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ABSTRACT In this paper, we present a novel non-parametric method for precisely reconstructing a
three dimensional (3D) virtual mannequin from anthropometric measurements and mask image(s) based
on Graph Convolution Network (GCN). The proposed method avoids heavy dependence on a particular
parametric body model such as SMPL or SCPAE and can predict mesh vertices directly, which is significantly
more comfortable using a GCN than a typical Convolutional Neural Network (CNN). To further improve
the accuracy of the reconstruction and make the reconstruction more controllable, we incorporate the
anthropometric measurements into the developed GCN. Our non-parametric reconstruction results distinctly
outperform the previous graph convolution method, both visually and in terms of anthropometric accuracy.
We also demonstrate that the proposed network possesses the capability to reconstruct a plausible 3D
mannequin from a single-view mask. The proposed method can be effortless extended to a parametric method
by appending a Multilayer Perception (MLP) to regress the parametric space of the Principal Component
Analysis (PCA) model to achieve 3D reconstruction as well. Extensive experimental results demonstrate that
our anthropometric GCN itself is very useful in improving the reconstruction accuracy, and the proposed
method is effective and robust for 3D mannequin reconstruction.

INDEX TERMS Graph convolution network, non-parametric mannequin reconstruction, anthropometric

mannequin design, parametric reconstruction.

I. INTRODUCTION

Three dimensional (3D) virtual mannequin plays an essential
role in many applications such as virtual try-on, made-to-
measure, sports science, movie industry, personalized enter-
tainment (e.g., augmented reality games and virtual reality),
etc. [1]. Recently, the overwhelming success of Convolutional
Neural Network (CNN) has achieved for 3D human body
estimation from image(s). By taking advantage of convo-
lutional layers on Multilayer Perception (MLP) or regular
girds, 3D tasks involved in deep learning usually present
3D shapes as point clouds [2]-[4] or voxels [5], [6] to
accommodate convolution in the underlying Euclidean space.
However, point cloud and voxel are non-trivial in recon-
structing a surface model. Contrarily, the mesh is more
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desirable for many real scenarios. There have been sev-
eral parametric approaches [7]-[14] that can reconstruct 3D
human mesh from image(s) by various CNNs accompany
with some parametric body models such as SCAPE [15]
and SMPL [16]. However, two major problems exist in
these current approaches. 1) Most image-based 3D human
reconstruction methods only utilize CNNs as feature extrac-
tors to regress the parametric space corresponding to a
particular parametric body model rather than a real 3D
shape, i.e., the 3D body is not reconstructed explicitly
and directly. Also, committing to a specifically parametric
space is rather limited by itself. For example, SMPL cannot
model facial expressions [17], [18]. 2) Although the exist-
ing approaches can estimate the complete shape and pose
from image(s), the regression results are challenging to be
used in some applications that have requirements on accu-
racy, such as made-to-measure, since they lack constraints
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on anthropometry. In this paper, we propose an end-to-end
network based on Graph Convolutional Network (GCN),
which can predict the 3D vertices directly rather than a spe-
cific parametric space, and the network also explicitly inte-
grates anthropometric measurements to improve the accuracy
and make the reconstruction more controllable.

Our goal is to reconstruct an accurate 3D mannequin mesh
from the anthropometric measurements and mask image(s)
through GCN. Since the texture is unavailable in our dataset
and a single-view mask or silhouette cannot provide enough
shape information [14], [19], we therefore primarily focus
on the reconstruction from two-view mask images, i.e., the
front view mask and the lateral view mask. However, we still
confirm the capability to reconstruct a complete 3D shape
from a single-view mask in our experiments. The proposed
approach requires the integration of knowledge learned from
three modalities, i.e., geometry, image, and anthropometric
measurements. For 3D geometry, we apply graph convolu-
tion [20] on a human mesh, where the vertices and edges
of the mesh are represented as nodes and edges of a graph.
The graph convolutional layers encode the features across
neighboring nodes (vertices) and predict the 3D vertices
eventually. For the mask image(s), we use ResNet-18 to
extract image features since 1) ResNet has achieved signif-
icant success in many visual tasks [21], and 2) the mask
image is more straightforward than regular RGB image,
so there is no need to utilize more complex architectures.
Meanwhile, ResNet-18 consumes less computing and mem-
ory resources than other deeper architectures. For anthro-
pometry, we adopt five measurements, including stature,
weight, chest circumference, waist circumference, and hip
circumference by default. Notice that more measurements
can be involved in our network, but for end-users, these
five anthropometric measurements are the most widely used
and readily accessible. We also compare the reconstructions
with more anthropometric measurements, and the results with
five measurements are well enough. Since the anthropomet-
ric measurements are related to each other in practice and
the scales of the measurements are also different, which
may result in the optimization being stuck at a local min-
imum. Therefore, we map the original measurements into
another space to obtain an abstract anthropometric feature
using a fully connected network. The anthropometric feature
and image feature extracted from ResNet-18 are attached
to the mesh vertices, and GCN is employed to process
them on the mesh topology. Furthermore, our non-parametric
method preserves the topology of a mesh, and the pro-
posed approach can thus be easily extended to regress a spe-
cific parametric space by appending a Multilayer Perceptron
(MLP), although our goal is not to investigate the parametric
method.

The major contributions of this paper are summarized as
follows:

o The proposed method utilizes the GCN to predict the 3D

location of each vertex on a mesh directly, which avoids
the dependency on a particular parametric space.
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« By explicitly incorporating the anthropometric measure-
ments, the reconstruction accuracy can be improved fur-
ther, and the result is controllable.

« Extensive experimental results demonstrate that our
anthropometric GCN itself is very useful in improving
the reconstruction accuracy, and the proposed method is
effective and robust for 3D mannequin reconstruction.

« We exhibit that the proposed approach can be used for
anthropometric body shape design.

Il. RELATED WORK

3D body reconstruction has always been an active field in the
past decades. Since the literature on 3D human reconstruction
is fairly broad, we only review the work closely related
to our approach and refer the interested readers to recent
surveys [22]-[25]. To make readers better understand our
approach, we divide the previous 3D mannequin reconstruc-
tion approaches into two categories: the parametric approach
and the non-parametric approach.

A. PARAMETRIC APPROACH

A parametric body model is the heart of the parametric recon-
struction approaches. SCAPE [15] is a widely used model
in parametric human reconstruction. Most prior parametric
methods use traditional optimization algorithms to fit the
parametric space of the SCAPE from various modalities, such
as scans [26] and depth frames [27]-[31]. The approach of
Guan et al. [32] is one of the few works to reconstruct 3D
shape from a single image before the success of deep learning.
They use labeled 2D landmarks and optimize for the SCAPE
parameters to generate a 3D object. Although the SCAPE can
simulate the human shape and pose, even muscles, naturally
using non-rigid deformation, it is rather time-consuming.
There are also several methods that use the SMPL model [16],
which represents the 3D shape as a function of pose and shape
parameters. For example, Zanfir et al. [33] formulate shape
estimation as optimization with SMPL.

Although the optimization-based parametric approaches
can obtain reliable results, there are several problems like
the reliance on a proper initialization, the slow running-time,
and the typical failures due to poor local minima, which
have recently shifted the focus of 3D reconstruction to deep
learning. The learning-based method provides an alternative
approach that can be expected to learn appropriate priors from
training data automatically, and then reconstruct a complete
3D human according to a particular parametric body model.
Dibra et al. [9] propose one of the first methods using deep
learning and train CNN to estimate the shape parameters
of SCAPE from 2D silhouettes. Subsequently, they improve
their performance by designing a more advanced architecture
to regress a latent space consists of Heat Kernel Signature
(HKS) [19]. Furthermore, their improved method is one of
the few works that focus on reconstruction accuracy. They
do not explicitly employ the anthropometric measurements.
Instead, all the training mask images are calibrated implicitly.
Ji et al. [14] predict the shape parameter of a simplified
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FIGURE 1. Overview of the proposed approach. Two mask images and five measurements are employed as the inputs to our method. A template is also
integrated into our network. For the end-user, the template is transparent. All the features are attached to the template’s vertices, and a serial of graph
convolutions are implemented on the mesh to generate the final vertices. The network can also be extended to generate a parametric body mesh by

appending an MLP.

SCAPE model from mask images by designing a double-
branch DenseNet architecture. Recently, Huang et al. [34]
employ a fully connected network to regress the PCA space
of the feature curves that decompose a 3D human mesh
into various patches from semantic parameters. These fea-
ture curves keep the underlying spatial relations of various
patches, and a full 3D human mesh can thus be generated by
combining the patches. However, their dataset only contains
77 female models, which severely limits the generalization
ability of their model, and the generated human shapes share
a similar geometry. Their method is completely different from
ours in design philosophy. Other works [7], [10], [12], [13],
[35], [36] train neural networks to predict the SMPL param-
eters from the input image(s). Kanzawa et al. [7] predict
the SMPL parameters with a re-projection loss on the 2D
joints and introduce a discriminator to distinguish whether the
generated 3D human is realistic. Similarly, Tung et al. [13]
learn the parameters by combining the re-projection loss on
the 2D joints, optical flow, and silhouettes. Tan et al. [12]
train an encoder-decoder architecture to regress SMPL shape
parameters at the bottleneck layer. Omran et al. [10] integrate
the SMPL model into a deep CNN architecture and introduce
an intermediate region-based 2D representation to predict
the SMPL parameters. They also demonstrate that only a
small fraction of training data needs to be paired with 3D
annotations. Overall, the parametric method aims to regress
the parameters of a particular parametric mode, rather than
generating a mesh directly.

B. NON-PARAMETRIC APPROACH

Recently, learning-based non-parametric methods have been
proposed. BodyNet [35] is an end-to-end network that infers
volumetric body shape from a single image. By extend-
ing a face reconstruction network [37], Jackson et al. [38]
also propose a volume-based human shape reconstruction
method. These two methods present 3D objects as voxel
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representation rather than mesh. Wang et al. [39] propose one
of the first approaches to reconstruct 3D mesh with GCN.
They reconstruct 3D mesh from a single image by deforming
an initial ellipsoid. However, they do not demonstrate that
their model can generate a body shape very well, and the
network is designed for a generic object rather than human
shape. Lately, several human-related kinds of literature based
on GCN are proposed as well. For example, Litany et al. [40]
build a Variational Autoencoder (VAE) using graph convo-
lution for shape completion. Our method is inspired by a
recent approach proposed by Kolotouros et al. [41]. They esti-
mate the body shape and posture from an RGB image using
GCN. However, similar to many image-based methods, their
method fails to generate the precise shape, and the 3D meshes
predicted by their non-parametric method is rather coarse.
Instead, we pay more attention to the accuracy and propose
a novel loss function as well as a capable architecture. The
reconstruction results significantly outperform the previous
approaches, both visually and in terms of anthropometric
accuracy.

IIl. TECHNICAL APPROACH

A. IMAGE-BASED FEATURE EXTRACTION

The pipeline of the proposed approach starts with a CNN
based image feature extractor, as shown in Fig.1. Theoreti-
cally, many state-of-the-art CNN architectures can be used as
the feature extractor. In this paper, we utilize transfer learning
technology and employ the ResNet-18 that has been trained
on ImageNet [42] to achieve image-based feature extraction.
Specifically, we replace the last fully connected layer with a
new layer consists of 512 neurons and only retrain the last
layer rather than training the entire ResNet-18 from scratch,
which makes our network more suitable for the human mask
image. For single mask training, we ignore the ResNet-18 for
the lateral image.
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B. ANTHROPOMETRIC MEASUREMENTS

Given a 3D human mesh, we extract five anthropometric
measurements by default, including stature, weight, chest
circumference, waist circumference, and hip circumference.
These measurements are essential for clothing and are also
readily accessible to consumers. Since all bodies are standing
in our dataset, we use the height of the bounding box to
approximate the statue. The weight is estimated by mul-
tiplying the body volume by body density, and the body
density is 0.985 kg/cm>. We use a recent algorithm proposed
by Zhong et al. [43] to calculate the chest circumference,
chest circumference, and hip circumference automatically.
These five measurements are fed into an MLP that includes
two hidden layers and outputs a 5-D feature, where each
hidden layer contains eights neurons with ReL.U activation.
This simple architecture works well in our experiments.
We implement the algorithm with trimesh [44] so that this
implementation can be integrated into our network to calcu-
late the anthropometric measurements of the reconstructed
mannequin directly.

C. GCN ARCHITECTURE

We aim to predict the vertices of a 3D mannequin mesh by
GCN. A 3D mesh M can be naturally converted into an
undirected graph, i.e., M =, E, X), where V = {v,-}f.V:1
is the set of N vertices, £ = {e,-}g\':1 is the set of edges
that connecting adjacent vertices, and X = {xl-}fvz | are the
feature vectors attached to vertices. For graph convolution,
we employ a simple but effective formulation proposed by
Kipf and Welling [20], which is defined as:

Y = AXW (D

where X € RV*¥ is the input feature matrix, i.e., the features
attached~ on vertices, and e{ach row x; denotes a k-dim feature
vector. A = [ + D™ 2AD? is the row-normalized adjacency
matrix of a graph, where A € RV>*Vis the adjacency matrix,
and D € RV*N is the degree matrix. W € R¥*! is the
weight matrix, and I € RV*V is the identity. Notice that A
is substantially constant in the process of a series of graph
convolutions since the topology of the graph is unchanged.
In our case, the attached feature vector x; is the concate-
nation of 3D vertices, anthropometric features, and features
extracted from ResNet-18. Individually, for the two masks
training, the dimension of x; is 1032, and 520 for single mask
training.

A template (female or male) mesh with N vertices is
integrated into the architecture, as shown in Fig.1. Both the
female and male networks are trained using the same architec-
ture but with different templates. The entire GCN architecture
consists of a series of Residual Graph Convolution Blocks
(RGCBs), as shown in Fig.2, which is derived from the
residual block [45], where the 3 x 3 convolution in residual
block is replaced by (1), the 1x 1 convolution is replaced by a
linear layer. Due to the limitation of GPU memory, we use a
small batch size for training. Therefore, we replace the Batch
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Normalization (BN) with Group Normalization (GN) since
BN does not perform well for relatively small batch size [46].
For the case where the input and output channels are inequal,
an extra linear layer is added to the shortcut to ensure the
correct element-wise addition on the output. Furthermore,
we find that seven RGCBs are the optimal trade-off between
reconstruction accuracy and training consumption. Less than
seven blocks cause a drastic drop in accuracy, more than seven
blocks consume expensive memory and time but without
significant improvement in precise.

To produce precise and reliable reconstruction, we exper-
iment with a well-designed loss. Let V € RM*3 denotes
the ground-truth mesh vertices, and V e RV3 is the pre-
dicted vertices. Since our network predicts the 3D coordinates
directly, an intuitive approach is to minimize the per-vertex
loss between V and f), ie.,

N
Ly=)Y [Vi—-ViI? ©)
i=1
Additionally, we explicitly incorporate the anthropometric
error into the loss. Let M € R denotes the ground-truth
anthropometric measurements, and M € RS is the corre-
sponding measurements of the predicted shape. The measure-
ment loss can be defined as:

-2
Ly =M —M]| (3)

Even with £y, and £y, the optimization is easily stuck at a
local minimum. Visually, the model will generate sharp ver-
tices that make the surface unsmooth. To handle this problem,
we propose a Laplacian smoothing term Lg to encourage the
neighboring vertices to have a similar movement. Let §; and
8; denote the Laplacian coordinates of the i-th vertex on the
ground-truth mesh and the reconstructed mesh, respectively.
Then, L is defined as:

N
<2
Ea=§ 16; — &ill 4)
i=1

wh(?re 8 = Vi — Zje]\[(v;) I /(vl-)ll N denoFeS the neigh-
boring vertices of v;. Finally, the complete training loss for
our non-parametric anthropometric GCN is:

['Non—param = EV + Ly + Ls (5)

D. PCA SPACE AND APPENDING MLP

The low-dimensional parametric representation is not entirely
worthless [7], [47]. In this section, we present that the pro-
posed non-parametric anthropometric GCN can be efficiently
extended to a parametric method by appending an MLP
network. Our parametric model is inspired by SCAPE [15].
Since this paper focuses on reconstructing a mannequin in a
standard A-pose, therefore, we ignore the pose space intro-
duced by SPCAE and utilize the shape scape only, i.e., PCA
space. A PCA model represents each body shape with a
parameter vector ¢; € R¥:

By = B + Q¢s (6)
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FIGURE 2. The non-parametric anthropometric GCN architecture and Residual Graph Convolution Block (RGCB): (a) illustrates our
anthroprometric GCN architecture, where N is the number of vertices, and 1032 = 512 x 2+ 5 + 3 denotes the dimension of each feature
on a vertex.The non-parametric GCN consists of seven RGCBs, and the number marked on each RGCB denotes the dimensions of input and
output feature. The output dimension is 3 since the proposed netowrk predicts the 3D location; (b) demonstrates a Residual Graph
Convolution Block (RGCB), where N’ is the dimension of the output of the last layer, K is the number of output feature of this layer, and K’
is the output dimension of a block. In our experiment, L = X If K  K’, we add a linear layer to the shortcut to enable the element-wise
addition. GN denotes the group normalization, and GC denotes the graph convolution.

where B; € R3M is a body shape with N vertices, and
Q e R3V*k ig the principal matrix composed of k prin-
cipal vectors {i1, 2, ..., ux}. B is the mean body shape
of the dataset. We append an MPL to the non-parametric
anthropometric GCN to regress the parametric space of the
PCA model, and then to achieve 3D reconstruction, as shown
in Fig.1. By fixing the previously trained GCN, we train the
MLP to regress the parameter vector ¢;. To enable a broad
range of variations, we set k = 64 in our implementation,
which captures 98.93% of the energy and performs well in
our experiments. Since the output of parametric regression
is a parameter vector rather than the 3D location of vertices,
the 3D coordinate loss £y can be ignored, and the loss
function for the parametric method is:

»CParam = »CM + »C(b (7)
where L) is the loss of anthropometric measurements
defined by (3), and L4 denotes the loss of parametric vectors.
The appending MLP network is a fully connected architecture
consist of three Residual Fully Connected Blocks (RFCBs),
as shown in Fig.3. Since the dimension of the parametric
space is 64, the output dimension of the last linear layer in
MLP is 64 as well.
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IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. DATASET

Although a full 3D human mesh can be estimated using "in-
the-wild" images that only have ground-truth 2D annota-
tions [7], [10], [48], [49], ground-truth 2D-to-3D supervision
is still necessary to explicitly restore the size of a 3D
body [19]. In this paper, we use the SPRING dataset proposed
by Yang et al. [50]. SPRING is derived from the CAESAR
project [51], and all the human meshes in SPRING share iden-
tical topology and similar A-pose, which facilitates to calcu-
late the per-vertex loss. SPRING contains 1517 male meshes
and 1529 female meshes. We randomly select 300 meshes,
150 per gender, as the test set, and the rest as training data.

B. TRAINING DETAILS
We perform all the experiments on a laptop with an Intel i7-
7700HQ at 2.8GHz CPU, 16GB of memory, and NVIDIA
GeForce GTX 1070 graphics with a GPU memory of 8GB.
The algorithm proposed in this paper is based on PyTorch [52]
to verify the performance and computational efficiency.

We employ the same GCN architecture but different
template mesh to train our network for males and females
separately. The mean male and female shapes are used as
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FIGURE 3. The MLP architecture and Residual Fully Connected Block (RFCB). BN denotes the batch normalization.

our templates. We also experiment with other arbitrary tem-
plates, but we find that the mean shape can slightly accelerate
network training. The dataset utilized in our experiments
contains only 3D meshes without any texture and corre-
sponding 2D rendering. For each mesh, we render two masks
from the front view and lateral view using the render-to-
texture technique in OpenGL. Since the pre-trained ResNet-
18 is employed as the feature extractor, all the mask images
are rescaled to 224 x 224 before feeding them to the net-
work. The non-parametric anthropometric GCN training lasts
17 epochs with the Adam optimizer, and the batch size is set
to be 2. The initial learning rate is 0.001 and is multiplied by
0.5 at every 5 epochs. Also, we fix the trained GCN when we
train the appending MLP. The training for MLP lasts 4 epochs
with Adam optimizer, and the learning rate is 0.0001. The
non-parametric anthropometric GCN contains 160M param-
eters totally, and the training takes approximately 12.5 hours.
However, the forward prediction (reconstruction) is rather
fast and can be completed in less than one second to recon-
struct a complete 3D human mesh with 12500 vertices.

C. RESULTS AND ANALYSIS

We qualitatively and quantitatively evaluate the proposed
approach. To simplify the description, all experiments
demonstrated in this paper are the non-parametric female
reconstructions based on two mask images by default, unless
state otherwise. Our first ablation analysis is to investigate
the effect of the Laplacian smooth term L in (5). To this
end, we retrain the GCN by ignoring Ls, and a reconstructed
mannequin is demonstrated in Fig.4. Fig.4(a) is a ground-
truth mesh in our test set. Fig.4(b) and Fig.4(c) demonstrate
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FIGURE 4. Comparison of the non-parametric reconstructions with and
without Lapalcian smooth item L;: (a) is the ground-truth; (b) illustrates
the reconstruction without £;; and (c) shows our result with ;.

the results without and with Ls, respectively. The differ-
ence between the results is apparent. For the case where
Ls is missing, all vertices only pursue the minimum vertex-
to-vertex error during the optimization, which results in
sharp vertices and unsmooth surface. Whereas, the movement
of the vertices will be affected by their neighbor vertices
after involving L£s in, which makes the adjacent vertices
share a similar movement and result in a smoother surface.
These experiments have also proved that utilizing only the
vertex-to-vertex error is not enough to reconstruct a plausible
shape.

Similarly, we retrain our GCN by ignoring L3 in (5)
to investigate its impact on the reconstructed results. Fig.5
illustrates the difference between the results with and without
Ly. Fig.5(a) is the ground-truth in our test set, Fig.5(b)
and Fig.5(c) are the non-parametric results without and with
anthropometric measurements, respectively. We can see that
the statures of the reconstructed shapes are different. Other
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FIGURE 5. Comparison of the non-parametric reconstructions with and
without Lp;: (a) is the ground-truth; (b) illustrates the reconstruction

without £p;; (c) shows our result with £g; (d) is the heat map of (a) and

(b); and (e) demonstrates the heat map of (a) and (c).

TABLE 1. Numerical comparison with and without anthropometrlc

measurements. Errors are express as Mean=+Std. Dev in centimeters. Our

best achieving is highlighted.

Measurements Female Male

WA WOA WA WOA
Stature 0.54+0.11  327+1.10 0.41+0.15 4.8242.33
Weight (kg) 0.984+0.57 3.894+2.93 1.03+0.62 4.61+2.52
Chest 0.76+0.42  2.12+2.03 0.53+0.27 1.98+1.18
Waist 0.85+0.49 2.35+1.87 0.81+0.45 3.87+2.16
Hip 0.68+0.51 3.594+2.71 0.494+0.33 3.714+2.31

differences can be observed in Fig.5(d) and Fig.5(e), which
demonstrate the heat maps of (a) and (b), and (a) and
(c), respectively. Although we have employed the vertex-
to-vertex loss, and if each vertex ideally regresses to the
correct position, we indeed do not need L£);. However, it is
impossible to minimize the error to zero without overfitting
in practice. Thus, we explicitly give the anthropometric loss
to improve the accuracy, which is also consistent with the idea
of Conditional GAN [53]. To further verify the effectiveness
of incorporating measurements, we calculate the anthropo-
metric errors of the five measurements on the female and
male test set. The statistical result is demonstrated in Table 1,
where WA denotes the results with measurements, and WOA
denotes the reconstructions without measurements. Errors
are expressed as Mean=+Std. Dev in centimeters. The result
with measurements outperforms the reconstruction without
measurements in each size, which indicates that it is useful to
integrate anthropometric measurements into the network.

To further verify the contribution of the proposed approach,
we experiment to compare our method with three related
state-of-the-art body shape reconstruction networks proposed
by Kolotouros et al. [41], Ji et al. [14], and Dibra et al. [19].
For Kolotouros et al.’s method, we use the trained model
published by the authors. For the methods of Ji et al. and
Dibra et al., we reimplement their networks according to the
suggested hyper-parameters configuration, and train 27 and
35 epochs on the same dataset, respectively, to get the best
results. Kolotouros et al. present a non-parametric method to
estimate the shape from a single RGB image. Contrarily, Ji
et al.’s work is a parametric approach with two mask images
as input. They reconstruct the body shape by regressing the
shape space of the SCAPE model, i.e., the PCA model. Simi-
larly, Dibra et al. also use two mask images as input to gener-
ate body shape. For fairness of comparison, we use a real body
and employ the data format they required as respective inputs.
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FIGURE 6. Comparison with other state-of-the-art methods proposed by
Kolotouros et al. [41], Ji et al. [14], and Dibra et al. [19] using a real
person.

TABLE 2. Numerical comparison for the real case. Dev in centimeters.

Measurement  Ours  Kolotouros et  Ji et al.  Dibra et
error al. [41] [14] al. [19]
Stature 0.11 13.57 9.3 1.52
Weight (kg) 1.28 11.13 8.76 2.78
Chest 0.83 9.42 8.56 1.13
Waist 0.52 7.79 9.15 1.69
Hip 0.65 12.66 6.55 1.46

The first column of Fig.6 demonstrates input representations.
The second and third columns of Fig.6 illustrate the compar-
isons. Visually, our results significantly outperform the other
approaches. The method of Kolotouros et al. almost fails
to complete reconstruction, which contains too much noise,
and the resulting body shape is inaccurate in all sizes. The
comparison with Kolotouros et al.’s method also confirms
that integrating the anthropometric measurements in GCN
can significantly improve the reconstruction accuracy. Ji et al.
regress the parametric space, and the resulting body mesh is
smoother than Kolotouros et al. However, their result still
lacks anthropometric constraints on the size. Dibra et al.
utilize Heat Kernel Signature (HKS) and scaled mask images
as the inputs and train a more complex network to generate the
3D shape. Their input images contain calibration information
implicitly, and the result is much better than Kolotourous et al.
and Ji et al. However, the waist shape is significantly different
from the input front mask. Table 2 demonstrates the specific
numerical comparison for the real case, and our approach
outperforms others on all anthropometric sizes. Table 3 shows
amore comprehensive comparison. Specifically, we calculate
13 anthropometric measurements widely utilized in tailoring
fitting and compare the anthropometric error (Mean+Std) of
the meshes generated by the state-of-the-art methods [14],
[19] that require two-view at test time on our test set. Our best
achieving method is highlighted. Last but not least, we need to
pay special attention to the surface details generated by these
methods, including ours. Almost all of them could generate
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TABLE 3. Body measurement errors comparison with shapes reconstructed from two-view mask images. Errors are expressed as Mean=Std. Dev in

centimeters. Our best achieving is highlighted.

Anthropometric Female Male

Measurement Ours Jietal [14] Dibraetal [19] Ours Jietal [14] Dibraetal. [19]
Stature 0.544+0.11  10.13t4.15 1.18+0.78 0.414+0.15 13.44+5.15  1.37+0.69
Weight (kg) 0.98+0.58 8.68+5.56 2.23+1.01 1.03+0.62 9.23+6.17 2.21+1.17
Chest circumference 0.76+0.42  9.03+4.87 1.671+0.88 0.53+0.27 7.35+4.72 1.591+0.75
Waist circumference 0.85+0.49 7.57+4.43 2.34+1.14 0.81+0.45 7.51+4.33 2.334+1.20
Hip circumference 0.68+0.51 10.12+7.54  1.86+0.98 0.49+0.33  10.89+7.11 1.69+0.87
Neck circumference 0.13+0.08  5.131+3.66 0.87+0.55 0.15+0.04  5.03+3.25 0.44+0.31
Shoulder breadth 0.224+0.15 6.12+4.33 0.934+0.47 0.17+0.02  6.85+4.28 0.934+0.54
Arm length 0.33+£0.11 11.45+6.87 1.66+t1.04 0.55+0.32 10.32+6.18  1.10+0.38
Forearm length 0.214+0.09 7.81+4.55 1.83+1.32 0.344+0.28 6.89+4.11 0.7840.29
Thigh circumference 0.484+0.23  5.54+4.17 1.05+0.88 0.41+0.19 5.18+3.82 1.27+0.62
Calf circumference 0.27+0.14 4.19+3.22 1.21+£0.43 0.2440.15 3.8913.14 1.26+0.89
Inside leg length 0.45+0.30 9.38%+5.16 1.2240.79 0.67+0.41  7.56+4.21 1.3840.66
Neck-to-crotch length ~ 0.32+0.12  8.27+6.31 0.89+0.68 0.31+0.13  5.47+4.66 0.78+0.56

TABLE 4. Measurement error comparison among our non-parametric method, non-parametric+parametric method, and parametric only method.

Anthropometric Female Male

Measurements Non-Param  Non-Param+Param  Param only ~ Non-Param  Non-Param+Param  Param only
Stature 0.54+0.11 0.51+0.14 6.26+3.16  0.41£0.15  0.40%+0.21 5.87+3.23

Weight (kg) 0.98+0.57  0.74+0.55 4.37+2.15 1.03£0.62 0.95+0.62 4.324+2.25

Chest circumference  0.76+0.42 0.71+0.40 5.1243.78  0.53£0.27  0.50+0.25 5.27+3.56
Waist circumference  0.85+£0.49  0.79+0.43 4.76£2.66  0.811+0.46 0.75+0.39 4.324£2.21

Hip circumference 0.68+0.51 0.67+0.49 7.22+3.11 0.49+0.33  0.47+0.34 6.784+2.89

plausible details such as the face, as shown in Fig.6 but those
details are not necessarily real. The inputs to these methods
do not contain any surface detail information, and the four
methods generate four different faces. The details seem to
be generated from the training data randomly rather than the
truth.

Intuitively, more input anthropometric measurements
would characterize the human shape more precisely. How-
ever, too many parameters may influence the reconstruc-
tion [54], i.e., the reconstruction method maybe not robust
to the number of input measurements, and increasing the
input may sway the error seriously. To verify the robustness
of our approach to the number of parameters and the effect
of the number of parameters on the reconstruction results,
we conduct an experiment using a different number of input
measurements to train our network. Notice our purpose is
to investigate the effect of the number of measurements on
reconstruction, not determining the optimal measurements
for reconstruction. Specifically, besides the previous five
measurements, we collect the other eight measurements,
including neck circumference, shoulder breadth, arm length,
forearm girth, thigh circumference, calf circumference, inside
leg length, and neck-to-crotch length. These eight measure-
ments are randomly divided into four groups, and then the
four groups are sequentially accumulated to the network for
training (need to adjust the size of the input layer). Besides,
we also demonstrate the reconstruction with less anthropo-
metric measurements, i.e., stature, weight, and waist. The
performance can be observed in Fig.7, where Fig.7(a) is
the ground-truth, Fig.7(b), Fig.7(c), Fig.7(d) and Fig.7(e)
illustrate the results with three, five, nine, and thirteen input
measurements. The results of the reconstruction error against
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FIGURE 7. Non-parametric reconstructions with different number of
measurements: (a) is the ground-turth; (b), (c), (d), and (e) illustrate the
results with three, five, nine, and thirteen measurements.

the number of input sizes are plotted in Fig.8. By com-
paring the results generated by a different number of input
measurements, we can find that 1) the reconstruction error
decreases with more anthropometric measurements involved.
2) Involving too many measurements does not bring an appar-
ent improvement since anthropometric measurements are
usually related to others in practice. Therefore, the proposed
approach is insensitive to the number of input parameters, and
an increase in the number of anthropometric measurements
does not introduce a severe vibration on the error, which
makes our system more practical and repeatable.

The proposed method can be effortless extended to a
parametric method by appending an MLP to regress the
PCA space of our training data. Fig.9 and Fig.10 demon-
strate the female and male non-parametric reconstructions
and parametric reconstructions from two mask images. Since
our parametric reconstruction is based on the trained non-
parametric network, the parametric method is denoted as
non-param+-param in Fig.9 and Fig.10. All the meshes are
from our test set. Generally, both the non-parametric method
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TABLE 5. Body measurement errors comparison with shapes reconstructed from single-view image. Errors are expressed as Mean=Std. Dev in

centimeters. Our best achieving is highlighted.

Anthropometric Female Male
Measurements Ours Kolotouros et Jietal [14] Dibra et al. Ours Kolotouros et  Jietal [I14] Dibra et al
al. [41] [19] al. [41] [19]
Stature 0.63+0.12  18.461+9.78 11.344+4.44 1.48+0.65 0.594+0.15 17.55+9.65 14.3245.13 1.5740.35
Weight (kg) 1.12+0.57 13.87+7.38 9.96+6.51 2.73+1.21 1.174+0.62  12.69+7.21 9.86+6.06 2.61£1.26
Chest circumference 1.01+0.42  17.99+10.11 10.134+3.59 1.96+0.75 1.26+0.27 16.82+10.15 7.91+4.24 1.89+0.68
Waist circumference 1.22+0.49 11.29+8.34 9.22+5.27 2.66+1.11 1.19+0.45 10.56+7.32 8.17+4.22 2.57+1.13
Hip circumference 0.89+0.51 12.87+9.25 11.34+7.25 1.974+0.79 0.95+0.33  13.69+8.85 11.86+7.41 1.75+0.58
Neck circumference 0.25+0.08 7.58+5.12 6.524+4.13 1.13+0.72 0.27+0.04 7.98+5.62 5.8343.11 0.824+0.47
Shoulder breadth 0.37+0.15 8.46+4.87 7.124+4.98 1.56+0.51 0.49+0.12  8.99+4.68 7.56+4.15 1.261+0.52
Arm length 0.53+0.11  13.984+7.69 12.67+7.04 2.03+1.23 0.64+0.32  12.76+7.34 10.98+5.87  1.37+0.41
Forearm length 0.324+0.09 12.56+5.27 9.12+5.51 1.95+1.46 0.584+0.28 13.51+6.78 7.37+4.26 1.12+0.33
Thigh circumference 0.58+0.23 7.38+5.15 6.92+4.48 1.574+0.87 0.41+0.19 7.89+5.03 5.79+£3.48 1.4440.34
Calf circumference 0.41+0.12  6.75+4.66 5.594+3.46 1.84+0.47 0.55+0.15 5.58+4.21 4.67+3.51 1.584+0.73
Inside leg length 0.67+0.30 16.81+11.37 10.43+5.98 1.65+1.03 0.89+0.41 15.75+11.24 8.29+4.17 1.75+0.45
Neck-to-crotch length ~ 0.55+0.12  11.56+8.62 9.954+6.19 1.98+0.36 0.67+0.13  12.79+8.83 6.38+4.42 1.11+0.39
13 9 Q ),\ o

= N 12 \ ///? i \ ‘{i‘\

Q § 11 /e s\" / \ ¢ AN AV " \\

N — ¥ - ’ - -

gow A N\ ﬁ \ { ﬂ | ’

o *Z 9 vy 1\'\3 ’\ I\ 1]

C 5 3 4\ S il )RS :

2 9

-

— 6

3 5 7 9 11 13 15

The number of input measurements

FIGURE 8. Loss on test set with various size of input measurements.

and the parametric method have achieved excellent results in
terms of accuracy, and the parametric results seem to have
more details than the non-parametric method. However, as we
mentioned above, these details are not necessarily correct,
which heavily depends on the training data. For the obese
body shapes, both the non-parametric method and the para-
metric method introduce a slightly larger error in anthropo-
metric measurements due to the lack of corresponding sam-
ples in the training set. The specific numerical error for these
two methods on the female and male test set is demonstrated
in Table 4. Since our non-parametric+parametric model is
trained based on the non-parametric GCN, the results are
slightly better than the non-parametric results. Additionally,
Table 4 also demonstrates the reconstruction results using the
parametric MLP only, where we ignore the non-parametric
GCN and feed the image features and anthropometric features
to the appending MLP directly. In this case, the reconstruc-
tion performance drastically drops, which indicates that the
anthropometric GCN itself is very useful in improving the
reconstruction accuracy.

We also demonstrate that the proposed anthropomet-
ric GCN can reconstruct a complete 3D mannequin from
a single-view mask, in which we ignore the ResNet-
18 for the lateral mask and retrain our network. The
numerical error for the single-view reconstruction is shown
in Table 5. Table 5 also illustrates other state-of-the-art meth-
ods that can complete reconstruction from single-view image
[14], [19], [41]. Our best achieving method is highlighted.
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FIGURE 9. Female reconstructions. All the meshes are from our test set.
The first column illustrates the ground-truth, the second and third
columns show the non-parametric results and corresponding heat maps.
And the last two columns demonstrate the non-parametric+parametric
reconstructions and corresponding heat maps.

Comparing with Table 3, the single-view reconstruction intro-
duces a slightly larger error, which is also consistent with
the previous conclusion (Sect.I). However, the single-view
reconstruction is not entirely useless. For example, the single-
view image is easier to capture for an end-user. Since our
network explicitly requires anthropometric measurements,
we conduct an interesting experiment to reconstruct a 3D
shape from the frontal mask image of a dressed person,
as shown in Fig.11. Our result is also very well in this case.
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FIGURE 10. Male reconstructions. All the meshes are from our test set.
The first column illustrates the ground-truth, the second and third
columns show the non-parametric results and corresponding heat maps.
And the last two columns demonstrate the non-parametric+parametric
reconstructions and corresponding heat maps.
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FIGURE 11. Result for a dressed person. From left to right: real photo,
mask image, predicted 3D mesh.

D. APPLICATION: ANTHROPOMETRIC BODY DESIGN

Through previous experiments, we can see that the proposed
non-parametric method has a significant improvement in
mannequin reconstruction from the previous experiments.
In this subsection, we provide a potential application for
anthropometric body design, which can be applied to facili-
tate product design and satisfy various individual preferences.
A major challenge of anthropometric body design is that the
measurements are usually related to each other, e.g., weight
is related to the waist, waist is related to hip and chest, and
stature may be related to weight as well. Our model has
implicitly learned the complicated correlation among human
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FIGURE 12. Anthropometric body design by varying the input
measurements.

models using deep learning, which can generate a plausi-
ble body shape by adjusting one or a few measurements.
In our experiments, three anthropometric parameters: stature,
weight, and waist are varied with different values to study
the effect on the reconstructed body and design capability
of the proposed approach. Fig.12 illustrates the experimental
results based on the female mean shape. We find that the
resulting body shape can reflect the variance of anthropomet-
ric measurements. The body gets taller as the input stature
increases, and the increase in waist circumference also brings
significant changes in shape. This indicates that our model
has learned the complicated relationship among various
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measurements, and the proposed approach is robust and effec-
tive for anthropometric body design. In addition, we only
provide one potential application in this paper, and other
applications related to 3D human body can try our method
as well, which will generate more accurate body shape.

V. CONCLUSION

In this paper, we present a non-parametric approach for pre-
cise 3D virtual mannequin reconstruction based on graph
convolution, which directly predicts the 3D location of each
vertex on a mesh rather than the parameters of a partic-
ular parametric body model. The anthropometric measures
are explicitly integrated into the network to improve the
reconstruction accuracy further and make the reconstruction
more controllable. On par with previous parametric meth-
ods, the non-parametric method can be extended to a para-
metric method easily by appending an MLP to regress the
parametric space of the PCA model, and then to achieve
3D reconstruction. The proposed method can reconstruct a
complete 3D shape from a single-view mask image as well.
Extensive experimental results demonstrate that the proposed
method significantly outperforms the previous state-of-the-
art methods, both visually and in terms of anthropometric
accuracy, and our method is effective and robust for 3D
mannequin reconstruction. However, there are still some lim-
itations to our approach. All the body shapes in our training
set are standard A-pose, and our method thus cannot generate
mannequins with various postures. This problem could be
addressed by expanding and diversifying our training set
further, which may improve the reconstruction accuracy of
the obese shapes as well. Moreover, to reduce the noise on the
non-parametric reconstructed surface, we introduce a smooth
item to our loss function, which also leads the proposed non-
parametric method not being able to generate rich surface
details. Reconstructing precise and richly detailed 3D man-
nequin using graph convolution is our future work.
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