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ABSTRACT Cloud extraction is a vital step in remote sensing image processing. Although many advanced
cloud extraction methods have been proposed and confirmed to be effective in recent years, there are still
difficulties in cloud extraction in areas of high brightness reflectivity covered. High brightness reflectivity
cover can have similar spectral characteristics as clouds, and thus, it is easily confused with clouds in cloud
extraction schemes. This work presents a novel scheme designed to extract clouds in satellite imagery with
high brightness reflectivity covered. The fractal summation method and spatial analysis are used to extract
the clouds in the Landsat 8 Operational Land Imager (OLI) images containing high brightness reflectivity
covered. The scheme consists of three main steps: cloud extraction based on pixel values, Anselin Local
Moran’s I value, and anisotropy. Pixel values were applied to extract the clouds associated with anomalies,
and the last two steps were conducted to eliminate false anomalies. The findings showed that the cloud-
associated anomaly pixel-values well approximate a power-law function, but both the real and fake anomaly
patches (e.g., snow/ice, desert, etc.) routinely coexist within the same (fractal) scaleless segments, and that
the latter seems to bemore significant than the former. Consequently, these results indicate that the diagnostic
difference between true and false anomalies must lie in their spatial distribution patterns. Furthermore,
experiments confirmed that the fractal dimension and spatial distribution (i.e. Anselin Local Moran’s I
index and anisotropy) difference between the real and false anomalies displayed a certain universality. The
proposed scheme effectively reduces the confusion and misclassification caused by cloud, snow and the
highlighted underlying surface. It is of great significance for cloud restoration processing, image analysis,
image matching, target detection and extraction, and effective extraction and utilization of remote sensing
data.

INDEX TERMS Cloud extraction, spatial information, fractal summation method, Anselin Local Moran’s I,
anisotropic analysis.

I. INTRODUCTION
The first step in the application of satellite remote sens-
ing images is to select appropriate satellite images. How-
ever, not all satellite remote sensing images can meet the
requirements for the intelligent application of satellite remote
sensing image information. In the selection of satellite
image data, cloud cover is a very important judgment index.
Statistics from the International Satellite Cloud Climatology

The associate editor coordinating the review of this manuscript and

approving it for publication was Wenming Caos .

Project (ISCCP) show that, on average, 66.7% of the Earth’s
surface is covered by clouds. Ground objects observed by
remote sensing satellites will be blocked by these clouds [1].
The presence of clouds will greatly affect the application of
remote sensing satellite imagery. Cloud extraction is a crucial
step in the processing of remote sensing imagery. Thick
clouds cover ground objects and reduce the effective informa-
tion contained in the satellite image, whereas thin clouds and
the underlying surface are mixed with each other, which also
changes the spectrum and texture information of the image to
a certain extent, making target recognition and image analysis

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 3387

https://orcid.org/0000-0002-1249-2837
https://orcid.org/0000-0002-2730-9193
https://orcid.org/0000-0002-8174-6167


T. Wu, L. Han: Cloud Extraction Scheme for Multi-Spectral Images

difficult [2]–[6]. Clouds are notoriously difficult to extract in
Landsat images due to the limited Landsat spectral bands and
the complexity of the clouds themselves [7]. A difficulty in
cloud extraction is that several objects, such as snow, ice and
sand on land, are similar to clouds in satellite images. Among
these objects, snow is the most typical object that is similar
to clouds [8]. Some cloud extraction schemes tend to mistake
snow for clouds because both targets are bright and display
very similar spectral characteristics [8], [9]. An incorrect
cloud assessment can lead to poor utilization of imaging
resources and effort. Consequently, it is important to design
accurate cloud cover extraction schemes.

A number of studies have attempted to optimize cloud
extraction based on spectral characteristics. The spectral-
based method mainly utilizes the spectral characteristics that
clouds and other ground cover have in different bands [10].
For example, Ackerman et al. [11] determined whether a
given pixel was a cloud pixel or otherwise using its values;
however, it was difficult to differentiate between underlying
surfaces with a reflectance similar to that of clouds using this
method. Crane and Anderson discussed the discrimination
of snow/cloud surfaces at near-infrared wavelengths [12]
using an experimental snow/cloud discrimination sensor
onboard a U.S. Air Force Defense Meteorological Satel-
lite Program platform. Salomonson and Appel [13] and
Homan et al. [14] made use of this contrast feature to ana-
lyze image snow cover by normalizing the snow index. This
method reduced misjudgments to a considerable extent, but
it is difficult to accurately determine the threshold. Previ-
ous pixel-based classifiers have been developed for remote
sensing instruments using machine learning techniques, for
example artificial neural networks (ANNs) [3], [15]–[17],
and they have achieved good results in cloud extraction [18].
ANNs have been added to remote sensing Environment for
Visualizing Images (ENVI). Back propagation (BP) neural
network algorithm is applied to ENVI software. However,
their computational costs are very expensive and the conver-
gence speed is slow [19]. A new cirrus band (Band 9) has
been added to the Landsat 8 satellite to extract clouds, which
resulted in an effective method for extracting clouds con-
tamination. However, this method is restricted by the land
cover background compared with most algorithms that are
influenced by high brightness values, such as from snow or a
desert [20].

Texture features are taken into account to describe the
differences among different types of ice-snow surfaces and
clouds. Usually, texture is defined as the arrangement of
the elements with different sizes and shapes composing an
image [21]. This method does not need to consider the
spectral signal difference and band design between different
satellite sensors [22]. Texture features based on the support
vector machine (SVM) scheme have been used to extract
the clouds in satellite images of ice-snow areas, and the
experimental results indicate that this scheme performs well,
especially for thin cirrus clouds. However, inevitably, textures
are difficult to describe and exhibit randomness to a certain

extent [23]. Moreover, they require a large number of train-
ing samples and need to reselect samples for different data
types [23]–[25]. Fmask algorithm was developed to extract
clouds in Sentinel 2 and Landsat images. This algorithm
works well for all three scenarios (Landsats 4–7, Sentinel 2,
and Landsat 8) [7], [26]. However, due to the different spec-
tral bands that each scenario uses, the accuracies of the Fmask
results are quite different. The Fmask results from Sentinel
2 images are muchmore accurate than the Fmask results from
Landsat 4–7 images [26]. However, Fmask may fail to extract
clouds in images that have heterogeneous surface reflectances
because it uses a scene-based threshold and applies the same
threshold to all pixels in the image [27]. Therefore, achieving
high precision remains challenging.

To tackle this problem, in this paper, a cloud extraction
scheme is proposed that can effectively solve the problem of
the confusion of clouds and high brightness reflectivity cover
caused by the similar spectral characteristics in traditional
cloud extraction methods. The main contributions of this
paper are summarized as follows.

1. We propose a framework based on principal component
analysis (PCA), fractal summation model, Anselin Local
Moran’s I index, and anisotropy for cloud extraction from
Landsat-8 OLI images with high brightness reflectivity.

2. PCA and a fractal summation model are applied together
to extract clouds associated with anomalies. This approach
can separate objects that are easily confused due to their
similar spectral characteristics and obtain an accurate and
reliable threshold.

3. Anselin Local Moran’s I index is used to determine
the cluster and outlier states of the spatial distribution and
eliminate false anomalies based on the spatial information.

4. Anisotropy is introduced to reduce the misjudgment of
thick snow and improve the universality and accuracy of the
proposed cloud extraction method.

Compared with two existing effective methods, the novel
cloud extraction scheme proposed in this article has a better
effect on the images with high brightness reflectivity.

II. METHODS
A. PRINCIPAL COMPONENT ANALYSIS (PCA)
PCA, which is widely used in remote sensing image process-
ing, is a mathematical technique for reducing the dimension-
ality of a data set [28]. Because digital remote sensing images
are numeric, their dimensionality can be reduced using this
technique. In multiband remote sensing images, the bands
are the original variables. Some of the original bands may
be highly correlated, and to save data storage space and
computing time, such bands could be combined into new,
less correlated images by PCA [29]. PCA determines the
eigenvectors of a variance–covariance or a correlation matrix,
and the resulting component images are often more inter-
pretable than their original counterparts. Thus, certain objects
of interest can be delineated [30]. PCA aims to put the max-
imum possible information in the first principal component
(PC1), maximizes the remaining information in the second
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FIGURE 1. Reflection spectra of clouds and snow [31], [32].

component and so on. The first principal component accounts
for the most possible ground object information in the remote
sensing data set. The next principal component is calculated
in the same way with the condition that it is uncorrelated
with the first principal component and that it accounts for
the second most information.

The spectral curves of snow and clouds are similar in shape
and have high reflectivity in Band 3 (visible band), but their
spectral curves are then different in Band 6 (1.560-1.660µm)
and Band 9 (1.360-1.390 µm). The reflectivity of clouds
remains high, whereas the reflectivity of ice/snow decreases
dramatically, as shown in Fig. 1 [12]. The three bands with
the largest difference in their reflectivity between snow and
clouds are selected, which will facilitate their separation [33].

B. CLOUD EXTRACTION BASED ON THE FRACTAL
SUMMATION MODEL
The fractal summation model was originally designed to sep-
arate the geochemical anomalies associated with ore deposits
[34]. Here, we apply this model to cloud extraction of remote
sensing images. A remotely sensed image is composed of
an array of pixels, and each pixel is marked by a digital
number (DN) value; thus, this scheme can be used to provide
a visual representation of the variance of an image based
on the pixel values and pixel value frequency distribution,
or even the spatiotemporal and geometrical properties of
image patterns [35]. The fractal model that is used in this
study is known as the fractal summation method, and its basic
calculation formula can be derived as follows:

N (r) = C · r−Dn (1)

where r is the characteristic linear measurement. Here,
r stands for the images’ pixel values from small to large,
Dn (n = 1, 2, 3, 4. . . ) is the fractal dimension, and C is a
proportionality constant. Each dimension corresponds to one
scale-free (linear) segment and reflects the number of pixels
or the summation of the pixel values that are equal to and
greater than the corresponding r [36]. Taking the logarithms

of the above formula, we obtain the following:

logN (r) = −Dn log(r)+ logC (2)

A plot of logN(r) versus log (r) can produce several straight
lines (at least two) with different slopes: D1, 2, 3. . . For a
single straight line, by virtue of the linear least-square regres-
sion, the data set (N (ri), ri) (i=1, 2, . . .N) can be fit as a
straight line, and its corresponding slope is noted as D. For
two straight line segments that are fit by the least squares with
the two slopes D1 and D2, the dividing point is determined
by the optimum least-square regression method as follows,
which is the residual sum of squares (RSS). It is defined as
follows:

RSS =
i0∑
i=1

[lgN (ri)+ D1 lg ri− lgC1]2

+

N∑
i=i0+1

[lgN (ri)+ D2 lg ri − lgC2]2→ Min (3)

The separation point between different Dn is denoted as Tn
(n = 1, 2, 3, 4. . . ), i.e., the anomaly threshold. In a similar
fashion, the slopes of several scale-invariant segments, as well
as the thresholds (Tn, n = 1, 2, 3 . . . ) between them, can be
accurately determined. i0 represents each pixel value that is
traversed from small to large.

The details and the MATLAB implementation of
this scheme can be found in the references within
Zhao et al. [37].

C. ANSELIN LOCAL MORAN’S I
Anselin Local Moran’s I measures the degree of spatial auto-
correlation at a specific location [38]–[40]. Given a set of
features and an analysis field, the Anselin Local Moran’s I
index identifies the spatial clusters of features with high or
low values. The tool also identifies spatial outliers. To do
this, it calculates a Local Moran’s I value for each statistically
significant feature [41].

The Local Moran’s I statistic of spatial association is cal-
culated as follows:

Ii =
xi − X

S2i

n∑
j=1,j6=i

wi,j
(
xj − X

)
(4)

where xi is an attribute for feature i, X is the mean of the
corresponding attribute, wi,j is the spatial weight between
feature i and j,

S2i =

n∑
j=1,j6=i

(
xj − X

)2
n− 1

(5)

and n is the total number of features.

D. ANISOTROPIC ANALYSIS
The anisotropy and pixel value are two basic properties that
make a spatial group inseparable. For the sake of simplicity,
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FIGURE 2. Plot of a standard deviational ellipse.

we use standard deviation ellipses to study the anisotropy.
A common way of measuring the trend for a set of points or
areas is to calculate the respective standard distances in the
x and y directions. These two measures define the axes of an
ellipse encompassing the distribution of features. The ellipse
is referred to as the standard deviational ellipse because the
method calculates the standard deviation of the x coordinates
and y coordinates from the mean center to define the axes of
the ellipse. The ellipse allows you to see if the distribution of
features is elongated and hence has a particular orientation.
While you can get a sense of the orientation by drawing
the features on a map, calculating the standard deviational
ellipse makes the trend clear. A standard deviational ellipse
delineates the geographical distribution trend by summariz-
ing both the dispersion and orientation of the observed sam-
ples [42], [43]. Suppose a series of independent identically
distributed samples (xi, yi), where i = 1,. . . ,n are drawn in
a standard planar coordinate system (XOY), as illustrated
in Fig. 2. If all observed sample points are then transformed
into a new coordinate system (X’O’Y’), the origin of the new
coordinate system is the average midpoint (u, v) of all point
sets, as shown in Fig. 2.

The values of u and v represent the average X value and Y
value, respectively, of all points in the original coordinates,
and the relevant equations are given as follows:

u =

n∑
i=1

xi

n
, v =

n∑
i=1

yi

n
(6)

The standard deviation distance to the X-axis in the new
coordinate system can be represented as follows:

σy’ =

√√√√√ n∑
i=1

[(yi − v) cos θ − (xi − µ) sin θ ]2

n
(7)

By defining ȳi = yi − v and x̄i = xi − µ and substituting
them into equation (7), the equation of σy’ can be expressed

as follows:

σy’ =

√√√√√ n∑
i=1

ȳ2i cos
2 θ − 2

n∑
i=1

x̄iȳi sin θ cos θ +
n∑
i=1

x̄i sin2 θ

n
(8)

Similarly to σx ′ , two standard deviation distances are
obtained in which the maximal standard deviation distance
σx ′ is the length of the long axis of the ellipse, and theminimal
standard deviation distance σ ′y is the short axis of the ellipse.
The angle of rotation is defined as follows:

tanθ =
A± B
C

A = (
n∑
i=1

x̄i −
n∑
i=1

ȳi)

B =

√√√√(
n∑
i=1

x̄i −
n∑
i=1

ȳi)2 + 4(
n∑
i=1

x̄iȳi)2

C = 2
n∑
i=1

x̄iȳi (9)

θ is the rotation angle of the coordinate system, that is, the
directional orientation of the point set. Along the stretching
direction of the thicker clouds, some thinner clouds that
are difficult to extract can thus be included in the anomaly
patches using an appropriate buffering zone [44].

III. EXPERIMENTAL ANALYSIS
A. REMOTE SENSING DATA
The selected data are Landsat 8 OLI imagery. The scene
image was quite typical, showing thick and thin clouds as
well as snow cover; we also analyzed images with higher
cloud coverage and analyzed different regions to verify the
applicability of the method proposed here. As illustrated
in Fig. 3, the original image was cut into the spatial scope
of the study area.

B. CLOUD EXTRACTION BASED ON THE PIXEL VALUES
1) PRINCIPAL COMPONENT ANALYSIS (PCA)
In this study, Bands 3, 6, and 9, which contain some diag-
nostic absorption and reflection features of clouds and snow
(Fig. 1), were selected for PCA. The reflectivity difference
between the snow and clouds is denoted as the highest differ-
ence among the three bands, which is beneficial for separating
them. The output images of the PCA are shown in Fig. 4.
The highlighted spectral responses related to specific object
information in PC1 (red frame in Fig. 4a) do not correspond
to clouds; rather, they indicate ice and snow. The highlighted
spectral responses related to specific object information in
PC2 and PC3 correspond to clouds (clouds appear bright and
are associated with high PC value). In PC3, the brightness of
the clouds is evident, which is exactly the opposite of the case
of PC1.
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FIGURE 3. Landsat 8 satellite image of the study area (The false color
composite helps the reader visually differentiate between snow/ice and
clouds. Bands 7, 2, and 1 are represented by red, green, and blue,
respectively.)

FIGURE 4. Output images of the PCA. Red frames represent highlighting
spectral responses. (a) PC1; (b) PC2; (C) PC3.

Quantitatively, Table 1 records the statistical output of the
PCA. It is evident that PC1 reflects the presence of clouds
because it is positive in Band 3 and negative in Band 6 and
Band 9. This result is consistent with cloud absorption and
reflection characteristics, although PC1 indicates the pres-
ence of clouds and considerable snow anomalies. Thus, it is
difficult to distinguish between clouds, snow, and even desert
areas. The results of PC2 are also consistent with those
of cloud features because the reflectivity of the clouds in
Band 3 is lower than the corresponding values of ice and
snow. Moreover, the eigenvalues are negative, thus satisfying
this feature. Clouds have higher reflectivity than ice and snow
in Band 9, as shown in Fig. 1. PC3 is positive in Band 9 and
captures this feature.

In conclusion, although PC1 can reflect the existence of
clouds, it also highlights the existence of most ice and snow,
which will lead to more false anomalies. PC2 and PC3 can
reflect many spectral differences between clouds and snow,
making them more useful for cloud recognition. In summary,
PC2 and PC3 are the most effective choices for subsequent
cloud extraction analysis.

TABLE 1. Eigenvalues for the selective PCA of Landsat 8 bands.

FIGURE 5. The log r versus log N(r) fractal schema of (a) PC2 and (b) PC3.

2) CLOUD EXTRACTION BASED ON THE FRACTAL
SUMMATION MODEL
Each of the scaleless ranges approximately corresponds to a
ground object [45]. The nonscaling interval in Fig. 5 corre-
sponds to approximately one ground target. As seen in Fig. 5,
according to visual interpretation and the PC value char-
acteristics, areas with the pixel values lager than T2 in
Fig. 5 are representative of thick clouds; areas between T1 and
T2 mainly represent thin clouds. The nonscaling interval also
includes many false anomalies related to snow and ice.

When a cloud is extracted by the fractal summation model,
the clouds and snow of different spatial distributions are clas-
sified into the same fractal (scaleless) range. This suggests
that the extraction of certain anomalies cannot be achieved
using pixel values alone. To address this problem, we explore
the spatial analysis of anomalous point patterns.

C. SPATIAL ANALYSIS OF THE ANOMALIES
1) SPATIAL INTERSECT
Pixel values cannot be used exclusively to distinguish ground
objects completely because false anomalies share similar
spectral features with authentic anomalies, and spatial infor-
mation is also necessary [46], [47]. The spatial intersect can
be used to eliminate most of false anomalies and retain the
authentic anomalies that shared by both, where the anoma-
lies that are preserved have two notable features. The first
feature is the degree of spatial clustering and the other is
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FIGURE 6. The output image of the Anselin local Moran’s I index.

the directionality. A quantitative description of these two
characteristics benefits the identification process.

2) ANSELIN LOCAL MORAN’S I
Here, Anselin Local Moran’s I is used to exclude the false
anomalies. The spatial cluster and outlier levels of snow/ice
and clouds can be obtained by Anselin Local Moran’s I using
ArcGIS 10.2 software. The Moran’s I was computed for each
site and monitoring period to evaluate whether the distribu-
tional pattern was clustered, dispersed or random. Moran’s I
values range from+1 (strong positive autocorrelation) to−1
(strong negative autocorrelation) with a value of 0 indicating
a random distribution [48]. Therefore, regions with positive
values represent clustering. Anselin Local Moran’s I reflects
the location of high or low clustering values.

The results of the clump operation, which are calculated
after Anselin Local Moran’s I, are shown in Fig. 6. This
operation enables the original clustering or dispersion ten-
dency to be further enhanced. The two patches representing
clouds and snow/ice can be separated using Anselin Local
Moran’s I. In general, the values of snow/ice are much lower
than those of clouds, evenwhen clouds are thin. This confirms
our hypothesis that cloud cover is clustered and snow/ice is
not.

However, we cannot exclude the possibility that some
false anomalies such as large-sized glaciers and snow-capped
mountainous areas could be mistaken as clouds using this
method. Hence, the anisotropy of the anomalies must be
considered.

3) ANISOTROPIC ANALYSIS
Standard deviation ellipses are used to study the anisotropy.
The standard deviation ellipse of ice and snow is greatly

FIGURE 7. Schema of the standard deviation ellipses of the study area.

affected by the topographic trend [42], [49]. For example,
topography controls the elevation, wind direction, climate
and other factors. High-altitude areas are covered with snow
all year round while the shady sides of mountains are more
likely to develop frozen soil, snow, glaciers and other features
than the sunny side. According to the geometric shape of the
standard deviation ellipse, this type of terrain can be distin-
guished. The distribution of snow/ice has a strong orientation
and is obviously controlled by the trend of the high-altitude
mountains or terrain. Clouds have no such restrictions. The
standard deviation ellipses of all anomalous groups are drawn
by ArcGIS, and the true and false anomalies (clouds or
snow/ice) can be distinguished by comparing their rotation
angles with the direction of the mountain strike and the exten-
sion of false anomalies. This allows the false anomalies of ice
and snow to be eliminated and misjudgments to be reduced.
Another advantage of the standard deviation ellipse is that it
can create a buffer, which can identify the residual thin clouds
according to the wind direction, and establish a weighted
buffer at the boundary of the main extension direction of
the extracted clouds, which greatly improves the accuracy of
cloud extraction and improves the universality of the cloud
extraction method. The standard deviation ellipses that can
quantitatively reflect the anisotropy of the spatial point pat-
terns are plotted in Fig. 7; the ellipses were automatically
generated and the results of the previous step automatically
grouped based on the ArcGIS 10.2 software platform.

Following the anisotropic analysis states, the rotation
angles of d and e (clouds), which are characterized by the
NS-trending long-axis direction, obviously show the oppo-
site tendency of a, b, and c (ice/snow). This indicates that
the spatial distribution pattern of snow/ice is different, and
clouds tend to be dispersed whereas cloud cover is integrated.
We applied a 100-m buffer along the main direction of the
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TABLE 2. Data information of the standard deviation ellipses.

stretch of the extracted clouds that were attached to the
patches of thick clouds so that we could incorporate some
thinner clouds that were not previously extracted. Clouds
cannot be found using pixel values only or clustering charac-
teristics, thus confirming the advantage of employing point
process spatial analysis.

IV. RESULTS AND DISCUSSION
When selecting the cloud-sensitive principal components
(namely, PC2 and PC3), the fractal summation model pro-
duced several errors. The extracted features were mainly
spectral characteristics similar to those of clouds, such as
snow or desert regions, indicating that pixel values alone can-
not identify cloud regions. To account for this, we proposed a
spatial point analysis method, which included Anselin Local
Moran’s I analysis and anisotropic analysis. Anselin Local
Moran’s I index avoided the interference from the fact that
false anomalies share some similar spectral characteristics
with clouds by using the degree of spatial clustering to
eliminate false anomalies. Anisotropic analysis was able to
eliminate the false anomalies that were not distributed along
the main orientation, further reducing the number of false
anomalies.

This method can be used to extract clouds with high
precision in difficult areas with high-reflectivity snow and
ice. Quantitatively, the results of the cloud extraction using
the extracted cloud-covered data indicated an overall accu-
racy exceeding 96%. We selected eight Landsat 8 scenes
with snow/ice and high-reflectance ground cover to test this
method. Five regions of interest were selected, which are
shown in the red frames. Cloud extraction in the absence of
snow/ice was also found to be highly accurate (see the top
scene in the data set).

Here, the yellow-colored areas represent clouds, while
the black-colored areas represent features other than clouds.
Visually, this method can effectively solve the problem that
snow is often mistakenly classified as clouds. Quantitatively,
to verify the effectiveness of this method, we compare it
with ANN and Fmask approaches, which are two algorithms
with good cloud extraction results [15]–[17], [26], [27].
Fig. 9 shows the five regions of interest and the associ-
ated cloud extraction results. The first column in Fig. 9 is
the enlarged view of the indicated detailed areas that are
shown in the red frames, which cover various underlying

FIGURE 8. Proposed method results of eight Landsat 8 scenes. Five
regions of interest were selected, and cloud masks are shown in yellow.

FIGURE 9. Comparison of the proposed method against the ANN and
Fmask approaches using the five regions of interest in Fig. 8.

surface environments containing a bright background, moun-
tains, and snow. The second column is the ground truth
image; ground truths of cloud areas were manually extracted.
Columns 3-5 are the cloud extraction results using the ANN,
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TABLE 3. Precision, recall, and accuracy of the regions of interest.

Fmask, and proposed method. We applied the ANN and
Fmask approaches in ENVI 5.4 software.

From Fig. 9, it is obvious that all methods can extract
most of the clouds; but for the snow and high-reflectivity
regions, our proposed method can achieve more accurate
results because our method captures three broad cloud char-
acteristics: the pixel value, spatial cluster and outliers, and
anisotropy, and the algorithm more easily addresses the prob-
lem that snow and high-reflectivity ground cover are often
misclassified as clouds.

The qualitative evaluation was an important aspect of the
development of the algorithm. Table 3 quantifies the results of
the above cloud extraction figure. In this paper, the accuracy,
recall and precision are defined as follows:

Accuracy =
(TP+ TN )

(TP+ TN + FP+ FN )
(10)

Recall =
TP

(TP+ FN )
(11)

Precision =
TP

(TP+ FP)
(12)

where TP is the number of true positives (i.e., correctly classi-
fied cloud pixels), TN represents the number of true negatives
(i.e., correctly classified clear pixels), FP is the number of
false positives (i.e., clear pixels classified as cloud pixels)
and FN is the number of false negatives (i.e., cloudy pixels
classified as clear pixels) [50]. These indexes range from 0 to
100%, where the maximum value represents the best fit.

To quantitatively measure the detection accuracy using the
proposed algorithm, we compared the precision, recall, and

accuracy against theANN and Fmaskmethods. The statistical
cloud extraction results are listed in Table 3. The accuracy is
the fraction of pixels that are correctly classified, the preci-
sion is the fraction of pixels that are correctly classified as
clouds, and the recall is the fraction of cloudy pixels that are
correctly classified with respect to the total number of cloud
pixels. It can be seen that the method proposed in this paper
yields the best accuracy and precision, although its recall
is slightly lower than that of the Fmask approach. Fmask
can obtain slightly more true positives; however, its false
positions are far more than the other two approaches, with the
most misclassification. This indicates that its accuracy and
precision are low.

Although the recall of the proposed method is slightly
lower, the basic requirement of highly accurate cloud extrac-
tion is not affected. The overall accuracy of the proposed
approach remains above 96%, and the recall rate remains
above 90%. Overall, the proposed method obtains a precision
of more than 95%, and it performs well in terms of the
recognition of clouds in areas with very bright land surfaces.

V. CONCLUSION
The scheme proposed in this paper used pixel values, Anselin
Local Moran’s I index, and anisotropic analysis to extract
clouds. This method could solve the problem that snow was
often misclassified as clouds in traditional extraction meth-
ods. In addition, the method eliminated the salt and pepper
noise generated by bright surfaces and greatly improved the
accuracy of cloud extraction. Therefore, this method could be
generalized because it captured three broad cloud character-
istics: the pixel value, the spatial cluster and outliers, and the
anisotropy.

(1) We selected a larger area with snow/ice and high-
reflectance ground cover to verify the proposed method.
In addition, this method also achieved ideal cloud extrac-
tion results in areas without snow and ice cover. There-
fore, we draw the following conclusions: PCA could
separate objects that are easily confused due to their
similar spectral characteristics, and different principal
components show many spectral differences between
clouds and snow, making them more useful for cloud
recognition.

(2) The fractal summation model could obtain an accu-
rate and reliable threshold, but pixel values couldn’t be
used to completely distinguish features because false
anomalies share some spectral features with authentic
anomalies. Therefore, another diagnostic characteristic
was adopted, i.e., spatial information.

(3) Anselin Local Moran’s I analysis was used to deter-
mine the cluster and outlier states of spatial distribution.
Clouds are clustered, while the salt and pepper noise
generated by snow/ice and high-reflectivity ground cover
is dispersed. Therefore, most of the snow/ice and high-
reflectance ground cover could be eliminated by the
spatial distribution information of clouds and erroneous
anomalies.
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(4) We used standard deviation ellipses to study the
anisotropy. The directional information of a standard
deviation ellipse can reduce the misjudgment of thick
snow that does not have a discrete distribution all
year round and eliminate false anomalies according
to the direction. In addition, another advantage of the
anisotropy is the buffer. We used the above method to set
a weighted buffer at the boundary of the main extension
direction of the extracted cloud, which greatly improves
the cloud extraction accuracy and improves the univer-
sality of cloud extraction methods. The introduction of
anisotropy analysis could eliminate false anomalies that
do not follow a dispersed distribution and greatly improve
the cloud extraction accuracy.
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