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ABSTRACT Identification of community structures is essential for characterizing and analyzing complex
networks. Having focusing primarily on network topological structures, most existing methods for commu-
nity detection ignore two types of non-topological relationships among nodes, i.e., pairwise “must-link’
constraints among pairs of nodes and labels of nodes, such as functions they may have. Here, we present a
novel semi-supervised and active learning method for community detection to integrate these two types of
information of a network so as to increase the accuracy of community identification. Our new method will
honor the “must-link’ relationship without introducing new parameters and is efficient with a guaranteed
convergence. An essential component of the method is a linear representation that is particularly suited to
an active learning to help select the most critical nodes that impact community discovery. We present results
from extensive experiments on synthetic and real networks to show the superior performance of the new
methods over the existing approaches.

INDEX TERMS Community detection, non-negative matrix factorization, semi-supervised learning, active

learning.

I. INTRODUCTION

Networks in real world are not random, but rather contain
groups or community structures, which manifest organiza-
tional structures and functional components of the underlying
systems. The nodes within a community are densely con-
nected, while nodes in different communities are sparsely
connected [1]. Community structures are essential character-
istics of complex systems [2]; the nodes in the same commu-
nity tend to share the same or similar attributes and may have
the same function. Identification of communities is an impor-
tant step toward characterization of a complex system as a
whole and understanding of the functional roles of individual
components of the system. Much effort has been devoted to
community identification for network analysis. Most exit-
ing methods for community detection focus on network
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topological structures alone without taking into consideration
non-topological information on nodes or links [3]-[5], and
thus can be considered to fall into the category of unsuper-
vised learning. Since network topology is merely one aspect
of a network, ignoring other description may prevent accurate
community identification.

Furthermore, the community detection method is intro-
duced to reveal the networks clustering characteristics [6].
To be specific, there are two main non-topological informa-
tion: given labels for a small set of nodes and the pairwise
must-link constraints to restrain two nodes from being put
into two communities. For instance, in World Wide Web
network, it is not difficult to see which webpages belong to
sport categories, and which webpages share common features
on movies. In social network, it is also easy to determine who
must belong to the same university or company.

Non-topological information can be utilized for commu-
nity detection through semi-supervised learning [7], [8].

VOLUME 8, 2020


https://orcid.org/0000-0002-8687-0490
https://orcid.org/0000-0001-7428-7698
https://orcid.org/0000-0002-9059-330X
https://orcid.org/0000-0001-8896-1735
https://orcid.org/0000-0002-9669-8831
https://orcid.org/0000-0002-2854-331X
https://orcid.org/0000-0003-0794-527X

S. Zhang et al.: Semi-Supervised Community Detection via Constraint Matrix Construction and Active Node Selection

IEEE Access

Indeed, semi-supervised learning algorithms have been pro-
posed recently for community identification. In particular,
Ma et al. [9] incorporates pairwise constraints on nodes in
symmetric nonnegative matrix factorization (NMF); Eaton
and Mansbach [10] develops a semi-supervised spin-glass
model from statistical physics to combine both pairwise
constraints among nodes and community labels on nodes,
with the existing modularity-based community detection
method; Zhang [11] extends pairwise constraints to other
community detection methods, such as spectral clustering;
and Zhang [12] designs an enhanced semi-supervised learn-
ing approach to utilize pairwise constraints through logical
inference. However, all these methods introduce additional
parameters, generally more than two, which are difficult to
tune in practice, to make tradeoffs between pairwise node
constraints with network topological constraints. As a result,
none of them is able to guarantee that two nodes having a
pairwise must-link constraint are indeed assigned to the same
community.

Considering the non-topological must-link constraints as
discussed above, it is not practical to treat the network’s
nodes as equal players in identifying communities of the
network. It pays to identify those nodes that contribute the
most to improve community detection if they are assigned
to the right communities they belong to. A feasible alter-
native is active learning method. Intuitively, if a node has
a small impact on other nodes, its information may have
little value. On the other hand, if a node is highly related
to and/or has a large influence on other nodes, using its
additional information can help produce better community
structures. The problem of identifying such informative nodes
and adopting such labeling information in a learning pro-
cess has been cast as an active learning problem [13], [14].
Using the Hamming distance, Zhang [11] adds the must-link
and cannot-link constraints to nodes with the largest and
the smallest distances, respectively; despite using pairwise
constraints and active learning, the results are not competitive
comparing with a random scheme. Leng et al. [15] proposes
to select critical nodes through a complex and costly graph
algorithm. Nevertheless, this method only aims at select-
ing critical nodes that can cover as many communities as
possible, which does not consider the nodes lying in the
boundary of communities that may also have impact on com-
munity structures. Yang et al. [16] proposes an active link
selection framework. According to the entropy of nodes,
they denoted the hub and boundary nodes, and then decided
to add or delete links between them. So, they efficiently
sharpened the block structure of the network’s adjacency
matrix. But this method is designed for selecting links rather
than nodes and it is an iterative procedure with high com-
putation complexity. Yafang et al. [17] proposes an active
semi-supervised community detection method. This method
actively selects a small amount of links as side information
to ““sharpen” the boundaries; meanwhile, refers the number
of communities automatically. This method transfers the net-
work topology into similarity space for node representation,
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therefore,the feature dimensionality will be too high as an
increase of nodes in real networks. All of these methods rely
on prior information excessively.

To this end, in this paper we propose a novel, NMF-
based, semi-supervised and active learning method, to exploit
non-topological information for community detection.
It guarantees to abide by the additional constraints on links
and nodes. An efficient updating rule is devised to facilitate
fast convergence for the optimization problem of NMF.
A salient feature of our new basic semi-supervised method
is parameter free, except the number of communities that
is typically required, making it easily applicable to large
and complex real networks. As an extension to this method,
we adopt a linear representation scheme to help identify
critical vertices that have the most impact on community
discovery and exploit such information in active learning. Our
main idea is making the active learning process less random
and more interpretable. The new methods are then compared
with several existing methods on several synthetic and real
networks.

We summarize the main contribution as follows.

1) We present a new Semi-supervised community detec-
tion which utilizes the must-link priors by constructing a
constraint matrix.

2) We introduce a linear combination of the topological
structure to active learning. The most critical nodes that
impact community discovery can be selected by this lin-
ear representation. Furthermore, we can give them labels or
must-link constraints and then use the proposed method in 1).

3) Extensive experiments on both artificial and real
dynamic networks based on two evaluation indexes
demonstrate demonstrate the superiority of the proposed
Semi-supervised community detection in comparison with
state-of-art methods.

The paper is organized as follows. We introduce the
related work in Section II. The new methods is illustrated in
Section III, including the semi-supervised and active learning
methods. Experimental results of our algorithms and their
comparison with other algorithms are reported in Section I'V.
We close with some conclusions in the last Section V.

Il. RELATED WORK
In this section, we briefly review related work on
semi-supervised community detection.

Community detection can capture community structures
in complex networks by analyzing the associations between
nodes in the network.In the past few years, a large num-
ber of community detection algorithms have been proposed
and some of them have achieved good performance in
many fields [2], [3] [18]-[20]. Most of these methods, how-
ever, only take into account the topology information but
ignore some prior information. that is important for commu-
nity detection.In recent years, many semi-supervised com-
munity detection algorithms are proposed.By making use
of the supervised information or background information,
they significantly improved the performance of traditional
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semi-supervised

FIGURE 1. An illustration of unsupervised and semi-supervised methods. Given a network A and the must-link constraint between
nodes 1 and 3 (marked in green), the unsupervised method obtains different community memberships U1 and U3 for the two
nodes, so there is no guarantee that they must be in the same community. The semi-supervised method constructs a constraint
matrix C whose 1-th and 3-th columns (i.e., C1 and C3) are the same and U1 = U3 so that nodes 1 and 3 will be in the same

community.

topology-based method [16].Yang et al. [21] interprets com-
munity detection as the clustering problem in the latent
space, and then adds a graph regularization term to penal-
ize the latent space dissimilarity of nodes which have
“must-link” constraints. Fan et al. [22] propose a fast
and semi-supervised community detection method that inte-
grates the prior information into the distance dynamics mod-
els. Yang et al. [23] propose a framework that transforms
the original network into an equivalent but much smaller
Super-Network by constructing the indivisible super-nodes
and by forming the weighted super-edge based on network
topology and cannot-link constraints. They, however, often
ignore the problem that which supervised link information
is the most important and useful information for perfor-
mance improvement, and they only add the randomly selected
supervised link information.To address the former problem,
many semi-supervised community detection methods based
on active link or node selection for pair-wise constraints are
proposed [15]-[17].But all of them are too subjective,that is,
rely on prior information immoderately. In recent three years,
the node attribute is proposed as priori information [24], [25]
and merged with the network topology, so as to improve the
accuracy of semi-supervised community detection, especially
in using deep learning to mine node content [26]—[28]. This
approach is to improve the accuracy of semi-supervised com-
munity detection from another perspective. In theory, it is
better to incorporate constraints into topology structure.

Ill. THE PROPOSED FRAMEWORK
In this section, we introduce the notations and our new pro-
posed semi-supervised community detection framework.

A. PRELIMINARIES

Firstly, we introduce some important notations used through-
out the paper. We are interested in finding k communities
in an un-directed network G(V, E) with n nodes V and m
edges E, represented by an adjacency matrix A € R"*", Let
Uj; be the propensity of node j belonging to community i.
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The community membership of all the nodes of the network
is then U = (Uy), fori = 1,2,...,n, where the jth
column,U; € RE>1 is the community membership of node j.
The overall objective of the community finding problem is to
compute community identities for the nodes in G. If network
topology denoted by the adjacency matrix A offers the only
guidance for community finding, the topological structure
and the node community membership U to be determined
should be as closely consistent as possible, which gives rise
to the following optimization function [29]:

2
min L(U) = HA - UTUH , (1
U>0 F

where ||X]||f is the Frobenius norm of matrix X. In particu-
larly, this can be viewed as a low-rank dimension reduction,
where the rank corresponds to the number k£ of communi-
ties. We employ k probabilistic communities to describe the
network. Then we can use U;U; to present the expected
number of links lies between nodes j and r in community i.
Summing over communities j, the expected number of links
between j and r in the network is Zf‘z 1 U;jU;;. Using squared
loss, the problem of fitting the model to the given network
is the symmetric-NMF formulation (1). The above function
then leads to an unsupervised method using only network
topology [30].

B. MODEL OVERVIEW

In this section, we will have an overall view of the pro-
posed new semi-supervised community detection method.
Our framework includes two aspects:constraint matrix con-
struction and active node selection,named SSNMF and
SSNMF_AL,respectively.

In SSNMEF, must-link constraints are transformed to the
form of constraint matrix.In fact, the matrix reflects the rela-
tionship between node and constraint. A new non-negative
auxiliary matrix are also proposed to map constraint to com-
munity, and then, node community membership matrix can
be find by optimizing the objective function. In this way, con-
straint information can be fully used. We illustrate in Fig.1 the
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FIGURE 2. An illustration of linear representation. A,, A5 and Ag are the
topological structures of nodes 1, 5 and 9 in the left network, respectively.

effects of unsupervised and semi-supervised methods on a
given network A with nodes 1 and 3 that in fact belong to the
same community (marked in green), because of a must-link
constraint. An unsupervised method (with no must-link con-
straint) may produce different community memberships for
nodes 1 and 3 and consequently assign the two nodes to
different communities, marked in green and red. In contrast,
the must-link constraint used by the semi-supervised method
will result in the same community membership for the two
nodes, guaranteed that nodes 1 and 3 to belong to the same
community, marked in green.

In SSNMF_AL, linear representation is critical for min-
ing active nodes. For simplicity, we assume a undirected
and unweighted graph which contains 9 vertices as shown
in Fig.2. To see the rationale of this representation, consider
a social network, if two people share common friends, they
may share similar topological structures as well. Therefore,
it is viable to represent one node by the other nodes. To be
concrete, consider a toy example in Figure 2. Although node
1 does not directly connect to nodes 5 and 9, its topological
structure can be represented by a linear combination of that
of A5 and Ay, because node 1 shares common nodes 2, 3 and
4 with node 5 and common neighbors 6, 7 and 8 with node 9.

IV. CONSTRAINT MATRIX CONSTRUCTION IN SSNMF

Consider must-link constraint in addition to the adjacency
matrix. Assume for a given collection of sets of nodes,
all nodes in one set must appear in the same community.
Specifically, we are given P = P UP, U ... U Py, where P;
is a set of nodes that must be assigned to the same community
as specified by the must-link constraints. As the must-link
relationship is transitive, we have P; N P; = (). Apparently,
P defines the initial, incomplete ¢ communities. The remain-
ing nodes not in P may be assigned to these g communities or
form communities of their own. To start looking for commu-
nities using the must-link constraints and network adjacency
matrix, we first put each of the unassigned nodes (singletons)

into its own set. In other words, the network is temporally par-
L.I+1n Pp i}
; ,

titioned into g + n — p subsets, represented as {U
where p is the total number of nodes in P. For example, in a
network of 6 nodes, suppose that nodes 1 and 2 must be in
one community and nodes 4 and 5 in another, the remaining
nodes 3 and 6 are singletons whose community identities are
to be determined. That is, P = {1, 2}, P, = {4, 5}, P3 = {3}
and P4 = {6}.

VOLUME 8, 2020

We now introduce a non-topological constraint matrix
(Cy) € R@+n=p)xn \where C;j = lifnodejis in the subset P;,
or C;j = 0, otherwise. This means that if nodes i and j
belong to the same community, the i-th and j-th columns of
C are equal. For the above simple 6-node network, the non-
topological constraint matrix C is

1 1.0 0 0 O
0o 0 0 1 1 0
0o 0 1 0 0 O
0 0 0 0 0 1

In essence, the constraint matrix C captures the relation-
ship between nodes and constraints. To facilitate finding
node-community membership, we introduce a new nonneg-
ative auxiliary matrix Z = (Z;) € R¥*@H=P) (o map
constraints to communities. More importantly, we turn the
problem of finding node community memberships U into the
problem of finding Z such that U = ZC. Consequently,
the original objective function in (1) can then be rewritten
as:

min L(Z) = HA — CTZTZCH; . ©)

Unlike the other methods that introduce extra parameter to
balance additional information with the network structures,
our objective function is parameter free, which greatly sim-
plifies the process of incorporating additional information.
Further, if there is no additional information, the constraint
matrix C becomes an identity matrix I € R™ ", and the
nonnegative auxiliary matrix Z is equal to the community
membership matrix U. Therefore, the objective function for
unsupervised community detection in (1) is a special case of
the new objective function in (2).

A. PARAMETERS EVALUATION

In order to derive the updating rule for optimizing the objec-
tive function in (2), we introduce a Lagrange multiplier matrix
® = (©j) for the nonnegative constraints on Z to (2),
resulting in the following equivalent objective function:

L(Z) = tr(CT27Z2CCT 27 ZC) — 2tr(ACTZT ZC)
+ 1r(AA) + tr(®ZT).

For any stationary state, we have

L(Z
% =47CCT72"7CCT —4z2CACT + 0. ()

By setting (3) to 0 and using the Karush-Kuhn-Tucker
condition @ijZ§ = (0, we then have:
zcC'z'zech);z; — (ZCACT);Z; = 0,
which gives rise to the following updating rule for Z:

= Zii( (ZCACT)U )% @)
- ZCeCTZTZCCT )y

To prove the convergence of the updating rule, we have the
following results.

Z;
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Theorem 1 : The objective function of (2) is non-increasing
under the iterative updating rule (4).
Proof : The proof follows the auxiliary function method
in [31]. If a function satisfies

L(Z) < F(Z,Z),VZ ,F(Z,7) = L(Z),

F(Z,7') is then an auxiliary function of L(Z). We can define
7' = argming F(Z, Z"). And then have

LY =F@*, 2% < F@'™, 7)) < 2.
This proves that L(Z) is monotonically non-increasing.

Next we need to find the specific form of the auxiliary
function F(Z, Z') for the objective function (2) as followed,

L(Z) = HA - CTZTZCHi

=tr(CTZ2T72CCT 27 7C) — 2tr(ACTZTZ.C) +1r(AA)
=tr(CCTZTZCCT27Z) — 2er(ACT ZTZC) +1r(AA)

(by Lemma 1)
1 / !
< 5rr(ccTPccTz Tz, +ccTz™z'ccrp)

—2tr(ACTZTZC) + tr(AA)
< tr(PCCTZ7Z/CCTy — 2tr(ACTZTZC) + tr(AA)

(by Lemma 2)
< tr(RCCTZTZ'CCTZTy — 2tr(ACTZTZC) + tr(AA)
(by Lemma 3)

< tr(RCCTZ77/cC’Z™y — 2tr(Z' CACT QT)
—2tr(QCACTZTy — 2tr(Z' CACTZ'T) + tr(AA)

=F(Z,7),
Z'7); z; Vo T
where P; = m, R = ?’ andQ;; = Zijl”(z_i’j)'Thls

provides the specific form F (i, Z))of the auxiliary func-
tion for objective function (2). We can then have the solu-
tion for minz F(Z, Z') by the following Karush-Kuhn-Tucker
condition

z} ,
4—LZ'cC’27CChy;
Z;
Z';i
- zZ—”(z’CATcT +2Z/CACT); =0,
ij

IF(Z,Z))
aZ;

which gives rise to the updating rule in (4). Therefore, under
this updating rule the objective function L(Z) of (2) will
monotonically decrease, and converge to a local minimum.
The proofs to Lemmas 1 to 3 are in Appendix.
The detailed algorithm is described in Algorithm 1.
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Algorithm 1 Proposed Semi-Supervised Method

Input: The adjacency matrix A, the number of communities
k, and the set of labeled nodes P
Output: The community membership matrix U
Initialize auxiliary matrix Z;
According to P, constructing the constraint matrix C;
while not converge do
Update Z via (4);
end while
U =ZC;
return U.

AN O i

B. ACTIVE NODE SELECTION IN SSNMF_AL

Not every node in a network equally affects community
discovery. A node that is highly related to others may have
a large influence on community detection and knowing its
community identity may affect the community membership
of the other nodes. Therefore, we are interested in identifying
such critical nodes, and using such “labeled” nodes in active
learning. To this end, we consider to represent the topological
structure of a node by a linear combination of the topological
structures of the other nodes.

Formally, the topological structure A; of node i can be
rep-resented by a linear combination of the topological struc-
ture of other nodes, i.e.,A; = Z'-': 1 ji BjjA;. The coefficient
Bijj denotes the correlation between nodes i and ;.

Different from the node connectivities, this new repre-
sentation captures deep structural similarities among nodes
beyond the information in the adjacency matrix. Even though
two nodes do not directly link with one another, they may
still be highly related to or similar with each other. This new
representation enables us to discover the most critical nodes
that influence community structures.

If the topological structures of nodes can be obtained by a
linear representation of the topological structures of the other
nodes, the obtained network structure and original structure
A should be as closely consistent as possible, which gives rise
to the following objective function:

inL(B) = ||A — AB||2
‘1?21{,1 B) = 7,

where B holds the nonnegative coefficients. Furthermore,
in order to have a better discriminative power and find the
most critical nodes, we add to B a /| norm constraint,
IBllo, = YN, /XX, Bij. Minimizing ||B||,  results in a
group sparse solution to B, i.e., some rows of B are all zeros,
giving a better discriminative power to distinguish the most
critical nodes. We thus have the following objective function
for finding B:

minL(B) = |A — AB|% + BBl , Q)
B>0

where the diagonal elements B;; are forced to 0, making
a node to be represented by other nodes except for itself,
otherwise, there may be a trivial solution, i.e., each node can
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be represented by themselves perfectly. B is the weight of [ |
norm’s contribution to the overall objective.

The final resultant B provides information of critical or
representative nodes of the network. Specifically, these nodes
must have many non-zero entries in the final B as they are
highly related to the other nodes. We can sort the rows of B
in a decreasing order by the row-sum values. The higher a
value is, the more critical a node will be. For active learning,
we take the first # nodes that have the highest row-sum values
of the final B.

C. INFER PARAMETERS OF ACTIVE LEARNING
To perform active learning, we rewrite the objective
function(8) as:

L(B) = tr(AAT —AB" AT —ABA” +ABB"AT)+8B|l,,, .
(6)
To take care of the constraints B; > 0, we introduce

Largrange multipliers y = (y;)) and revise the objective
function using a Largrange function £(B) as follows:

L(B) = L(B) + Tr(yB"). (7
Taking the derivative of (7) w.r.t B, we have
0L(B
% = —2ATA +2ATAB + 28DB + y, 8)

where D is a diagonal matrix with the i-th diagonal element
D;; = m and B; is the i-th row of B. By setting (8) to 0 and
using the Karush-Kuhn-Tucker condition vijBij = 0, we then
have:

(ATA);B;j — (AT AB + BDB);B;; = 0,

which gives rise to the following updating rule:

B — B% 9)
Y7 "Y(ATAB + BDB);’
Here, we can set B;; = 0 at each iteration to simplify the

computation.

The detailed algorithm is described in Algorithm 2. After
we obtain a set of selected nodes by proposed active learning
method, we can give them labels or must-link constraints,
and then we can build the constraint matrix and use the pro-
posed semi-supervised method above to get the community
memberships.

D. COMPLEXITY

The adjacency matrix A of most real networks and
their community constraint matrices C are sparse. In the
semi-supervised learning, bulk of the computation spends on
the updating rule for optimizing the objective function in (4).
The computation of ZCACT and ZCCTZT ZCCT in (4) runs
in O(kn(g+n—p)+k(g+n—p)*) and O(g+n—p)> +k(g+
n —p) + k*(g + n — p)), respectively. Since ¢, p and k < n,
the total computational cost of (4) is o). Consequently,
the time complexity for semi-supervised learning is O(T (n%))
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Algorithm 2 Proposed Active Learning Method

Input: The adjacency matrix A, the number of selected nodes
t,and

Output: The set of selected nodes P

1: Initialize auxiliary matrix B;
2: while not converge do

3 Update D;; = ﬁ;

4:  Update B via (9);

5. B; =0;

6: end while

7: Compute the row-sum values of B.

8: Sort the rows of B in a decreasing order by the row-sum

values;

9: Select the first t nodes as P;
10: return P.

for T iterations to convergence. For active learning, the main
computation is also for the updating rule in (12). The time
to compute AT A, ATAB and DB is O(n?), so the cost to
update B once is (’)(nz) as well, and the time to find critical
nodes for active learning is O(T (n?)) for a total of T iterations
to update B.

Note that most computation is by matrix multiplication;
to gain efficiency, we can adopt sparse matrix multiplication.
Moreover, the updating rule for each element at each iteration
is independent, therefore, updating all elements can be carried
out in parallel. We may consider CUDA [32], cuBLAS or
other parallel computing platforms with matrix computation
currently available to further speed up the computation.

V. EXPERIMENTS

A. BASELINES FOR COMPARISON

We experimentally evaluated our methods, named as SSNMF
for the basic algorithm and SSNMF_AL for the method with
active learning, by comparing them with four state-of-the-
art community detection methods. The algorithms that we
evaluated are listed below:

o Our proposed semi-supervised symmetric nonnegative
matrix factorization method (SSNMF).

o Symmetric  nonnegative  matrix  factorization
(SNMF) [29]. This is a popular method based on sym-
metric nonnegative matrix factorization for community
detection. It is also an unsupervised method, which only
takes topology structures into account. Notice that, it is
also the basic model for our semi-supervised model
when there is no prior knowledge.

o Zhang’s method [11]. This is a semi-supervised commu-
nity detection framework which integrates both of the
must-link and cannot-link constraints by modifying the
adjacency matrix. Here we chose standard NMF with
least square error, which often shows the best perfor-
mance compared with the other NMF-based methods
under this framework. Besides, as suggested in [10],
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FIGURE 3. Comparison of SSNMF and five competing methods on the six networks, measured by accuracy and normalized mutual

information.

the parameter which measures the weight of constraints fully utilize the must-link and cannot-link constraints,

is specified as 2. the method adds a logical inference step to infer more
o Zhang’s Enhancement method (Zhang_Eh) [12]. This must-link and cannot-link constraints. We also chose

is an enhanced semi-supervised community detection NMF with least square error and specified the parameter

method. Different from the previous one, in order to measuring the weight of constraints as 2.
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FIGURE 4. Comparison of SSNMF and five competing methods on the three networks, measured by accuracy and normalized mutual
information.

o Multi-variance Mixed Gaussian Generative method
(MMGAG) [23]. This model considers the generation
process as a Mixed Gaussian Model with Multi-variance
of the network topology, must-link and cannot-link
constraints together. Then semi-supervised community
detection can be solved via a weighted nonnegative
matrix factorization method. We use three methods in
the must-link subgraph for comparison: MMGG-ML

and MMGG-ML(C).

B. DATA USED

We considered synthetic and real networks in our experimen-

tal study.

¢ Girvan-Newman (GN) network [33]. It is a synthetic
network which consists of 128 nodes, divided into
four communities of 32 nodes each. Each node has an .
expected degree of 16, including an average z;, links
connecting to nodes within the same community and
Zowr links to nodes in the other communities. As Z,,;
increases, the community structure becomes weaker and
more difficult to identify. In our experiment, we set
Zout = 8, to make the number of between-community
links per node equal to that of within-community links, .
so that there is no clear community structure, making the

problem difficult.

o Lancichinetti-Fortunato-Radicchi (LFR) network [34].
This is also a synthetic network. It has a few parame-
ters to tune, which is thus more sophisticated than the

VOLUME 8, 2020

non-overlapping.

« Dolphins social network (Dolphins) [35]. In this real
network, dolphins are represented as nodes and each
link with two dolphins represents that they are observed
together more often than expected by chance over a
period of seven years from 1994 to 2001. According to
their genders, the network is divided into the male and
female dolphin communities, respectively.
Political books network (Polbooks) [36] In this real
net-work, the nodes represent the books about US pol-
itics sold by Amazon.com. Links represent frequent
co-purchasing of books by the same buyers. Generally,
according to their political viewpoints, these books are
divided into three communities: liberal, neutral, and con-
servative communities.
Core networks(Cora)

GN network, and resembles more closely real networks.
The LFR network has 1000 nodes; the average node
degree is 20, and the maximum node degree is 50;
the exponent of the degree and the community size
distributions are -2 and -1, respectively; and the mix-
ing parameter u, i.e., the fraction of the links of a
node connecting with nodes in the other communi-
ties, is 0.8. The communities in the LFR network are

IEEE Access

[33].The Cora dataset con-
sists of 2708 scientific publications classified into
one of seven classes. The citation network consists
of 5429 links. Each publication in the dataset is
described by a 0/1-valued word vector indicating the
absence/presence of the corresponding word from
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FIGURE 5. Comparison of SSNMF with additional information from random selection scheme and SSNMF_AL with information from active
learning on the six networks tested.

the dictionary. The dictionary consists of 1433 unique described by a 0/1-valued word vector indicating the

words. absence/presence of the corresponding word from the
« CiteSeer networks( CiteSeer) [36].The CiteSeer dataset dictionary. The dictionary consists of 3703 unique

consists of 3312 scientific publications classified into words.

one of six classes. The citation network consists o Friendship networks [37]. This is a real Facebook social

of 4732 links. Each publication in the dataset is network in the U.S. The friendships are undirected,
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learning on the three networks tested.

TABLE 1. Four real networks with known community structures which
were tested. Here, n, m and k are the number of nodes, links and
communities, respectively.

Datasets n m k
Dolphins social network 62 159 2
Political books network 105 441 3
Cora 2,708 5,429 7
Citeseer 3,312 4,732 6
Friendship 41 2,235 90,954 16
Friendship 47 2,252 84,387 19
Friendship 19 13,882 381,935 7

and there are six pieces of person’s metadata: residence

hall, major, second major, class year, former high school

and gender, respectively. According to [37], the class

year is used as the ground-truth of community structure.

The specific statistical features of these four real networks
can be found in Table. 1.

C. EVALUATION METRICS
We adopted two metrics to assess the quality of community
detection results.

o Accuracy (AC) [7]. This is used to measure the per-
centage of nodes that are correctly assigned to the right
communities. In particular, for each node, we use /; as
the community of node i provided by algorithms, and r;
as its actual community. Then the accuracy is defined as

N 8(ri, map(ly))

AC= ’
N
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where 6(x, y) is the delta function whose value equals 1 if
x =y or 0, otherwise. The function map(l;) maps each com-
munity /; to the equivalent community from the network.
We use the same mapping method suggested by [7]. The
higher the AC, the better the result is.

o Normalized mutual information (NMI) [38]. Given the
community detection result, the NMI is estimated by

k koo g N
Diml it ”ulogT;lj

\/(2le nilog B (L) flleg%)

where k is the number of communities, n; denotes the number
of nodes in ith computed community, 71; denotes the number
of nodes in jth ground-truth community, N denotes the num-
ber of nodes in the network, 7;j is the number of nodes that lies
in the intersection between the ith calculated community and
the jth ground-truth community. The NMI index measures
how similar two sets of communities are. In general, a higher
value of NMI represents a better result.

NMI =

D. SEMI-SUPERVISED LEARNING

To facility the five semi-supervised learning methods we
compared, we embedded must-link constraints into each of
the synthetic and real networks based on the underlying true
node-community identities. We randomly selected a percent-
age of all possible node pairs; if the two nodes of a pair belong
to the same community, as their community identifies are
known, a must-link constraint was then added; otherwise a
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cannot-link constraint was introduced. In method SSNMF,
we were given P and P; N P; = () before constructing a
constraint matrix C. Therefore, we used logical inference step
to ensure it. For each network, we varied the percent of chosen
node pairs out of the total node pairs in the network from 0%
to 5% with an increment of 0.5%.

FIGURE 3,4 show the results of the six methods on these
nine networks. As shown, the performance of SSNMF, as well
as that of the other methods that also used additional informa-
tion, increased with the amount of additional non-topological
information provided, as they exploited must-link constraints.
SSNMF also outperformed the other methods on most
of the network settings tested. Importantly, SSNMF beat
the two Zhang methods on nearly all network instances,
demonstrating its effectiveness in utilizing the additional
non-topological semi-supervised information.

E. SEMI-SUPERVISED AND ACTIVE LEARNING

In order to assess the effectiveness of the active learning
method, we considered the non-topological information of
two sets of nodes: the ones selected randomly; and the nodes
chosen by active learning method. We then directly compared
our methods SSNMF using additional information from the
random selection scheme and SSNMF_AL with information
from active learning.

To make a fair comparison, the same number of nodes was
chosen by the active learning and random selection schemes;
must-link constraints were introduced to pairs of nodes that
have the same community label, based on their true commu-
nity memberships. For each network, we varied the percent of
chosen nodes out of the total nodes in the network from 0%
to 100% with an increment of 10%. Note that the parameter
in active learning needs to be fine tuned to get a better result.
Specifically, in our experiments, for GN, LFR, dolphins and
polbooks networks, we varied 8 from 0 to 5 with an increment
of 0.5; and for Amherst and Bowdoin networks, we varied
B from 10 to 40 with an increment of 5. Then we chose
the best AC and NMI results. As shown in FIGURE 5 and
6, the performance of both these two methods improved as
more additional information was included. More importantly,
SSNMF_AL with active learning outperformed SSNMF with
random selection on most network instances, showing the
effectiveness of the active learning.

F. CASE STUDY

Here we use the real network, i.e., Dolphins network
(FIGURE 7) for case study to illustrate our semi-supervised
framework. According to their gender, the network is divided
into the male and female dolphin communities, respectively.
In figure 7, we use the shape to represent the true gender
of the dolphins and the color to represent the results of
two semi-supervised method, i.e. SSNMF and Zhang_Eh,
with prior information. In each plot,the shapes ‘““circle”” and
“hexagon’ represent the ground-truth communities, and the
colors “yellow” and “red” represent the results of two
semi-supervised method. If the color of one node does not
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(c) SSNMF with 5% constraints (d) Zhang_Eh with 5% constraints

FIGURE 7. The detected communities by SSNMF and Zhang_Eh.(a)SSNMF
with 2% priors, misclassification: 6/62. (b)Zhang_Eh with 2% priors,
misclassification: 10/62. (c)SSNMF with 5% priors, misclassification:
0/62.SSNMF with 5% priors, misclassification: 8/62.

FIGURE 8. An illustration of active learning. Here different colors
represent the real community membership, and the rectangle represents
the selected nodes.

match its ground-truth shape, the node is not classified cor-
rectly by the method. We use the number of misclassified
nodes to judge the result. Figure 7(a) and Figure 7(c) are
the results of SSNMF with 2% and 5% priors. Figure 7(b)
and Figure 7(d) are the results of Zhang Eh with 2% and
5% priors similarly. As shown, misclassified nodes decrease
with the percentage of priors provided. We can also find
that the performance of SSNMF is better than Zhang_Eh
either with 2% or 5% pairwise constraints. Furthermore, all
nodes are divided into accurate community in Figure 7(c).
In conclusion, SSNMEF has better effectiveness.

Here we use the well-known real network, i.e., Karate
Club network [23](FIGURE 8), as an example to show which
nodes will be selected by our active learning method. In this
network, a disagreement developed between the administra-
tor (node33) and the clubs instructor (node 1) of the club,
ultimately resulted in the instructor’s leave and starting a new
club. Thus, the whole network is divided into two communi-
ties (represented by green and red colors). The active learning
method selected 7 nodes (20 percentages of all the nodes),
showed in squares in Figure 6. As shown, the method selected
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the most representative nodes, such as nodes 1 and 33, so that
after we labeled them, they can influent more other nodes.
In addition, the method selected the nodes on the boundary
of the two communities, such as nodes 3, 9, 14, and 32.
Because these nodes connect with both communities, they
are typically difficult to assign to their right communities.
Intuitively, after selecting them, we can label them directly
and thus avoid misclassification.

VI. CONCLUSION

We proposed a novel semi-supervised community detection
method to integrate non-topological information, particularly
pairwise must-links among pairs of nodes and labels of nodes.
Our method guarantees convergence to local optimization,
abides by in the final results the additional constraints, and
is parameter free, a desirable feature for practical appli-
cations. To further improve the semi-supervised method,
we chose and labeled some nodes by solving an optimization
problem and exploited the labeled information in an active
learning. Extensive experimental evaluation on synthetic and
real networks showed the superior performance of the new
semi-supervised and active learning method. Overall, our
results evidently demonstrated the value of non-topological
information in community detection.

APPENDIX-LEMMAS
The lemmas and their proofs used in the proof of Theo-
rem 1 follow [25]:

Lemma 1 : If matrices A, B, Z are nonnegative, and matrix
7/ is positive. We have

1
tr(BZTAZ) < Etr(BPTAZ’ +BZTAP),

z2
where Pj; = —;.The equality holds when Z' = Z.

i o . . .
Lemma 2 : If matrix A is nonnegative symmetric, matrix Z
is nonnegative, and matrix Z’ is positive. We have

tr(PA) < tr(RAZT),

Z'2); z; .
where P;; = Wand R = 73 The equality holds when
7 =7 ! ’

Lemma 3 : If matrices A, B, Z are nonnegative, and matrix
7/ is positive. We have

—tr(BZTAZ) < —tr(BZTAQ)
—trBQTAZ)) — tr(BZTAZ)),

where Q;; = Zl;-ln%. The equality holds when Z/ = Z.
i
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