fed into the deep network. However, this data representa-
tion transformation renders the resulting data unnecessarily
voluminous and introduces quantization artifacts that can
obscure natural data invariances. If directly dealing with point
clouds, it is easy to apply transformations, such as translation
and rotation, as differentiable layers to achieve continuity
invariance. The study in [23] examined this problem.
A deep network architecture called PointNet, which directly
consumes point clouds, was designed. The key to this
approach is to achieve input order invariance by using a
symmetric function on transformed elements in the set.
Although simple, PointNet is highly effective and efficient.
PointNet++ [24] applies PointNet hierarchically for better
capturing of local structures. Another recent method [25]
learns an χ -transformation from the input data and then
applies it to simultaneously permute and weigh the input
features. The transformed features are subsequently applied
to the convolution neural network.

III. CONTRIBUTIONS
Building on the above advancements, this paper presents a
classification approach of 3D archaeological fragments. The
contributions of this work are as follows:

To the best of our knowledge, this is the first work to
apply PointNet to classify 3D fragments in the field of

digital archaeology. The method trains an end-to-end deep
learning networks to automatically extract and describe fea-
tures of Terracotta Warrior fragments. Although some exper-
tise is required to tune the optimization hyper-parameters,
no human intervention is required for feature extraction. Both
feature extraction and classification are trained automatically.

For each fragment misclassified by PointNet, a second
classification is implemented to determine the part to which
the fragment belongs by comparing the prospectively com-
plete Terracotta Warrior with the fragment. This step further
improves fragment classification accuracy.

The proposed approach can be applied to the task of classi-
fying 3D archaeological fragments and especially can effec-
tively distinguish fragments with very similar shapes. The
proposed method marks a solution to an extremely difficult
and time-consuming task for conservators and archaeologists.

IV. PRELIMINARIES
The point cloud is a widely used format of 3D model
representation. We acquired 3D data of the Terracotta
Warriors by using an Artec3D Scanner from Emperor
Qinshihuang’s Mausoleum Site Museum, as shown in Fig. 2.

FIGURE 2. Artec3D scanner.

A. ORIGINAL DATA PRETREATMENT
In the process of scanning the target objects with the Artec3D
scanner, defects, such as noise points, speckles, and holes
appeared, as displayed in Fig. 3(a) and (b).

Owing to the distance between the scanner and target
object, sight interference and occlusion of other objects gen-
erated noise points in the scanned model. This noise directly
affected the quality of the data.

The surfaces of some Terracotta Warrior fragments are
not smooth (they have minimal roughness). This may cause
the phenomenon of reflection or diffuse reflection when the
laser irradiates the surface of the target object in the scanning
process, resulting in the formation of holes. Moreover, errors
caused by the scanner itself, such as jitter, preheating, and
other issues, also lead to the formation of holes.

The occlusion on some of the surfaces of the Terracotta
Warrior fragments, coupled with the fact that the scanner
could not collect data from any direction, resulted in incom-
plete scanning. To obtain complete scans, the fragments
had to be scanned from multiple angles. Once this was
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FIGURE 3. Defects in the raw data from the 3D scans.

FIGURE 4. Result of data pretreatment.

accomplished, the scanned data from multiple angles were
aligned and registered.

This data pretreatment was necessary to improve the
data quality. The specific technical preprocessing steps we
employed using Geomagic software are listed below:
(1) The raw scanned data were aligned and registered;
(2) Isolated points outside of the cloud were deleted in

vitro;
(3) Noise and speckles were filtered;
(4) Holes in the 3D model surfaces were patched.
Fig. 4 (a) and (b) show the effect of data preprocessing on

the head fragments of one of the Terracotta Warriors.

B. DATA SAMPLING
A point cloud consists of large numbers of data points with
a dense distribution; it thus cannot be directly applied to the
framework of neural networks. Sampling and normalization
of the 3D point cloud provide standardized data for the subse-
quent use of the neural networks. Fig. 5 displays the result of
data sampling on the arm fragments of one of the Terracotta
Warriors.

V. POINTNET ARCHITECTURE COMPONENTS
The success of employing deep neural networks for image
processing has motivated a data-driven approach to learning
features of point clouds. Deep point cloud processing and
analysis methods have rapidly developed and have outper-
formed traditional approaches in various tasks.

FIGURE 5. Result of data sampling.

Our work is related to recent advances in PointNet [23].
PointNet, which directly feeds the point cloud data, can
approximate any set function that is continuous and directly
map the input to the target classification by passing the input
through multiple layers. It can also summarize an input point
cloud through a sparse set of key points, which corresponds
to the skeleton of the visualization of an object. PointNet is
highly robust to small perturbations of input points and to
corruption through point insertion or deletion.

The basic PointNet architecture is simple, as all the stages
are automatically processed. Fig. 6 shows a flowchart of
PointNet, which takes points from the point cloud as input,
applies input and feature transformations, and then aggre-
gates point features by max pooling. The initial layers are
designed to extract the useful level features (low to high),
and the succeeding layers map the extracted features to the
target classification. The maximum pool layer is a symmetric
function that aggregates information from all points.

A. CONVOLUTIONAL LAYER
Convolutional layers, the main building blocks of CNNs,
learn the feature representation of the input points by per-
forming convolutions over the input.

The extracted feature maps are computed by convolving
the input data with the kernels and adding the bias parameters
to the features. In mathematical terms, consider x as the input
data, w as the kernel, and b as the bias for the convolutional
layer. Feature map z generated from this layer is calculated
as:

z = wx + b. (1)

The point cloud structure is completely different from the
image. A point cloud is represented as a set of 3D points
A = {pi|i = 1, 2, . . . , n}, where each point pi is a vector
of its (x, y, z) coordinate plus extra feature channels, such as
its normal and color.

The convolutional layer consists of several kernels that are
applied to calculate different features from the input data. For
simplicity and clarity, we only use x, y, z coordinates as the
feature channels of the given point. Therefore, there are only
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FIGURE 6. PointNet architecture. The numbers in parentheses are layer sizes (mlp: multi-layer perceptron).

FIGURE 7. Affine transformation matrix T1 as predicted by a mini-network.

FIGURE 8. Affine transformation matrix T2 as predicted by a mini-network.

two kinds of convolution cores (1× 3 and 1× 1) in PointNet
(see Fig. 7 and Fig. 8).

B. ACTIVATION FUNCTION
The key of every deep network is a linear transformation
followed by an activation function. The activation functions
follow the convolutional layers to detect the nonlinearities in

the deep network. The activation function plays an impor-
tant role in improving the performance of the training task.
Rectified Linear Unit (ReLU) is the most successful and pop-
ular activation function used in neural networks [26]–[28].
It is defined as

f (x) = max(x, 0), (2)
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where f (x) is the input to the activation function and x is
the output. ReLU retains the positive value of the input and
changes the negative value to zero.

Owing to its effectiveness and simplicity, ReLU has been
the default activation function used by the deep learning
community. Deep networks with ReLUs are more easily opti-
mized than networks with sigmoid or tanh units. Therefore,
for all layers except the last one, ReLUs are used in PointNet
to quickly train deep neural networks, which alleviates the
difficulties of weight-initialization and vanishing gradients.

C. MAX POOLING
The use of a single symmetric function, max pooling, is a key
aspect of PointNet. The network learns a set of optimization
functions that select interesting or informative points in the
point cloud, and it then encodes the reason for their selection.

In contrast to pixel arrays in images or voxel arrays in volu-
metric grids, a point cloud is a set of unordered points that are
not isolated. Thus, local structures from nearby points contain
meaningful information. As a geometric object, the learned
representation of the point set should be invariant to rotating
or translating transformations. Therefore, the model must be
able to approximate a general function defined on a point set
by applying a symmetric function on transformed elements
in the set. Hence,

f ({x1, x2, . . . , xn}) ≈ g(h(x1), . . . , h(xn)), (3)

where f : 2R
N
→ R, h : RN

→ RK and g:RK
× · · · ×

RK
→ R are symmetric functions. Function h is approxi-

mated by amulti-layer perceptron network, while g is approx-
imated by the composition of a single variable function and
a max pooling function. Through a collection of h, different
properties of the set are captured by a number of functions f .

D. FULLY CONNECTED LAYERS
The final fully connected layers of the network aggregate
the learned optimal values into the global descriptor for the
entire shape as the shape classification. Dropout layers are
used for the last multi-layer perceptron network in the
classification net.

E. TRANSFORMATION NETWORK
The basic architecture of PointNet was detailed in the pre-
vious section. In this section, details on the transformation
network and training parameters are the focus.

Since each point transformation is independent, it is easy
to apply rigid or affine transformations to the input format
of the point clouds. Thus, to further improve the results,
PointNet adds a data-dependent spatial transformer network
that attempts to canonicalize the data before the multilayer
perceptron processes them. Affine transformation matrix T1
is planned by a mini-network. PointNet directly implements
this transformation to the coordinates of the input points.
The mini-network itself resembles a vast network and is
composed of basic modules of point-independent feature

extractions, max pooling, and fully connected layers. The first
transformation network is a mini-net that takes the raw point
cloud as input and regresses it to a 3 × 3 matrix. It consists
of a shared multi-layer perceptron network (64,128,1024)
on each point with layer output sizes of 64, 128, and 1024;
a max pooling across points; and two fully connected layers
with output sizes of 512 and 256. Here, the output matrix
is initialized as an identity matrix. More details about the
mini-network are shown in Fig. 7. The above concept has
yet to be extended to the alignment of feature space as well.
PointNet has another alignment network on point features that
predicts feature transformation matrix T2 to arrange features
from different input point clouds. The feature transformation
network has the same architecture as the input transformation
network, except that the output is a 64×64matrix. Thematrix
is further initialized as an identity. Details about the alignment
network are shown in Fig. 8.

However, the dimension of the transformationmatrix in the
feature space is higher than the spatial transformation matrix,
which makes optimization difficult. Thus, a regularization
term is added to the softmax training loss, which constrains
the feature transformation matrix to be close to an orthogonal
matrix:

Lreg =
∥∥∥I − AAT∥∥∥2

F
. (4)

Here, A is feature alignment matrix T2. It is ideal for an
orthogonal transformation to maintain the information in
the input. By adding the regularization term, the model
achieves better performance and the optimization becomes
more stable. A regularization loss with a weight of 0.001 is
added to the classification loss of softmax to make the matrix
close to orthogonal.

VI. PROPOSED METHOD
The proposed method incorporates PointNet and the
template-guide approach [29]. This method is formulated in
a three-step pipeline as follows. First, to solve the problem of
insufficient sample sizes of fragments, data enhancement is
performed by Monte Carlo sampling. Second, fragments of
the Terracotta Warriors are labeled depending on their body
parts, and the point cloud data of the fragments are directly
fed into the PointNet training model and classified. Third,
the misclassified fragments are classified for a second time
by determining the corresponding relationship between the
Terracotta Warrior ‘‘templates’’ and the fragments.

The classification performance of PointNet has been
proven on public dataset ModelNet40 [30]. On account of
the uniqueness of the Terracotta Warrior data, it is not com-
parable to the ModelNet40 dataset. As a result, PointNet
classification of the Terracotta Warrior dataset has inferior
quality. For example, as shown in Fig. 9, some fragments are
very similar in shape; nevertheless, PointNet assigns them
to different parts of the terracotta structures, resulting in
misclassification.

Several of the Terracotta Warriors have similar geometric
shapes and surface textures. The relatively well-preserved
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FIGURE 9. Framework of the proposed method.

Terracotta Warriors are deemed ‘‘templates.’’ By calculating
the relationship between the template and the fragment, effec-
tive guidance for the classification of 3D fragments can be
provided, which further improves the classification accuracy.

The second classification of the Terracotta Warrior frag-
ments that were misclassified is performed as follows. First,
the Intrinsic Shape Signatures (ISS) algorithm is used to
extract key points in the intact regions of the Terracotta
Warrior fragments and template. Then the SHOT feature
descriptors of key points are calculated. Next, the correspond-
ing positions of the fragments on the template are deter-
mined by comparing the similarities of the SHOT feature
descriptors.

A. DATA ENHANCEMENT
Most deep learning models require a large number of training
samples. However, in this case, there is an insufficient number
of fragment samples. Therefore, Monte Carlo sampling is
employed to augment the training data and to match them to
the deep learning network structure.

Monte Carlo sampling is a random sampling method based
on the Monte Carlo method. It is a fundamental method for
3D point cloud data processing. The Monte Carlo method
approximates an objective function or estimates a certain
statistical quantity that may otherwise be difficult to obtain by
simulating random variables from a specific statistical model
and probability distribution.

The point cloudmodel can be represented as different point
cloud subsets by Monte Carlo sampling. Point cloud model
P can be regarded as point set P = {Pi|i = 1, 2, . . . , n},
where the coordinates of each point are (x, y, z). Them points
are randomly selected from the point cloud model as a subset
A = {Aj|j = 1, 2, . . . ,m} by using theMonte Carlo sampling
method. In the same way, subsets B = {Bj|j = 1, 2, . . . ,m},
C = {Cj| = 1, 2, . . . ,m}, D = {Dj| = 1, 2, . . . ,m}, and so

on, can be obtained. These subsets represent the same point
cloud model; however, they are not equal on account of the
random sampling. Since PointNet directly feeds point clouds,
data enhancement can be accomplished by transforming one
point cloud model into multiple subsets through Monte Carlo
sampling.

B. EXTRACTING KEY POINTS BY ISS ALGORITHM
The key points on the point cloud are those with stability and
saliency. In the proposed approach, the ISS algorithm [31] is
used to extract feature points on fragment Fi and templateM .
The purpose of extracting key points by the ISS algorithm is
three-fold: to construct its covariance matrix for each point in
a certain neighborhood of the support region of each 3D point,
to obtain the eigenvalues and eigenvectors through covariance
analysis, and to calculate the ratios of the largest eigenvalue
to the second largest eigenvalue and the second largest eigen-
value to the smallest eigenvalue. If both of those ratios are
less than a certain threshold, then the point is selected as the
key point of the 3D fragment surface. Fig. 13 illustrates an
example of extracted features.

To eliminate the influence of the non-uniform density of
the 3D point cloud, a weight is defined. The weight of points
in a sparse area is larger than that of points in a dense area. If a
sphere with radius R is defined for each point Pi, the weight
is the reciprocal of the number of points in Pi’s sphere:

wi = 1
/∥∥{pj : ∣∣pj − pi∣∣ < R

}∥∥ . (5)

Next, the covariance matrix COV (Pi) of each point Pi and all
points Pj within the radius R are calculated:

cov (pi)=
∑
|pj−pi|<R

wj
(
pj − pi

) (
pj − pi

)T/ ∑
|pj−pi|<R

wj.

(6)
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The eigenvalues of COV (Pi) are then calculated and
arranged in descending order, and the thresholds γ21 and
γ32 are set. If point Pi satisfies both Equation (7) and
Equation (8), Pi is selected as the key point:

λ
2
i
/
λ
1
i ≤ γ21, (7)

λ
3
i
/
λ
2
i ≤ γ32 . (8)

C. COMPUTATION OF SHOT DESCRIPTOR
To accommodate geometric differences between the frag-
ments and templates, a 3D shape descriptor that is insensitive
to local geometric variance is preferred. A histogram-based
descriptor, such as shape context [32], spin images [33],
and Signature of Histograms of Orientations (SHOT) [34],
has been the preferred option for this purpose. SHOT can
stably reflect geometric variance and outperforms other local
descriptors in terms of shape retrieval, object recognition, and
3D reconstruction.

Construction of a SHOT descriptor is divided into two pro-
cedures: feature coding (signature) and histogram statistics
(histogram). Feature coding is the key. The point cloud fea-
ture descriptor encodes the geometric information (including
the normal direction, angle, and curvature of the K-nearest
point), color, and texture information. The histogram is used
to describe the distribution of features and enhance the robust-
ness of features (from the perspective of probability).

The definition of a Local Reference Frame (LRF), invariant
to translations and rotations and robust to noise and clutter,
has been the preferred option to endow a 3D descriptor with
invariance to the same sources of variations, similarly to
the way rotation and/or scale invariance is injected into 2D
descriptors.

1) LOCAL REFERENCE FRAME FROM DISAMBIGUATED
EIGENVALUE DECOMPOSITION
SHOT constructs a unique and unambiguous local reference
frame. The Total Least Squares (TLS) estimation of the nor-
mal direction is given by EigenValue Decomposition (EVD)
of the covariance matrix. The eigenvector corresponding
to the smallest eigenvalue of M is defined as the normal
direction. To increase repeatability in the presence of clutter,
distant points are assigned smaller weights. To improve
robustness to noise, all points lie within the sphericity with
support of radius R. For the sake of efficiency, the centroid
computation is replaced with feature point p. Therefore,
covariance matrix M is calculated as a weighted linear
combination:

M =
1∑

i:di≤R
(R− di)

∑
i:di≤R

(R− di) (pi − p) (pi − p)T ,

di= ‖pi − p‖2 . (9)

In the following, three unit eigenvectors in decreasing
eigenvalue order are denoted as x+, y+ and z+, respectively.
The opposite unit vectors are denoted as x−, y− and z−,
respectively. Let M(k) be the subset of points within the

support (of radius R) whose distances from the feature point p
are among the k closest to the median distance dm, i.e.,

M(k) =
{
i : |m− i| ≤ k,m = argmediandj

}
. (10)

Then, the final disambiguated x-axis is defined as:

S+x
.
=
{
i : di ≤ R ∧

(
pi − p

)
· X+ ≥ 0

}
, (11)

S−x
.
=
{
i : di ≤ R ∧

(
pi − p

)
· X− > 0

}
, (12)

S+x
.
=
{
i : i ∈ M (k) ∧

(
pi − p

)
· X+ ≥ 0

}
, (13)

S−x
.
=
{
i : i ∈ M (k) ∧

(
pi − p

)
· X− > 0

}
, (14)

X =


X+,

∣∣S+x ∣∣ > ∣∣S−x ∣∣
X−,

∣∣S+x ∣∣ < ∣∣S−x ∣∣
X+,

∣∣S+x ∣∣ = ∣∣S−x ∣∣ ∧ ∣∣∣S̃+x ∣∣∣ > ∣∣∣S̃−x ∣∣∣
X−,

∣∣S+x ∣∣ = ∣∣S−x ∣∣ ∧ ∣∣∣S̃+x ∣∣∣ < ∣∣∣S̃−x ∣∣∣

 . (15)

To disambiguate EVD at those points where
∣∣S+x ∣∣ = ∣∣S−x ∣∣,

it is specified that only an odd number k of vertices in M (k)
yield S̃+x and S̃−x . The eigenvector is reoriented to ensure its
sign is coherent with the majority of such vectors. The z axis
is disambiguated by the same procedure. Finally, the y axis is
given as z× x.

2) SHOT DESCRIPTOR
Encoding histograms of geometric information (normal)
within the support is performed by computing a set of
local histograms over the 3D volumes defined by a 3D grid
superimposed on the support. The grid is aligned with the
axes defined by the local reference frame introduced in the
previous section.

The spherical region is constructed by using query point P
as the origin, using the local reference system as coordinate
axes, and support R as the radius. The size of the subspace
region is 32, which results from two radial divisions, two
elevation divisions, and eight azimuth divisions. For each
subspace, the local histograms are constructed by the fol-
lowing method: for each of the local histograms, the points
falling into bins are accumulated according to the formula
cosθq = zk · nq, where nq is the normal at the point on the
local surface, zk is the local z axis at the feature point, and θq
is the angle between nq and zk .

The interval [−1, 1] is selected on the horizontal axis
of the histogram and is divided into bins. According to
the cosine value, the corresponding histogram interval is
summed. To avoid boundary effects in the process of his-
togram construction, when each point is accumulated into a
specific local histogram bin, quadrilinear interpolation with
its neighbors is performed, as shown in Fig. 10. The dimen-
sion of the histogram feature depends on the number of
histogram bins. The optimal number of bins is 11, and the
total descriptor length of 352 is obtained.

D. CONSTRUCTING MATCHING RELATIONS
BETWEEN FRAGMENTS AND TEMPLATES
SHOT descriptors (a 352-dimensional vector) are used to
describe and compare each key point on M and on F, which
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FIGURE 10. Quadrilinear interpolation to accumulate weights into
histograms.

are denoted as S(Qj) and S (Pi), respectively. As shown
in Fig. 11, set A = {Qj|j = 1, 2, . . . ,m} and B = {Pi|i =
1, 2, . . . , n} are the key points on template M and fragment
F, respectively. If fragment F corresponds to region R1 on

FIGURE 11. Matching relations between fragment F and template M.

template M, then for point Pi, point Qj can be found in
region R1, making S (Pi) close to S(Qj). A function D (S(Pi),
S(Qj) = |S(Pi) − S(Qj)| was defined to calculate the dif-
ference between S(Pi) and S(Qj). Here, K points on M are
selected for each key point Pi on F. D(S(Pi), S(Qj1)) < . . . <

D(S(Pi), S(Qjk )) (j1, j2, . . . , jk ∈ j) is used as a constraint
condition to find k smallest values. If D (S(Pi), S(Qj)) is
less than a certain threshold δs, and D (S(Pi), S(Qj)) is one
of k smallest values, (Pi, Qj) is considered as a potential
corresponding pair and added to the initial correspondence
set C. When the value of K is 2, the initial correspondence
set is C = {(P1, Q1), (P1, Q2), (P2, Q2), (P2, Q3), (P3, Q3),
(P3, Q5)}.

E. ELIMINATING MISMATCHES BY RANSAC ALGORITHM
To ensure that enough features are extracted for fragment F,
template M usually contains many key points. This makes
finding the correct feature correspondence difficult. Since
points from other irrelevant regions on M (that do not corre-
spond to F) introduce irrelevant correspondences, the correct
correspondence pairs are far fewer than the outliers, even
though the size of the initial correspondence set was large.

From a local point of view, for each point Pi on F, (Pi,Qf )
is a pair of optimal correspondences with the minimum value
of D(S(Pi), S(Qj)) (j = 1, 2, . . . , f , . . . ,m), but not from
a global point of view. For example, as shown in Fig. 11,
the SHOT descriptors closest to P1, P2, and P3 are Q2, Q2,
and Q3, respectively; however, in fact {(P1, Q2), (P2, Q2),
(P3, Q3)} is not the optimal correspondence set.

This requires that the initial correspondence set is
effectively simplified and the incorrect correspondence
is eliminated. The random sample consensus (RANSAC)
algorithm [35] is efficient and suitable for correspon-
dence refinement. To obtain the inliers (correct corre-
spondence pair), we evaluate the geometric consistency
among correspondence pairs given two correspondence pairs,
C1 = (P1, Q1) and C2 = (P2, Q2), where P1, P2 ∈ F
and Q1, Q2 ∈M. If the Euclidean distance between P1 and
P2 is similar to the distance between Q1 and Q2, namely,
abs(‖P1−P2‖− ‖Q1−Q2‖)< δt , we consider C1 and C2 to
be geometrically consistent.
The steps to refine the initial correspondence set are as

follows:
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Step 1: Two correspondence pairs, (Pi, Qj) and (Pm, Qn),
are randomly selected from the initial correspondence set C
to construct the model. The inlier set, {(Pi, Qj), (Pm, Qn)},
is denoted as I. If abs(‖Pi−Pm‖−‖Qj−Qn‖)> δt , we define
the model to be unreasonable and select the correspondence
pairs again.
Step 2: The error between each correspondence pair

(Px,Qy) and the model is calculated. If the error satisfies
abs(‖Px − Pi‖ − ‖Qy − Qj‖)< δt and abs(‖Px − Pm‖ −
‖Qy−Qn‖)< δt , and (Pi, Qj) and (Pm, Qn) are geometrically
consistent, then (Px, Qy) is added to inliers set I. The numbers
of correspondence pairs from C and I are denoted as N
and Num, respectively. If Num/N is greater than threshold
δr , inlier set I is considered the current optimal inlier set.
Otherwise, Step 1 is repeated.
Step 3: The sum (εI ) of the errors between (Pa, Qb) and

the model is calculated according to Equation (16), where
(Pa,Qb) ∈ I. If εI < ε, ε = εI . Otherwise, Step 1 is repeated.

εI =

Num∑
0

abs(‖Pa − Pi‖ − ‖Qb − Qj‖)

+ abs(‖Pa − Pm‖ − ‖Qb − Qn‖). (16)

Step 4: The number of iterations iter is not fixed and must
be updated according to Equation (17). When iter is greater
than the greatest number of iterations, the algorithm exits, and
I is the optimal correspondence set. Otherwise, the number
of iterations is increased by 1, and Step 1 is repeated. If D is
the confidence level, which has the value in this experiment
of 0.99, then iter is given by:

iter =
log(1− D)

log(1−
(Num

N

)2
)
. (17)

Threshold δr is affected by two factors. One is the number
of key points on template M and fragment F. The other is the
value of K . We define threshold δr as

δr = λ
NUM (F)

K × NUM (M)
, (18)

where λ is the weight factor and NUM() represents the
number of key points on the original surface of the object.
To reduce mismatches, for each key point on F, we select K
optimal correspondences to join the initial matching group,
but only about 1/k correspondences are correct.

If the correct correspondence pairs of I reach a certain
number, F and M are considered to correspond successfully.
That is, the corresponding region of the fragments on the
template is determined.

VII. EXPERIMENTAL RESULTS AND ANALYSIS
A. DATABASES OF TERRACOTTA WARRIOR FRAGMENTS
We obtained point cloud models of Terracotta Warrior frag-
ments by a 3D scanner and established a fragment database
that contained 878 fragments from 50 Terracotta Warriors.
We labeled the archeological fragments into particular cate-
gories according to the parts of the Terracotta Warriors, some
of which are shown in Fig. 12. The thickness, size, and texture

FIGURE 12. Select fragments displayed by category.

of the fragments in different parts of the Terracotta Warriors
differ. For example, the head, neckline, hands, arms, legs, and
feet are solid; the upper body and skirt pieces are thin and
textured; and the shoulder and side sections of the body are
curvy.

The total sample size was 4390 fragments after data ampli-
fication using Monte Carlo sampling. There were ten candi-
date classes according to the parts of the Terracotta Warriors:
head, arm, hand, leg, foot, collar, the upper body and skirt,
shoulder and side, and others.

B. IMPLEMENTATION DETAILS AND
EXPERIMENTAL RESULTS
1) FIRST CLASSIFICATION WITH POINTNET
The fragments of the Terracotta Warriors were transformed
into data in the form of a point cloud. This format is simple,
and it is thus easier for deep learning methods to learn from it.
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We produced point clouds with 2048 particles, where each
point was a vector of its (x, y, z) coordinate plus extra normal
feature channels. Each fragment data was normalized in the
preprocessing step to have zero mean and unit variance.

There were 4,390 point cloud models from ten manually
created categories, split into 3510 for training and 880 for
testing.We train on PointNet takes 4-5 hours to converge with
TensorFlow and 2 GeForce RTX 2070 GPU. The dropout
with keep ratio of 0.6 on the last fully connected layer, which
has an output dimension of 256, is used before the class score
prediction. The decay rate for batch normalization starts with
a ratio of 0.5 and is gradually raised to 0.98. PointNet uses
an Adam optimizer with an initial learning rate of 0.001,
momentum of 0.9, and batch size of 32.

TABLE 1. Classification accuracies (%) for PointNet, PointNet++, and
PointCNN.

We firstly tested our database with three models, which
were directly fed to the point cloud: PointNet [23],
PointNet++ [24], and PointCNN [25]. The classification
accuracies of all three methods are shown in Table 1. For
our dataset, accuracy varied minimally among the three deep
learning networks. Therefore, we chose PointNet, which
has the simplest network architecture, to classify the 3D
fragments of the Terracotta Warriors.

2) SECOND CLASSIFICATION GUIDED BY TEMPLATES
Our program was run on a Desktop computer with 3.6GHz
Core i9 GPU and 64GBRAM. Fig. 13 shows the extraction of
key points on the surface of the head template of a Terracotta
Warrior when different parameter values are used. When
extracting surface key points, the selection of parameters was
mainly based on empirical values. As shown in Fig. 13(a),
when the values of the parameter group are R = 7,
γ21 = 0.75, and γ32 = 0.005, too few key points are extracted

FIGURE 13. Extraction of key points from the head template of the
Terracotta Warriors.

from the surface of the template, resulting in too few effec-
tive matches or mismatches between key points. As shown
in Fig. 13(c), when the values of the parameter group are
R = 8, γ21 = 0.85, and γ32 = 0.01, there are too many key
points to extract. This increases the complexity of generating
the optimal matching group, which increases the computation
time for feature descriptors. As shown in Fig. 13(b), when the
values of the parameter group are R = 8, γ21 = 0.9, and
γ32 = 0.01, the number of key points extracted is moderate.

FIGURE 14. Matching of key points on fragments and templates.

Fig. 14 shows an example of the matching between the
head template and the face fragments of the Terracotta
Warriors. When the parameters are δs = 0.88, k = 4, and
δt = 7 mm, Fig. 14(a) shows the initial matching relationship
of key points between the template and the face fragment.
When λ = 3 and δr = 0.342, Fig. 14(b) shows the effect of
eliminating mismatches with the RANSAC algorithm.

TABLE 2. Effects of template guidance approach on our dataset.

Table 2 outlines the positive effects of our template
guidance approach. It is interesting that PointNet achieves
reasonable results. Using the templates confers a 9.15% per-
formance boost.

As can be seen from table 3, it takes about 4 hours for the
first classification of 4390 fragments with PontNet. For 793
fragments that are misclassified, it takes about 8 hours to
classify them by the approach of template guidance. Our
proposedmethod takes 11.7 hours to classify 4390 fragments,
that is, an average of 9.59 seconds per fragment.

3) COMPARISON WITH OTHER CLASSIFICATION METHODS
OF TERRACOTTA WARRIOR FRAGMENTS
In Table 4, we compare the accuracy of ourmethodwith a rep-
resentative set of previous methods. Using the same 3D data
for the fragments of the Terracotta Warriors, our method is
significantly stronger than the methods used by [12] and [15].
Our method also outperforms the method used in [14].

As can be seen from the data in Table 5, it is a very time-
consuming process to classify the fragments of terracotta
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TABLE 3. Time consuming.

TABLE 4. Classification accuracy (%) for proposed method and others.

TABLE 5. Time consuming for proposed method and manual approach.

warriors in amanual way. It’s a good result to find three to five
pieces of fragments that match the broken terracotta warriors
in 8 hours. However, the proposed method only takes about
one minute to classify 5 fragments.

C. DISCUSSION
Recently, a type of neural network that directly consumes
point clouds was reported [23]–[25]. In this study, PointNet
was applied to automatically classify the point cloud of the
Terracotta Warrior fragments. That directly feed irregular
point clouds without transforming them into regular 3D voxel
grids or collections of images. PointNet achieved better clas-
sification performance on the publicly available dataset Mod-
elNet40, a shape classification benchmark. However, for our
database, the accuracy of PointNet was decreased compared
to its accuracy for ModelNet40. This finding implies that the
effectiveness of PointNet tends to become poor when the data
are unique.

Our innovative classification method, employs Terracotta
Warrior templates into the fragment classification via
a second round of classification for misclassified fragments.
Complete templates with geometries similar to the fragments
are available and can be used to guide the classification and
reassembly. It is for this reason that the proposed concept
can obtain better classification performance. Our experi-
mental results demonstrate that our hierarchical classifica-
tion approach achieves significantly better performance than
PointNet accomplishes by itself.

To verify the effectiveness and generality of the pro-
posed method, we performed an analysis comparing our
method to a representative set of previous methods. In terms
of classification accuracy, the proposed method is higher
than that of [12], [14], and [15]. Note that [12] and [14]
in Table 2 used images as input by mapping a 3D model
to an image. We believe that converting the 3D data into
2D images incurred unnecessary work, whereas direct use of
the 3D data was the most direct approach. Liu [15] used 3D
data (voxel grids) as input. However, this data representation
transformation renders the resulting data unnecessarily volu-
minous, while also introducing quantization artifacts that can
obscure natural invariances of the data. In terms of time cost,
the advantages of the proposed method are obvious compared
with that of manual method.

VIII. CONCLUSION
The purpose of classifying fragments of the Terracotta
Warriors is to provide convenience in organizing the frag-
ments and assisting in the subsequent reassembly tasks. Thus
far, artificial and semi-automatic classification approaches
are the most widely employed methods in the restoration
of archaeological fragments. To improve the efficiency of
the restoration of cultural relics, an automatic classifica-
tion method was here is proposed. In this method, a deep
learning network automatically learns the shape features
of 3D fragments of the Terracotta Warriors and generates
a classification of them. For those misclassified fragments,
the rate of misclassification is further reduced by constructing
many potential matching relationships among the fragments
and their corresponding templates. The experimental results
demonstrate that the accuracy of the proposed method is
higher than that of any other classification method, which
makes it the most suitable method for classifying archaeo-
logical fragments of the Terracotta Warriors to date. As a
result, this method will significantly increase the accuracy
and efficiency of future fragment reassembly of the Terracotta
Warriors.

Despite the above advancements, the proposed method has
limitations. For some cultural artifacts that do not have a
complete template, fragment classification using only a deep
learning model may not be effective. Therefore, for such
cultural artifact fragments, we must identify and employ the
unique and distinctive information from them and effectively
combine them with deep learning methods to improve their
classification accuracy.
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