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ABSTRACT Melanoma is the deadliest form of skin cancer. Distinguishing melanoma lesions from non-
melanoma lesions has however been a challenging task. Many Computer Aided Diagnosis and Detection
Systems have been developed in the past for this task. They have been limited in performance due to the
complex visual characteristics of the skin lesion images which consists of inhomogeneous features and
fuzzy boundaries. In this paper, we propose a deep learning-based method that overcomes these limitations
for automatic melanoma lesion detection and segmentation. An enhanced encoder-decoder network with
encoder and decoder sub-networks connected through a series of skip pathways which brings the semantic
level of the encoder feature maps closer to that of the decoder feature maps is proposed for efficient learning
and feature extraction. The system employs multi-stage and multi-scale approach and utilizes softmax
classifier for pixel-wise classification of melanoma lesions. We devise a new method called Lesion-classifier
that performs the classification of skin lesions into melanoma and non-melanoma based on results derived
from pixel-wise classification. Our experiments on two well-established public benchmark skin lesion
datasets, International Symposium on Biomedical Imaging(ISBI)2017 and Hospital Pedro Hispano (PH2),
demonstrate that our method is more effective than some state-of-the-art methods. We achieved accuracy
and dice coefficient of 95% and 92% on ISIC 2017 dataset and accuracy and dice coefficient of 95% and
93% on PH2 datasets.

INDEX TERMS Deep learning-based, encoding-decoding network, pixel-wise classification, melanoma,

skin lesion, segmentation.

I. INTRODUCTION

Melanoma is a malignant itumour which develops from the
pigment-containing cells known as melanocytes [1]. It has
the most rapidly increasing mortality rate among skin can-
cers. The American Cancer Society [2] estimates that about
7,230 people are expected to die of melanoma and about
96,480 new melanomas is diagnosed in the United States
in the year 2019. According to the statistics [2], the lifetime
risk of getting melanoma is about 2.6% for whites, 0.1% for
blacks, and 0.6% for Hispanics. Cutaneous melanoma is
the most dangerous form of skin tumor that causes 90%
of skin cancer mortality [3]. According to Garbe er al. [3]
melanomas account for 90% of the deaths associated with
cutaneous tumors. They also investigated that the incidence
rate is around 25 new melanoma cases per 100,000 in Europe,
and around 30 per 100,000 inhabitants in the United States
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of America (USA) and in Australia where the highest inci-
dence rate is observed it is around 60 per 100,000 inhab-
itants. The major and most important exogenous factor
causing melanoma is exposure to UV irradiation through
sun exposure [4]-[6]. Melanoma can however be cured with
prompt excision [7], [8] if diagnosed and detected early.
Identification of melanoma from skin lesions using methods
such as visual inspection, clinical screening, dermoscopic
analysis, biopsy and histopathological examination of skin
lesion can be inaccurate and laborious even with experienced
dermatologists [9]-[11]. This is due to the complex visual
characteristics of the skin lesions such as multi-sizes, multi-
shapes, fuzzy boundaries, low contrast when compared to
the skin and noise presence such as skin hair, oils, air and
bubbles. Development of an efficient Computer Aided Diag-
nosis (CAD) system for detection and diagnosis of melanoma
cancer is thus requires. This will improve the diagnosis rate of
melanoma and early detection which can facilitate treatment
and reduce the mortality rate of the disease.
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A lot of optical techniques exist for melanoma screening.
These techniques are non-invasive, with fast response and are
sensitive to biochemical and structural changes presented in
skin cancer development. They include wide-field imaging,
optical spectroscopy and microscopy imaging [12]. The opti-
cal diagnostic systems are based on the one or more types of
light-tissue interactions to provide both the biochemical and
structural tissue information [13]-[15]. They are potential
techniques for the identification of occult lesions using the
conventional light examination [16]-[20], and also to serve as
important auxiliary tools for clinical examination of skin [12].
The non-invasive skin cancer diagnostic methods have
been categorized into photography, dermoscopy, sonography,
confocal microscopy, Raman spectroscopy, fluorescence
spectroscopy, terahertz spectroscopy, optical coherence
tomography, the multispectral imaging technique, thermog-
raphy, electrical bio-impedance and tape stripping [21], [22].

Pratavieira et al. [12] presented several optical modalities,
including spectroscopy and imaging techniques as potential
tools to improve cancer diagnostics. They also examined sev-
eral commercial optical systems available such as Dermlite
produced by 3Gen, LLC, Dana Point, CA, U.S.A., Dyaderm
by Biocam GmbH, Regensburg, Germany, Dermascope by
AMD Telemedicine, Elizabeth, NJ, U.S.A., MelaFind by
Electro-Optical Sciences, Irvington, NY, U.S.A, Mole-
max by Derma Medical Systems, Vienna, Austria, Micro-
derm by Visiomed Comp.,Bochum,Germany), Multiderm
by Lightdtech, Scandicci, Fi, Italy, Nevoscope by Translite
LLC, Sugar Land, TX, U.S.A., Siascopy by Astron Clinica,
Cambridge, UK, SolarScan by Polartechnics Ltd, Sydney,
Australia, and many others. These devices have been specif-
ically designed for the detection and interpretation of skin
lesions but are however very limited in interrogation depth,
photobleaching of biomolecules, and high signal background
and also with high cost

There has been significant improvement in the research
for the development of computing algorithms and techniques
for skin lesion analysis in the recent past. Some of the
popular techniques use a rule based on asymmetry, border
structure, variegated colour and dermatoscopical structures
(ABCD) [23]. This was derived from the rule commonly used
by dermatologist for diagnosis of skin cancer. In the ABCD
rule, asymmetry means that two sides do not match while they
match for the symmetry. This can assist in distinguishing the
benign from the malignant skin lesions [23]. The border struc-
ture may also be even for benign and uneven for the malignant
in most cases. The variegated color is always just one color
in the case of Benign while the malignant always possess
two or more colors. The general dermatoscopical structure
are always very small like one-quarter inch for the benign
while is always larger than that in the case of malignant.
The benign skin lesions are not harmful while the malignant
are cancerous and harmful [24]. This rule has always been
applied by many hand crafted methods for the analysis of skin
lesions images towards the melanoma detection as shown in
FIGURE 1.
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FIGURE 1. Images showing comparison between benign and malignant
skin lesion using the ABCD rule. (drganesen.co.za/skin-lesions).

These methods termed hand-crafted are limited with the
noise presence on the skin lesion and also the low contrast
and irregular borders features of skin lesions [25]. These
methods [26] lack deep supervision and this leads to loss
of detailed information during training thus experience dif-
ficulty in analyzing the complex visual characteristics of
the skin lesion. Intelligent based systems possess features
such as adaptability, fault tolerance and optimal perfor-
mance for better analysis of skin lesions [25]. Developing
an efficient system will reduce the cost and time required
for the dermatologists and doctors to diagnose all patients
for melanoma [27]. Codella et al. [28] proposed a system
that combines recent developments in deep learning with
established machine learning approaches to create ensembles
of methods that are capable of segmenting skin lesions
for melanoma detection. Even though those methods have
achieved great success, there still remain several challenges to
the skin cancer segmentation task due to the complex nature
of skin lesion images. Skin lesions images are characterized
with fuzzy borders, low contrast between lesions and the
background, variability in size and resolution and with possi-
ble presence of noise and artifacts.

In this paper, we propose an intelligent system based on
deep learning techniques to detect and distinguish melanoma
from non-melanoma lesions using a single DCNN for all
the processes. Firstly, dermoscopy image may include hair,
blood vessels, and other factors that interfere with segmen-
tation. Moreover, the low contrast between the lesion area
and the surrounding skin causes blurry boundary, which
makes it difficult to segment the lesion accurately. At last,
melanoma usually has different sizes, shapes, and colors
depending on different skin condition, which could be a
hamper to achieve high segmentation accuracy. To tackle
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these challenges, we propose a novel CNN based approach
with an enhanced deep supervised encoder-decoder network
to extract strong and robust features of skin lesions images.
This network is able to extract complex features from the
lesion images through its multi-stage approach in which the
encoder stage of the network learns the general appearance
including possible hairs influence on the lesion region and
localization information while the decoder stage learns the
lesion boundaries characteristics. After extracting the fea-
tures, a new method called Lesion-classifier is devised to
perform the classification of skin lesions into melanoma and
non-melanoma in a pixel-wise manner. Our network is dis-
tinguished from the existing methods based on the follow-
ing three aspects: (1) we connect the encoder and decoder
sub-networks together through a series of skip pathways as
shown in Figure 3. This brings the semantic level of the
encoder feature maps closer to that of the decoder feature
maps is proposed to enhance the feature learning ability of
the network and feature extraction; (2) we design a multi-
scale system at each skip pathways of the network to handle
various sizes of skin lesions images; (3) we devise a method
called Lesion-classifier which is computationally efficient to
classify skin lesions into melanoma and non-melanoma in a
pixel-wise manner to distinguish melanoma lesions from non-
melanoma images. The key innovation behind our proposed
algorithm is that the melanoma detection task is structured as
a point object detection task, where the region of interests
(ROI) occupies only a tiny fraction of the total number of
pixels of the skin lesion images. Our aim is to develop an
efficient system that can extract the most suitable features
using limited training images dataset and detect melanoma
cancer with reduced computing resources that can meet up
with the requirement in the real-time clinical practice.

Our last contribution is experimental. We present a more
detailed study, with better visualizations of the results and
outputs. The proposed system obtains state-of-the-art results
on ISIC 2017 and PH2 datasets and show better results
than the existing techniques in major performance metrics
in recognition and localization. The proposed methodology
archives encouraging results having 96% accuracy. We finally
experimentally evaluate the training computation time per
epoch and the test time per a single dermoscopy image for
the proposed method and compare the results with the per-
formance of some popular deep learning methods such as
SegNet, UNet and FCN on ISBI 2017 dataset.

A. OUR APPROACH

We propose a new fully automated method for detecting
melanoma on dermoscopic images. Experiments show that
the proposed method improves on the state-of-the-art and is
specifically optimized for melanoma detection. The system
employs an end-to-end and pixel by pixels supervised learn-
ing approach using Deep Convolutional Networks combined
with softmax classifier and dice loss function. In addition
to this, we contrive a method to classify skin lesions into
melanoma and non-melanoma based on pixel-wise result
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from the softmax module. This model combines all the chal-
lenging tasks of segmentation, features extraction and classi-
fication in a manner that no extra computing cost is required.
Our research aims at improving the rate and accuracy in
identifying and classifying skin lesions. The following contri-
butions have been introduced to the present state-of-the-art:

1) DEEP CONVOLUTIONAL ENCODER-DECODER
ARCHITECTURE

We propose a Deep Convolutional Architecture that is
interconnected through a series of skip pathways as shown
in Figure 3. This brings the semantic level of the encoder
feature maps closer to that of the decoder feature maps is pro-
posed to enhance the feature learning ability of the network
and feature extraction;

2) MULTISTAGE AND MULTI-SCALE APPROACH

The Encoder-Decoder network is enhanced into a moderate
size with a multi-stage and multi-scale approach to enhance
learning of the complex features and handle various sizes of
skin lesions images;

3) LESION-CLASSIFIER

We devise a new predictive method called Lesion-classifier
which is computationally efficient to classify skin lesions
into melanoma and non-melanoma in a pixel-wise manner
to distinguish melanoma lesions from non-melanoma images
using the output of the softmax modules.

Our method is particularly effective for analysing challeng-
ing skin lesions, which usually have fuzzy boundaries and
heterogeneous textures, for melanoma detection.

The remaining part of this work is organized as follows:
Section II discusses the Related Works and Materials and
Methods is described in Section III. Section IV discusses
the Experiments and Results. The paper is concluded in
Section V.

Il. RELATED WORKS

An efficient automatic melanoma detection system requires a
reliable feature extraction mechanism. This process is of vital
importance while detecting melanoma using CAD diagnostic
systems. In the recent past decade various methods have
been proposed to extract and analyse various features from
skin lesion images. Extracted features include but not limited
to colour, Texture wavelet, gray-level co-occurrence matrix
(GLCM) and shape features. The performance of any CAD
system is highly dependent on the efficiency of the extraction
of these features. Many semi-automatic and fully-automatic
algorithms have been proposed for melanoma detection from
skin lesions images. This section describes both the semi-
automatic techniques and automatic deep learning methods
for features extraction and melanoma detection.

A. SEMI-AUTOMATIC TECHNIQUES
Warsi et al. [29] presented a technique based on
D-optimality orthogonal matching pursuit (DOOMP) to
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perform image enhancement, segmentation, and classifi-
cation on skin lesions using fixed wavelet grid network
(FWGN). The system gave accuracy results of 91.82%.
Barata et al. [30] also used a technique to extract both color
and texture features for detection of melanoma and non-
melanoma images. The method showed that color feature
outperforms the texture feature. Schaefer er al. [31] also
proposed a method to extract color and texture features
from the lesion component of dermoscopic images. The pro-
posed method used the combination of SVM, SMOTE, and
ensemble of classifiers. The results of the proposed ensemble
classifier system gave accuracy of 93.83%. Waheed et al. [32]
extracted both the color and texture features using GLCM
method for texture feature extraction and SVM classifier for
classification. The system obtained the accuracy of 96%.
Sivaraj et al. [33] used Firefly with K-Nearest Neighbor
algorithm (FKNN) classifier to predict and classify skin
cancer along with threshold-based segmentation and ABCD
feature extraction algorithm. Pennisi et al. [34] presented a
method based on Delaunay triangulation known as ASLM to
extract a binary mask of the lesion. This method combines
two parallel processes for detection of skin and lesion. Warsi
et al designed a method termed multi-direction 3D color-
texture feature (CTF) for feature extraction from dermo-
scopic images. They used back propagation multilayer neural
network (NN) classifier for detection and classification of
melanoma [29]. The shortcomings of these methods include
requiring elaborate image pre-processing steps, careful ini-
tialization from a human expert and also too slow for real-
time analysis and diagnosis. These techniques do not however
include a prior knowledge of the image characteristics in
the algorithm unlike approaches based on deep learning
algorithms.

B. AUTOMATIC DEEP LEARNING TECHNIQUES

Recently, Convolutional Neural Network (CNN) and deep
learning-based approaches have been used for cancer detec-
tion. Bi et al. [35] proposed an automatic melanoma detection
technique for dermoscopic images using multi-scale lesion-
biased representation (MLR) and Joint reverse classification
(JRC). JRC model was used for classification and it provided
additional information for melanoma detection. PH2 public
database wass used for evaluation and testing of the proposed
method. The results gave 92% accuracy. Yildiz [36] designed
a deep neural network model named C4Net for melanoma
detection. The proposed model classified skin lesions into
malignant and benign. Abbes and Sellami [37] proposed
a model based on the ABCD rule for features extraction
and used Fuzzy C-Means(FCM) to determine membership
degree and finally used a deep neural network classifier for
decision making. The model gave 87.5% accuracy as result.
A pre-trained deep learning network and transfer learning are
utilized for skin lesion classification by Hosny et al. [38]
Transfer learning was applied to AlexNet by replacing the
last layer with softmax to classify the lesions. Finally, a single
CNN was utilized and trained end-to-end from images using
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only pixels and disease labels as inputs [39]. This was used
for binary classification of keratinocyte carcinomas versus
benign seborrheic keratoses; and malignant melanomas ver-
sus benign nevi. The deep learning CNN outperforms the
average of the dermatologists at skin cancer classification
using photographic and dermoscopic images however the
performance in a real-world and clinical setting is yet to be
evaluated [39]. The computation cost for these approaches are
major barriers in clinical applications [40]-[42]

Al-Masni et al. [43] proposed a method that learns the
full resolution features of each individual pixel of an input
data directly. The system was evaluated using two publicly
available databases,ISBI 2017 Challenge and PH2 datasets.
He et al. [44] presented a skin lesion segmentation net-
work using a very deep dense deconvolution network.
They employed the combination of deep dense layer and
generic multi-path Deep RefineNet. Esteva et al. [39] devel-
oped CNN architecture using GoogleNet Inception v3 that
was pre-trained on approximately 1.28 million images for
melanoma detection. Goyal and Yap [45] presented an end-
to-end solution using fully convolutional networks (FCNs)
for multi-class semantic segmentation. The system automat-
ically segmented the melanoma into keratoses and benign
lesions. Ramachandram and Devries [46] proposed a seman-
tic segmentation architecture that utilized atrous convolu-
tions for super-resolution upsampling of predictions using
subpixel. A deep learning framework consisting of two
fully-convolutional residual networks (FCRN) was devel-
oped to simultaneously produce the segmentation result and
the coarse classification result of skin lesion [47]. A lesion
index calculation unit (LICU) was then developed to refine
the coarse classification results by calculating the distance
heat-map.

Our proposed system aims at lowering trainable parameters
to reduce computational resources and time and make the
system feasible for real-time medical diagnosis. Most of the
systems discussed above employ larger and more complex
deep learning architecture. Our proposed system is able to
perform both segmentation and pixel-wise classification of
melanoma lesion pixels using a moderate-size deep convolu-
tional network. Some of these methods are also too slow and
requires huge amount of computing processing resources for
real-time medical analysis and diagnosis.

Ill. MATERIALS AND METHODS

A. MATERIALS

In this work, two publicly available dermoscopy dataset
were utilized for training and testing of our proposed
method. These were used to evaluate the proposed method.
The first dataset is the ISIC 2017 challenge dataset. This
dataset is extracted from the International Skin Imaging
Collaboration (ISIC) archive. The dataset contains der-
moscopy images with different image sizes with the highest
resolution of 1022 x 767. 2000 dermoscopy images
and 600 dermoscopy images were used for training and
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FIGURE 2. The proposed system framework and flow diagram.

testing respectively. These images were also presented with
their respective ground truth labels for supervised training.
The second dataset is the PH2 images. The dataset con-
tains dermoscopy images with different image sizes with
highest resolution of 765 x 574 pixels. The images were
collected from the Dermatology centre of Hospital Pedro
Hispano. 200 dermoscopy images and 60 dermoscopy images
were used for training and testing respectively. They are also
presented with their corresponding ground truth labels based
on manual delineations by clinical experts.

B. OVERVIEW OF THE PROPOSED METHOD

The diagram in Figure 2 shows all the major stages from
image-preprocessing to features extraction and pixel-wise
classification and finally lesion classification. The major
components include skin lesions images datasets, Encoder-
Decoder Network, Softmax classifier and lesion classifier.
The image datasets were first pre-processed before being
sent into the Encoder-Decoder Networks. The training der-
moscopic images together with the ground truth labels
(annotations) are used in training the Deep Convolutional
Encoder-Decoder Networks. The input is first sent into the
encoder sub-network and then to the the decoder for features
extraction. An additional module that combines the dice
loss function with the softmax classifier is later used for
pixel-wise classification of the images and identification of
Region of Interest for melanoma. During the testing stage,
we also applied the Deep Convolutional Encoder-Decoder
Networks to the input dermoscopic image dataset. The full
architectural diagram of the Encoder-Decoder Network is
shown in Figure 3.

C. DATA PRE-PROCESSING AND IMAGE AUGMENTATION

The skin lesions images are often characterized with noise
and artefacts such as air, hair and bubbles. They are also
characterised with variation in size and multi-scale and
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multi-resolution nature features of the skin lesion images.
During the pre-processing stage the images are separated
from noise using the Gaussian filter. The function is stated
below. This smoothens and prepares the images for further
processing. The images are also prepared to have them in
the same scale and resolution via cropping, resizing and re-
sampling. In this work, we use relatively small image size
of 224 x 224. This will reasonably reduce the input feature
map size for the network. The images are normalized by
computing the mean pixel value and the standard deviation
for data centring data normalization. The system applied
elastic deformations through random displacements before
augmenting the dataset. Elastic deformation utilizes local
distortion and random affine transformation for high-quality
output. These transformation takes place with random dis-
placement. In addition, simple and random rotation is adopted
in the augmentation process to improve the performance.
The system centres the pixel intensity ranging around zero
by remapping intensities linearly to the range [—0.5, 0.5] to
provide numerical stability during training.

D. ROI IDENTIFICATION AND FEATURES EXTRACTION
In the process of detecting melanoma, identification of region
of interest (ROI) and features extraction are very important
tasks. A lesion is characterized by different features including
colour, texture etc. In this work, an efficient deep learning
framework with a medium-size and less trainable weight
of the encoder-decoder network is trained and adapted for
features extraction. Both encoding part and the decoding part
are made up of five blocks each.

Each block in the encoding part is composed of two
3 x 3 convolutional layers and one max pooling layer and
a RELU non-linear activation function for features extrac-
tion.The max-pooling module breaks down the input feature
maps into pooling sections, and computes the maximum of
each section.The max-pooling module pools over every pixel
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FIGURE 3. Achitectural diagram for deep convolutional encoder-decoder network.

within a 2 x 2 area from the feature map and reduces the
feature map’s size and resolution. This eliminates features
redundancy and minimizes computation time. This also facil-
itates learning process in the network.

F; = ReLU(W % F; — 1 + b)) 1

where Fj; is the feature map,F; — 1 is the feature map for the
previous layer, W is the filter kernel and b; is the bias applied
to each feature map of each layer. The ReLU activation
function is stated as:

ify>0
ify<0

y

U(y) = max(0,y) = 0

where y is the resulting feature map.

Encoder learns lesion image pattern via the convolutional
layers and the ReLU activation function during an end-to-
end and pixel by pixel system training process. The first
convolution layer extracts feature maps from the training
dataset. The encoder captures the semantic and contextual
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information of the lesions by learning the general appearance
and localization information of the input image. Our architec-
ture is a deeply-supervised encoder-decoder network where
the encoder and decoder sub-networks are connected through
a series of skip pathways. This series of skip pathways is
composed of convolutional networks and short skip network.
This brings the semantic level of the encoder feature maps
closer to that of the feature maps awaiting in the decoder for
efficient and faster processing.

The decoder part also consists of five units but with
each units composing two convolutional layers and one up-
sampling layer. In the decoding part, the previous block out-
put is upsampled with the nearest neighbour using a 2 x 2
convolutional layers. It is then concatenated with the output
from the encoder part at the corresponding level. Increase
in deep learning network size automatically increases the
computational cost and reduce the feasibility of the system
in medical diagnosis. So in this work we limited the size of
the encoder-decoder network. The network has however been
optimized by replacing the usual skip network connection
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between the encoder subnetwork and decoder subnetwork
with a series of skip pathway as illustrated in Figure 3. The
up-sampling layer is concatenated with the corresponding
feature map from the convolutional layer in the encoder part.
Feature maps are convolved with the decoder filters in the
convolutional layers to produce dense feature maps. The
lesion boundaries localisation information is learned at the
decoder section. The decoder section learns the characteris-
tics of the lesion boundaries in recovering spatial information.
The decoders work to restore the feature maps to the original
size in the network using the upsampling layers with the
function stated below.

y = upsample(x, n) 2)

where x is the feature map from the encoder and n is the
upsampling layer input.

The upsampling module is an advanced technique of
unpooling that reverts maxpooling operation by using the
value and location of the maxima values in the maxpooling
layers for feature maps restoration.

1) SYSTEM ALGORITHM

Algorithm 1 shows the steps of the proposed model imple-
mentation. The algorithm first gets an input image X,
feature maps are generated and then sent into encoder-
decoder system before pixel-wise classification with soft-
max classifier, and finally obtain the classification result via
the Lesion-Classifier. In the encoder unit, the feature maps
generated, Fy,ap, is first sent to the convolutional layers as
Conv(F,,ap) and then to the ReLu activation function as
Relu(F.i). This is then down-sampled with the max-pooling
function, Pooling(F,i). This is done through the for loop
structure until all the images are processed. The output from
the encoder is then sent into the decoder. It passess into the
for loop structure and goes through features upsampling using
the upsampling function Upsamp(£,i). This is also sent into
the ReLU activation function and the convolutional layers.

E. PIXEL-WISE CLASSIFICATION

The pixel-based classification as presented by Wu et al. [48]
has been employed in the pixel-wise classification of skin
lesions. The encoder-decoder trains skin lesion images from
end-to-end and pixels to pixels using pixels and disease
labels to produce pixel-wise prediction. The output from
the encoder-decoder network with high dimensional feature
representation is sent into a trainable soft-max classfier. The
softmax performs the classification where n represents the
number of classes to specifically predict the class for each
pixel as melanoma or non-melanoma. The Dice loss function
utilizes Dice similarity coefficient [49] to measure overlap
between the input image and the corresponding ground truth.
These are explained by the equations below.

TW,‘

P(y=ilx) = W
n=1

3)
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Algorithm 1 Proposed Model for the Deep Convolutional
Encoder-Decoder Network
1: procedure Encoder(X) > X: x (L, B, H) is an input
image with dimension L, B, H
Extract the feature map F,ap from the input image;
Fori=0to M-1:
Set Fj = Conv(Finap);
Set F,; = Relu(F;);
Set F); = Pooling(F;);
if i <= M then
Set Fpiv1 = Fpi;
else return Fp;
end if
end for
: procedure Decoder(F);)
feature maps
13: Fori =M—1 to O:
14: Set Fyg; = Upsamp(Fp;);
15: Set F,; = Relu(Fy;);
16: Set F.; = Conv(F});
17: if i <= M AND i != 0 then
18: Set Fpi—1 = F¢j;

R A A A o

— ==
N e

> Fp; is the downsampled

19: else return F;
20: end if
21: end for

22: Predictedpixels= softmaxclassifier(F,;) © F; which is
the output from the decoder is sent to softmax classifier
function for pixel-wise prediction

23: Pi= cluster(Predictedpixels) > The predicted pixels are
clustered into segmented output

24: Finalresults= Pi > Final Segmented Output Display
Finalresults

where x” w represents the product of x and w, x is the feature

map and w is the kernel operator.

where xTw represents the product of x and w, x is the
feature map and w is the kernel operator.

Applying Dice loss functions in this system results in better
performance of the proposed model. This loss function is
efficient with skin lesion images due to the low contrast char-
acteristics of skin lesions images, with the dice loss function
differentiating the background from the lesion itself. Dice
loss function computes the losses for each class separately
and then find the average [50] to yield a final score. Incor-
porating dice loss function will create a function that returns
the dice loss between the predictions made and the training
targets and utilize this difference to improve the performance.

231,
YV
where i is the pixels,Y; denotes the ground truth label, ¥,

denotes the predicted image output. This can be further
expressed as:

Diceloss =1 —

“

Loss = forwardloss(layer, Y, T) %)
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FIGURE 4. Pixel-wise classification of a Melanoma lesion.

where Y is the output of the previous layer and T represents
the training targets.

The Softmax classifier provides and compute the proba-
bilities with direct interpretation for all labels. Our results
are presented using confusion matrix as illustrated in
Figure 4 where True positives, TP, represent pixels in which
the prediction and actual value are melanoma. True negatives,
TN, are pixels captured when the actual and predicted value is
Non-Melanoma. False negatives, FN, represent pixels, where
the pixel’s prediction is non-melanoma and the actual cate-
gory is melanoma. Finally, false positives, FP, capture pixels,
where the prediction is melanoma and the actual category is
non-melanoma.

F. SKIN LESION CLASSIFICATION

Algorithm 2 shows the steps of the proposed model imple-
mentation. The algorithm first gets an input image X,
feature maps are generated and then sent into encoder-
decoder system before pixel-wise classification with soft-
max classifier, and finally obtain the classification result via
the Lesion-Classifier. In the encoder unit, the feature maps
generated, F,ap, is first sent to the convolutional layers as
Conv(F,,ap) and then to the ReLu activation function as
Relu(F.i).

Algorithm 2 Lesion Classifier Algorithm for Detecting the
Number of Melanoma Lesions

1: Set MelClass = 0;

2: Set NonMelClass = 0;

3: procedure LesionClassifier(X)

input image

4 Accept Set of Images as Input;

5: For imagecount = 0toM — 1:
6: Extract MelPixelsNo From Softmax modules;
7
8
9

> X:x (L, B, H)is an

if MelPixelsNo > 0 then
Set MelClass = MelClass + 1;

: else
10: Set NonMelClass = NonMelClass + 1;
11: end if
12: end for
13: return MelClass

Lesion Classification Algorithm
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IV. EXPERIMENTS AND RESULTS

Various experiments were carried out in this section to
evaluate the performance of our proposed segmentation
approach. Two publicly available dataset were used to
demonstrate our proposed methods. This was also compared
with the existing algorithms in Table 1 and 2.

TABLE 1. Segmention Performance(%) of the proposed model on
ISIC Datatest.

[ Techniques | Accuracy | Dice Score | Sensitivity | Specificity |
Proposed model | 95 92 97 96
FrCN [44] 95 91 93 95
U-NET [44] 92 87 81 97
FCN [44] 93 89 80 94

TABLE 2. Segmention Performance (%) of the proposed model on
PH2 Datatest.

[ Techniques | Accuracy | Dice Score [ Sensitivity | Specificity |
Proposed model | 95 93 93 95
FrCN [44] 95 91 93 95
FCN [44] 92 89 90 94
U-NET [44] 92 87 81 97
A. DATASETS

The two well-established publicly available datasets used in
the evaluation of the proposed segmentation method are from
the ISIC challenge in skin lesion segmentation and PH2 data
repository. They are described below:

1) PH2

PH2 [51] contains 200 skin lesion images with highest reso-
lution of 765 x 574 pixels. They were gotten at Dermatology
Service of Hospital Pedro Hispano. This dataset was catego-
rized into training and testing image set both comprising of
images and ground truth labels respectively. The input dataset
are skin lesion images in JPEG format while the ground truth
are mask image in PNG format.

2) ISIC

ISIC 2017 [52] contains 2000 training images with the ground
truth provided by experts. The image sizes possess highest
resolution of 1022 x 767. This dataset was provided from the
ISIC Dermoscopic Archive [52]. This dataset was categorized
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into training and testing image set both comprising of images
and ground truth labels respectively. The input dataset are
skin lesion images in JPEG format while the ground truth
are mask image in PNG format. The ground truth labels are
provided for training and evaluating validation and test phases
data using the performance evaluation metrics.

B. MODEL IMPLEMENTATION
The experimental platform is on LENGAU clusters hosted
on CHPC super computers server at chpc.ac.za. Hardware
resources with an Intel Core i7 processor with ten (10)
3.4 GHZ cores and NVIDIA Tesla K40c GPU, 148.5 TB
shared memory was utilized.

Training time taken for the experiments: 4hrs

The software used for the model implementation includes:

o Python Version 3.5.2

o Keras 2

o Tensor flow backend 1.1.0 and TFlearn 0.3
« Scikit-image Version 0.14.1

C. CALCULATION METRICS
The most common skin lesion segmentation evaluation met-
rics were used for comparison including: dice similarity coef-
ficient (DSC.), sensitivity, specificity and accuracy. These
metrics were used for evaluation of the model. They are
illustrated below:

Dice Similarity Coefficient: It measures the similar-
ity or overlap between the ground truth and the automatic
segmentation. It is defined as

2TP

= (©)
FP+2TP + FN

DSC

Sensitivity: It measures the proportion of those with posi-
tive values among those who are actually positive.

TP
Sensitivity = —— @)
& TP + FN

Traming acouracy

=== BECUIECY o mem—m—ssmm e s ST

NG 4

Epochs -
a)

Specificity: This is the proportion of those that are negative
among those who actually tested negative.
Specifici IN g
pecificity = N - FP ®
Accuracy: It measures the proportion of true results (both
true positives and true negatives) among the total number of
cases examined.
TP + TN
TP+ TN + FP + FN
where FP is the number of false positive pixels, FN is the
number of false negative pixels, TP is the number of true
positive pixels and TN is the number of true negative pixels.

C))

Accuracy =

D. RESULTS AND DISCUSSION

With regard to melanoma lesion detection and segmentation
process, the proposed system was evaluated on two publicly
available database. First, the proposed model was trained on
ISIC 2017 dermoscopic dataset with 2000 training skin lesion
images. This was then tested on 200 skin lesion images. The
result achieved accuracy and dice coefficient of 95% and 92%
respectively with training steps of 35 epochs as shown
Figure 5 and 6. Training the proposed model on PH2 skin
lesion image dataset requires more number of training steps
because of the dataset size of 200 images. The model was also
tested on 50 images. As shown in Figure 5 and 6, the result
achieved accuracy and dice coefficient of 95% and 93% with
250 training epochs on PH2.

The results displayed in Figure 5 and 6 for both
ISIC 2017 and PH2 dataset also show that the accuracy and
the dice score can still improve with increase in training
steps and dataset. The learning ability of the proposed model
through experiments with the two datasets was evaluated
with the accuracy curve in figure 5. The result from the
curve clearly shows that the ISIC 2017 dataset with fairly
large dataset reached the accuracy percentage of 95%. This
improvement can be due to the adopted dice loss function
with the softmax classifier.

Training accuracy

(=]

Accuracy
"

e

=== ACCuracy

200 250

FIGURE 5. Training Accuracy Curves of the proposed method on the two datasets: a) ISIC b) PH2.

7168

VOLUME 8, 2020



IEEE Access

A. A. Adegun, S. Viriri: Deep Learning-Based System for Automatic Melanoma Detection

Dice Coefficient

0.90
W Dice Cefficient ...lllll..
aREgH
085 —
L
- []
$ 080 =
2 -
£ o075 .
o
-]
o 0.70
3 ]
a 0.65
]
0.60
[
055
n
oso{ "
- - ; - : i - .
0 5 10 15 20 25 30 35
Epochs
a)

Dice Coefficient

=== Dice Cefficient ,ﬁ'..,;,u--f.

-
e
0.90 1 _‘_‘_‘,v_u-"“"" -
’f.."‘ ] v

Ny

A=
e

Dice Coefficient

0 50 100 150 200 250

Epochs
b)
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FIGURE 7. Segmentation Results of the proposed method on ISBI 2017 dataset: The first row shows the Input images; the second rows shows the Ground

truth labels; the third row shows Segmented Output on DCEDN only.

We compared the performance of the proposed model with
the performance of some state-of-the-art methods from the
latest study in literature such as FrCN, CDNN, FCN and
UNET. This was carried out on the two datasets ISIC 2017
and PH2 and the results are stated in Table1 and Table2. The
results show that the proposed model outperform some of the
state-of-the-arts. From the results in Table 1, the proposed
model records higher accuracy percentage and dice score
of 95% and 92% on ISIC 2017 dataset when compared with
other methods. It also shows higher sensitivity and specificity
of 97% and 96% as against the other methods.

From the results in Table 2, the proposed model also gives
higher accuracy percentage and dice score of 95% and 93%
on PH2 dataset when compared with other methods. It also
shows high sensitivity and specificity of 93% and 95% as
against some of the methods. This results again indicates
that the proposed system is able to identify and differenti-
ate higher number of affected skin lesions from the healthy
tissues on PH2 skin lesion dataset.

VOLUME 8, 2020

Table 1 shows the performance evaluation of our pro-
posed method on ISIC 2017 Dataset and then compared
with other state-of-the-art algorithms while Table 2 shows
the performance evaluation of our proposed method on
PH2 skin lesion dataset also compared with other state-of-
the-arts methods. We use the same comparison algorithms
but different databases in the two table. In Table 1, our pro-
posed method and other state-the-arts methods were experi-
mented on ISIC 2017 dataset while in Table 2 our proposed
method and other state-the-arts methods were experimented
on PH2 dataset.

Table 3 shows the performance evaluation of our proposed
method on ISIC 2017 Dataset and then compared with the
best three models in ISIC 2017 challenge as stated below.

The robustness and effectiveness of the proposed method
is further shown in the Figure 7 with Deep Convolutional
Encoder Decoder Network (DCEDN) architecture producing
segmentation output with well defined lesion boundaries
and contours for eight sample melanoma lesion images.
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FIGURE 8. Segmentation Process and Per-pixel Results from the proposed method using Confusion matrix for result presentation:
27150 pixels are non-melanoma pixels that is correctly classified as non-melanoma and 6957 pixels are melanoma pixels correctly

classified as melanoma.

TABLE 3. Segmention Performance(%) of the proposed model compared
with the best three performance models in ISIC 2017 Challenge.

[ Techniques [ Accuracy [ Dice Score | Sensitivity | Specificity |
Proposed model | 95 92 97 96
CDNN [55] 93 85 83 97
U-NET [55] 93 85 82 97
ResNet [55] 93 84 80 98

Figure 8 shows the the pixel-wise results output using con-
fusion matrix of a sample melanoma lesion image with
6957 pixels that are melanoma and predicted to be melanoma.
It also discovers 27195 pixels of non-melanoma pixels pre-
dicted to be non-melanoma.

We have investigated both training and experimental time
for further evaluation of the proposed model. The training
computation time per epoch and the test time per a single
dermoscopy image for the proposed method have been evalu-
ated. The proposed system was evaluated on ISIC 2017 with
2000 training images over a total number of 35 epochs.
It takes approximately 350s for training each epoch and the
test time per a single image is around 5s. The proposed
method is feasible for medical practices since the processing
can be done in averagely 5s of processing time for each
dermoscopy image. This result was compared with the perfor-
mance of some segmentation methods such as SegNet, UNet
and FCN. The evaluation was done under the same hardware
conditions, the same dataset and the same number of epochs
and the result presented in Table 4. The computational speed
during the training phase of our proposed method was faster
than other segmentation methods.

TABLE 4. Measurements in seconds of the training time per epoch and
test time per skin lesion image.

[ Techniques | Training Time/ epoch | Test Time/Image |
Proposed model | 350 5
FCN 650 15
UNET 450 10
SegNet 600 13

7170

V. CONCLUSION

In this paper, a deep convolutional network based architecture
has been proposed for robust detection and segmentation of
melanoma lesions. This architecture adopts an enhanced deep
convolutional network that is interconnected with series of
skip pathway. It also employs a reduced-size encoder-decoder
network that aims at minimizing the computational resources
consumption. The multi-stage approach overcomes the lim-
itation of some deep convolutional networks in producing
coarsely segmented outputs when processing challenging
skin lesion images. In this approach, the whole network is
divided into stages, with each stage handling different section
of features learning and extraction. A new method is devised
to classify melanoma and non-melanoma lesion based on
the results from the softmax classifier. The system adapts
dice loss function that learns and computes losses from the
overlap in-between the predicted output and the ground truth
label into softmax classifier for pixel-wise classification.
This loss function consumes lesser system resources since
it does not perform sample re-weighting unlike some other
loss function. The system aims at reducing deep learning
architecture complexity in detecting melanoma. It also aims
at developing an efficient system that can meet up with real
time medical diagnosis task in diagnosing melanoma cancer.
The proposed method is feasible for medical practices with
the processing time for each dermoscopy image at aver-
agely 5s. The system was evaluated on two publicly available
skin lesion image dataset. The proposed system achieved an
overall accuracy and dice coefficient of 95% and 92% on
ISIC 2017 dataset and accuracy and dice coefficient of 95%
and 93% on PH2 dataset. Our proposed method outperforms
some existing state-of-the-arts.
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