
Received November 13, 2019, accepted December 12, 2019, date of publication December 27, 2019,
date of current version January 14, 2020.

Digital Object Identifier 10.1109/ACCESS.2019.2962757

Improving Time Series Reconstruction by Fixing
Invalid Values and Its Fidelity Evaluation
XINHUI LI 1, RUNPING SHEN 2, AND RENXI CHEN 3
1School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
2School of Geographical Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China
3School of Earth Science and Engineering, Hohai University, Nanjing 211100, China

Corresponding authors: Runping Shen (rpshen@nuist.edu.cn) and Renxi Chen (chenrenxi@hhu.edu.cn)

This work was supported in part by the National Key Research and Development Program of China under Grant 2018YFC1506602, in part
by the Open Research Fund of Key Laboratory of Space Utilization, Chinese Academy of Sciences under Grant LSU-KFJJ-2018-10, and
in part by the National Natural Science Foundation of China under Grant 41471276.

ABSTRACT MODIS time series data have been widely used in the research of regional and global
ecosystems and climate change. For vegetation monitoring, vegetation indices such as NDVI (normalized
difference vegetation index), EVI (enhanced vegetation index) and NBR (normalized burn ratio), are usually
derived from MODIS reflectance data. However, noise usually makes it difficult to generate reliable time
series of vegetation indices. Although some methods have been developed for reconstructing NDVI time
series data, they still suffer from some limitations. First, there is no reliable approach for detecting and
dealing with low-quality data, resulting in poor outcomes. Second, no effective evaluation of the fidelity
of the corrected data to the original data has been discussed. For these reasons, we developed a new time
series reconstruction approach, named Fixing Invalid Value (FIV) method. The proposed method assumes
that the noise in surface reflectance data stems from invalid data, such as clouds, ice, and missing values.
The FIV method first uses the spatially and temporally neighboring pixels to estimate the invalid values and
then applies morphology operations to remove the residual noise. Finally, the Savitzky-Golay (S-G) filter
is employed to generate the final results. The FIV method is tested on 8-day composite MODIS surface
reflectance time series data from 2001 to 2012 in Jiangxi and Fujian provinces, China. The results show that
the FIV method outperforms the conventional S-G filter and the HANTS method both in terms of visual
inspection and quantitative evaluation. Furthermore, the fidelity evaluation reveals that the proposed FIV
method produces high-quality time series data under all weather conditions.

INDEX TERMS Time series reconstruction, removal of noise, Savitzky-Golay filtering, NDVI, MODIS.

I. INTRODUCTION
In the recent three decades, Earth observation satellites have
played a central role in monitoring land cover dynamics and
ecologic environment. With its high temporal resolution and
multi-spectral information, the Moderate resolution Imaging
Spectroradiometer (MODIS) data have enhanced our capabil-
ities for monitoring regional and global vegetation dynamics,
ecosystem changes, and land disturbances [1]–[3]. MODIS
time series data are commonly used to track dynamic changes
in the landscape over time. An example is the monitoring
of forest by means of time series analysis with vegetation
indices (VIs) [4]–[6]. These VIs, includingNDVI, EVI, NBR,
and other self-defined indices, represent the absorptive and
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reflective characteristics of vegetation in the electromagnetic
spectrum. However, MODIS reflectance data unavoidably
contain large amounts of noise caused by cloud contami-
nation, atmospheric variability, and aerosol effects. For this
reason, the sensors are not always able to obtain the actual
information about the land surface, introducing low-quality
or missing data. VIs are important indicators of vegetation
growth state and are widely used for forest changemonitoring
by detecting abrupt changes in the time series data. Unfortu-
nately, noise causes inaccurate or severely biased VI breaks,
resulting in the distortion of time series and significantly
affects the accuracy of terrestrial monitoring.

Accurate time series data are therefore essential for
vegetation monitoring. Several methods for reconstruct-
ing time series data have been proposed in the last
three decades. These methods can be broadly categorized
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into: (1) maximum-value composite (MVC) methods [7];
(2) threshold-based methods, such as the best index slope
extraction (BISE) algorithm [8]; (3) filteringmethods, includ-
ing the mean value iteration (MVI) filter [9], 4253H fil-
ter [10], Savitzky-Golay (S-G) filter [11], changing-weight
(CW) filter [12], and phenology-preserving (PP) filter [13];
(4) function fitting methods, such as the temporal window
operation (TWO) [14], the asymmetric Gaussian model func-
tion (A-G) [15], and the double logistic function (DL) [16],
[17]; (5) Fourier-based fitting methods, such as the har-
monic analysis of time series (HANTS) [18] and moving
weighted harmonic analysis (MWHA) [19]; and (6) other
methods, including the data assimilation (D-A) method [20],
the Whittaker smooth (WS) method [21], [22], the iterative
interpolation for data reconstruction (IDR) method [23], the
Kalman filter recursive algorithm [24], and the machine
learning based methods [25].

Comparative studies of these methods have shown that
each approach has strengths and limitations and that no
method is significantly superior to others [23], [26]–[31].
The MVC method has been recognized by scholars as being
essential to the pre-processing of NDVI data, such as the
16-day NDVI data synthesized from MODIS [32] and the
15-day GIMMS NDVI synthesized from the Advanced Very
High-Resolution Radiometer (AVHRR) [33]. Although the
MVC can eliminate the influence of clouds to some extent,
it cannot avoid the presence of some residual noise. The
BISE method eliminates noise with a sliding window and a
threshold that depends on experience; themethod is also time-
consuming. The Fourier-based method does not perform well
on irregular or asymmetric time series since it is based on
symmetric sine and cosine functions. Some methods, such as
the HANTS, the A-G, and the D-L, require the determination
of several key parameters that are subjective and depend on
experience. The more the parameters, the more complicated
the methods’ implementation, and the more errors they will
introduce.

Apart from the drawbacks of these methods themselves,
pre-processing is not sufficiently taken into account. Noise
can be caused by different reasons and manifests differ-
ent characteristics, which is not considered by conventional
methods. For instance, the S-G filtering method does not take
into account invalid data and treats them without discrimina-
tion, which may affect the quality of the original data and
result in poor fidelity.

In summary, although time series reconstruction methods
have shown the effectiveness in current applications, they still
suffer from the following weaknesses: 1) these methods rely
on some sort of mathematical principles or formulas and do
not make full use of information that comes along with the
data itself [34]; 2) they require high-quality original input data
and are often significantly influenced by invalid values [35];
and 3) some methods require many input parameters that can
be difficult to determine. For instance, A-G and D-L require
seven and six parameters, respectively, and HANTS requires
five parameters. These parameters are often set manually

according to the experience of the user rather than based on
established rules [18].

To overcome these limitations, new gap filling methods
have been reported in recent studies [11], [19], [36], [37].
To generate high-quality time series data, this paper proposes
a compound filtering method based on fixing invalid val-
ues (FIV) and S-G filtering. Rather than a completely new
method, this is a strategy that tries to reduce as much as
possible the negative impacts caused by invalid data. S-G is
selected as the basic filtering method since it is still widely
reported in the recent literature [30], [38]–[41]. Its popularity
is mainly attributed to its effectiveness in removing noise and
ability to preserve the shape of peaks in the signal waveform.
In particular, the S-G method requires only two parameters,
namely the window sizem(2 ∼ 7) and the polynomial degree
d(2 ∼ 4), which makes it relatively easy to use. Our method
has the following characteristics: 1) it combines the MODIS
quality control file and cloud detection algorithm to identify
invalid pixels; 2) it proposes a 2-dimensional interpolation
method to fix the invalid data points in the temporal domains
of year and month; and 3) it uses the mathematical morpho-
logical method to eliminate residual abnormal concave points
in the time series before applying S-G filtering.

In addition to developing a simple and easy to implement
approach for time series reconstruction, another goal of this
paper is to conduct a fidelity evaluation on the reconstructed
results. Whether the invalid data points cause significant
effects on the valid data and the magnitude of the effects
are rarely investigated. Although a quantitative evaluation
framework has been adopted in [27], their assessment is based
on synthetic NDVI data, not on real observation. In this paper,
we selected an uncontaminated subset of data as the reference
data, on which the assessment was performed. Therefore,
the main objectives of this paper are summarized as follows:
1) To develop a simple and easily used method to reconstruct
high-quality time series, reducing the negative impacts as
much as possible; and 2) to conduct a comprehensive fidelity
evaluation on the reconstructed results.

The remainder of this paper is organized as follows.
In section II, study area and data are introduced. The pro-
posed method and some details are discussed in section III.
Results and validation are presented in section IV. Finally,
conclusions are given in section V.

II. STUDY AREA AND DATA
A. STUDY AREA
The study area consists of two provinces, Jiangxi and Fujian,
in the southeast part of China. This region ranges in latitude
from 23o33′N to 30o05′N and longitude from 113o34′E to
120o40′E (Fig. 1), and it is dominated by hilly and moun-
tainous terrain with a forest cover rate of about 60%. The
two provinces are characterized by a subtropical monsoon
climate, which is humid and hot in the summer and cold in
the winter. Due to high rates of evaporation, this area has high
cloud coverage throughout the year, and snow precipitation is
occasional in winter months.
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FIGURE 1. Location of the study area: Jiangxi and Fujian provinces, China.

B. DATA
For vegetation monitoring, the MODIS VI products
(MOD13) provide consistent NDVI and EVI time series
data. However, instead of the MOD13 products, we used the
MOD09A1 data (surface reflectance products) because of the
following reasons: 1) MOD13 provides only NDVI and EVI
time series products, while with MOD09A1 we can calculate
additional vegetation indices (e.g. NBR). 2) In the study,
we found that some cloud covered pixels were not identified
by the state flag files, thus we adopted another algorithm
based on reflectance data to detect clouds. 3) The NDVI data
provided by the MOD13 products have a temporal resolution
of 16-days, whereas we can generate VI data with 8-day
resolution from reflectance data. Although the MOD09A1
products require more processing, they provide additional
benefits. The MOD9A1 products provide 8-day composite
surface reflectance data with 7 bands (band 1 - 7) at a spatial
resolution of 500 m. This product has undergone atmospheric
correction to eliminate the influences of atmospheric scat-
tering, ozone, aerosol, and thin clouds as well as geometric
correction. In the MOD09A1 reflectance data, band 1 is the
red channel, band 2 the near-infrared channel, band 3 the blue
channel, and band 4 the green channel. In this dataset, each
pixel contains the best possible L2G observation during an
eight-day period, and missing pixels have been marked as -
28,672. For each image, theMOD09A1 product also provides
a state file that indicates the state information (cloud, fog, ice,
and snow) for each pixel.

III. METHODOLOGY
The goal of this study was to reconstruct VI time series
data for vegetation change detection and monitoring. As we
have mentioned before, the VI can be NDVI, EVI, NBR,
or other vegetation index. Experiments show that these VIs
are highly correlated and display similar patterns in the time
series curves. For simplicity, in our experiments we use only
the NDVI time series.

The idea of this paper was to eliminate as many low-
quality pixels as possible before filtering. Fig. 2 shows the
overall flowchart of the whole process. First, the missing
pixels were identified and interpolated using linear regression

FIGURE 2. Flow chart of the time series reconstruction.

in both the spatial and temporal domains. This processing
restored reflectance images as well as provided more valid
values for fixing invalid pixels in the later steps. Subse-
quently, cloud, ice and snow pixels were extracted according
to the state flag files, and then residual cloud pixels were
identified using a cloud detection method called IBCD algo-
rithm. Thus, these contaminated pixels, also called invalid
data points in this paper, have been marked. In the following
step, these marked invalid pixels were fixed according to
the neighboring valid pixels in the temporal domains of year
and month. Finally, the morphological closing operation was
employed to remove residual noise and was followed by
the S-G filtering. The remainder of this paper details each
process.

A. FILLING MISSING PIXELS
This processing is only necessary when the data contain miss-
ing pixels. Although thesemissing pixels could be fixed along
with the invalid pixels, we processed them in advance because
missing pixels tend to only occur in some small regions and
can be reliably estimated in both the spatial and the temporal
domains. Once themissing pixels have been filled, more valid
values are available when fixing invalid points in the later
process. Filling missing pixels consists of the following two
steps.

1) MARKING MISSING PIXELS
Due to unknown reasons, the MOD09A1 products in our
study area contain some missing pixels, whose values have
been set to -28,672. These invalid data points can be easily
identified by scanning the whole dataset.

2) INTERPOLATING MISSING PIXELS BASED
ON LINEAR REGRESSION
Fig. 3 illustrates the basic principle of fixing invalid pix-
els. Image 1 is the current image containing invalid pixels,
in which region A (dark color) indicates the invalid pixels
and the outer circular region B is the buffer of A. The pixels
in buffer B are valid. Image 2 is the reference data (cloud-
free image) that is closest in temporal domain to Image 1,
either from the previous or the next image acquisition.
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FIGURE 3. Filling invalid data using linear regression. Image 1 is the
target image acquired at time 1 and image 2 is the reference image
acquired at time 2.

Pixels in both regions A’ and B’ are valid. Because
Image 1 and Image 2 are very close in the temporal domain,
there is a very strong correlation between the corresponding
pixels in region B and region B’. The same correlation also
exists between the pixels in region A and A’. If the linear
regression relationship between the pixels in region B and B’
is established, as shown in (1), the invalid pixels in region A
can be inferred from the pixels in A’.

gB = αgB′ + β (1)

To do this, we first calculate the coefficients α and β by
introducing the pixels from region B and region B’ into (1).
After obtaining α and β, the pixel values in region A can be
computed by introducing the pixels in region A’ into (1). This
replaces the invalid data. To obtain better results, we first cal-
culate the correlation between region B and region B’ using
both adjacent images from the previous and next acquisitions,
and then select the one having a higher correlation with the
reference data. In summary, the algorithm can be described
as follows:
• Step 1: Choose the previous cloud-free image (denoted
as ImgPre) and the next cloud-free image (denoted as
ImgNext ) that are closest in temporal order to the current
image Img as the reference data.

• Step 2: Determine the invalid region A and buffer region
B in Img and then calculate the corresponding buffer
regions B′ in ImgPre and B′′ in ImgNext .

• Step 3: Calculate the correlation index R′ using the
pixels in B′ and B, and R′′ between B′′ and B.

• Step 4: If R′ > R′′, use ImgPre to fix Img; otherwise, use
ImgNext to fix Img.

It is worth mentioning that this methodmay not be accurate
when applied to large missing areas or when the terrestrial
features change over a short period of time. In spite of
this limitation, this method was still applicable to our study
because the amount of missing data was small. Later experi-
ments also indicated that the results were satisfactory. On the
other hand, even if the values are not accurate, the fixed pixels
are less biased than the original, thus still reducing negative
influences to some extent.

FIGURE 4. S-G filtering is severely affected by contaminated pixels.

B. PROCESSING INVALID PIXELS
The NDVI time series used in our experiment was derived
from the eight-day compositeMODIS product. Theoretically,
the time series of each pixel in forest areas should reveal a
smooth curve that reflects the real phenological information
of vegetation. However, because of clouds, snow or ice, and
atmospheric conditions, the NDVI curves unavoidably con-
tain noise, failing to correctly represent the actual vegetation
seasonality. Thus, the contaminated NDVI values can result
in a misinterpretation of forest change and should be fixed.

Before filtering the NDVI time series, we need to iden-
tify and fix the invalid pixels. The fixing step is necessary
because the invalid values are severely biased and will cause
a considerable negative influence on the effectiveness of the
filtering algorithm, as shown in Fig. 4, in which the red square
boxes indicate the cloud contaminated pixels. Although this
sample was chosen from evergreen forest land cover, the
S-G filtered result presented abrupt drops in NDVI values
during the summer months in each year. This example shows
that the S-G filtering fails to remove severely biased noise
(invalid values). It is worth mentioning that fixing invalid
pixels aims to obtain less biased values rather than accurate
values. Following [42], the invalid pixels are only estimated
using valid pixels from adjacent acquisitions within half-
month forward or backward. This reduces the influence of
vegetation growth fluctuations.

In this study, we dealt with two categories of contaminated
pixels: 1) ice and snow coverage; and 2) cloud obstructions.
These contaminated values were defined as invalid data in our
study and were fixed in later steps.

1) MASKING ICE AND SNOW
Along with the surface reflectance data, the MOD09A1 prod-
uct also provides a state flag file for each frame image, using
a 16-bit unsigned integer (flag value) to indicate the state of
each pixel. For instance, if the binary value of the 15th bit of
the flag value (from right to left) is 1, it means that this pixel
is covered with ice or snow. According to the state data of the
whole image, we can extract the ice and snow cover mask.

2) MASKING CLOUDS
Cloud cover prevents theMODIS sensor from acquiring accu-
rate surface reflectance information of the terrestrial objects,
resulting in missing data or severely biased values at these
locations. In this study, we identified clouds and fog by using
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the state flag file as well as using a cloud detection algorithm.
Similarly to the missing data points, a portion of cloud points
was easily extracted according to the state flag file.

3) CLOUD DETECTION
Although the MOD09A1 state files can identify some cloud
contaminated pixels, some residual pixels that cannot be
identified may still exist. To address the problem, we used
an existing cloud detection method, named inflection-based
cloud detection (IBCD) algorithm [43], to identify the
remaining cloud pixels. This algorithm is specifically tar-
geted atMOD09A1 time series data, and it searches inflection
points that can divide cloudy and clear-sky observations on
ascending sorted time series of B3 (the 3rd band) and R37
(the ratio of B3 to the 7th band B7) of MOD09 data (for
details, see [43]). The inflection point was used to identify
contaminated pixels.

4) FIXING INVALID PIXELS
After the above-mentioned steps, invalid pixels were
extracted and marked. To fix these invalid pixels, we pro-
posed a folding interpolation method that reformats
1-dimensional signals into 2-dimensional data by folding the
VI time series, as shown in Fig. 5. The NDVI time series in
Fig. 5(a) covered a period of 12 years (from 2001 to 2012).
Due to the periodical characteristic of vegetation growth,
each section within one year had a similar shape; the NDVI
values did not vary too much within the same season. After
rearranging all the 12 sections into two dimensions, as shown
in Fig. 5(b), we obtained a 2-dimensional image in Fig. 5(c),
in which the invalid pixels are shown in black. In this way,
the original 1-dimensional signal was reformatted into a
2-dimensional (month and year) signal, in which the neigh-
boring pixels had a strong positive correlation. Based on
this fact, the invalid pixels were interpolated from the valid
neighboring pixels. Each pixel in Fig. 5(c) was processed as
follows:

M (i, j) =
i+w∑

x=i−w

j+w∑
y=j−w

Vo(x, y)

V (i, j) = max(Vo(i, j),M (i, j)). (2)

where, Vo(i, j) presents the original value at location (i, j) in
the image; M (i, j) is the 2-D average smoothing operation;
w is the radius of the neighboring window and set to 2 in
our experiments; and V (i, j) is the final value at (i, j). It is
noted that the invalid pixels are not involved in the average
smoothing operation M (i, j), implying that only the valid
pixels are used to estimate the values that will replace the
invalid pixels. Experiments show that this proposed operation
can correct invalid pixels as well as remove isolated noise,
as shown in Fig. 5(d). After interpolating the invalid pixels,
we concatenated the 12 sections to form a new VI time
series, in which invalid pixels had been fixed. A comparison
between 1- and 2-dimensional interpolation is demonstrated
by Fig. 5(e), in which some invalid points that cannot be

FIGURE 5. Fixing the invalid pixels in the time series. (a) A time series
sample covering 12 years; (b) Subset the time series into 12 sections and
rearrange them into a 2-dimensional array; (c) The 2-dimensional array
displayed as an image; (d) The corrected image; (e) Comparison of
1- and 2-dimensional interpolation results.

fixed in the 1-dimensional space can be assigned less biased
values in the 2-dimensional space, because invalid points can
draw from a larger amount of valid neighboring values in a
2-dimensional space.

C. S-G FILTERING COMBINED WITH MATHEMATICAL
MORPHOLOGY
1) NOISE REMOVAL BASED ON MATHEMATICAL
MORPHOLOGY
The above-mentioned correction operation can fill a majority
of the invalid values, but experiments show that a small
number of abnormal data points still exist in the corrected
time series. These abnormal values are obviously lower than
their neighbors, and thus form concave breaks in the curves,
as shown in Fig. 6(a). As mentioned in some studies [12],
[19], since vegetation shows a nearly linear profile over
a short period, these lower values should be considered
noise rather than vegetation growth changes. To fill these
breaks, we applied a basic mathematical morphology oper-
ation called closing filtering [44]. Fig. 6(b) gives an intuitive
explanation of how closing filtering works. It is achieved
by placing an infinite number of identical disks (also called
structural elements) in contact with the top of curve A along
all the curve and taking the lower boundary of the disks [45].
It is obvious that closing filtering suppresses valleys on the
curve while retaining the peaks. For practical use, a linear
structural element is usually used instead of a disk. In this
paper, the size of the linear structural element is set to 3.
As shown in Fig. 6(c), after the closing operation, the curve
retains its overall shape; however, two concave points have
been eliminated.

2) S-G FILTERING
Since the S-G filtering was proposed, it has received signif-
icant attention from researchers. Essentially, S-G filtering is
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FIGURE 6. Removal of abnormal points on a time series curve using the
closing filtering operation. (a) Abnormal points on an NDVI curve;
(b) The principle of closing filtering; (c) Removing abnormal
points using a structural element of size 3.

a convolution that can be understood as a weighted average
algorithm with a moving window [11]. Its weighting coeffi-
cients are not constant; rather, they are obtained by conduct-
ing least-squares fitting for the given high-order polynomial
in the sliding window. The least-squares fitting can minimize
the root-mean-square error, so as to preserve higher moments
within the data. The least-squares convolution is defined as
follows:

Y ∗j =

∑m
i=−m CiYj+i

N
. (3)

In (3), Y ∗j is the value of the time series data after filtering,
namely, the fitted value of the vegetation index; Yj+i is the
original value of the time series data, namely, the original
value of the vegetation index; Ci is the filtering coefficient;m
is the size of the moving window; and N represents the num-
ber of convolutions, which is generally equal to the number
of data points contained in the sliding window.

The S-G filtering is a process of continuously approaching
the upper envelope line of the vegetation index, and therefore
it can reconstruct a smooth time series. S-G filtering is so
widely used that it has been integrated into image processing
software such as ENVI, R, MatLab, and TIMESAT. For prac-
tical use, the S-G filtering algorithm requires two parameters:
the size of the moving window m and the order of the poly-
nomial d . Larger m or smaller d generates smoother curves
and vice versa.

IV. RESULTS AND VALIDATION
The experiments consist of two parts: 1) missing data fixing
and evaluation; and 2) time series data reconstructing and
fidelity evaluation.

A. MISSING DATA FIXING AND EVALUATION
Fig. 7(b) shows an example of missing pixels on an image
acquired on day 81 of 2001, in which the two black
regions represent missing pixels. To fix the missing data,
three consecutive images (day 73, 81, and 89 of 2001)

were chosen. The missing pixels in the image of day 81 were
estimated using the valid images of day 73 (the previous
acquisition, Fig. 7(a)) and of day 89 (the next acquisition,
Fig. 7(c)). For comparison, besides the proposed method,
we also applied two other approaches, namely triangulated
irregular network (TIN) spatial interpolation and averaging
method, to estimate the missing pixels.

The TIN interpolation method directly uses the single
phase of the image (day 81) to interpolate the missing pixels;
the averaging method fills the missing pixels with the average
value of the images of day 73 and 89. The linear regression
method estimates the missing pixels according to the image
of day 89 or 73.

A visual inspection shows that the result of the TIN inter-
polation method was not satisfactory due to a blurring effect.
As shown in Fig. 7(d), this method only produced piecewise-
smooth patches, failing to restore the texture. On the con-
trary, both the averaging method (Fig. 7(e)) and the linear
regression method (Fig. 7(f)) produced satisfactory results,
with clear boundaries and discernible terrestrial objects.

To carry out a quantitative evaluation on the three meth-
ods, we conducted a simulation experiment on three con-
secutive image acquisition. We first selected a valid region
from the image of day 81 (Fig. 8(a)), and then created an
artificial missing area by deleting some pixels (Fig. 8(b)).
Finally, the TIN interpolation method, averaging method,
and linear regression method were applied to the missing
area. The results are presented in Fig. 8(c), 8(d), and 8(e),
respectively.

An error map was computed according to the formula
emap = |If − Io|, where If is the fixed image and Io is the
original image. Subsequently, three statistical values, namely
min_err , max_err , and mean_err , were derived from the
error map emap according to (4), (5), and (6) and presented
in Table 1.

min_err = min(emap) (4)

max_err = max(emap) (5)

mean_err = mean(emap) (6)

We can observe that the TIN interpolation method pro-
duced a largermin_err andmean_err , whereas the averaging
method and the linear regression method produced smaller
errors. Although the latter two methods achieved comparable
results, the averaging method required two adjacent valid
images whereas the linear regression method required only
one (either the previous or subsequent acquisition). There-
fore, the linear regression method had lower data require-
ments and was easier to use.

TABLE 1. Errors of the three methods.
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FIGURE 7. Example of fixing missing data through three different methods. (a) Image on day 73 of
2001; (b) Image on day 81 (black areas represent the missing pixels); (c) Image on day 89; (d), (e), and
(f) are the results fixed by TIN spatial interpolation, averaging method, and linear regression method,
respectively, enlarged portion in the rectangle in (b).

FIGURE 8. Evaluation of fixing missing pixels. (a) Original valid image; (b) Simulated missing pixels; (c) TIN spatial interpolation;
(d) Averaging method; (e) Linear regression method.

B. TIME SERIES RECONSTRUCTION AND EVALUATION
1) RESULTS AND VISUAL INSPECTION
The NDVI time series data used in this experiment were
derived from the MOD09 surface reflectance products
from 2001 to 2012, in Jiangxi and Fujian provinces. The
dataset consisted of 46 image acquisitions per year, altogether
adding up to 552 acquisitions. For comparison, the S-G filter-
ing and the HANTS methods integrated in TIMESAT were
also applied to the time series data.

Chen [11] noted that in most cases, when the window size
(m) and the degree of the polynomial (d) are set to 4 and 6,
respectively, the S-G filtering usually yields the best results.
The two parameters are suggested when the interval in the
MODIS data is 16 days. In our study, eight-day composite
data were used. In this case, optimized results can be obtained
when m is set to 8 and d 6. For the HANTS filter, the param-
eters are set as follows: fit error tolerance (ERR_TOL =
0.02), number of frequencies (NUM_FREQ= 36), degree of

overdeterminedness (DOD= 5), min valid data (MIN= 0.0),
and max valid data (MAX = 1.0).

Fig. 9 presents the reconstructed images on day 161 (in
the middle of May) of 2008; Fig. 9(a) is the color composite
image, in which some areas were covered by thick clouds,
and (b) is the corresponding NDVI image. Fig. 9(c), (d) and
(e) are the NDVI images reconstructed by S-G, FIV+SG (the
proposed method in this paper), and HANTS, respectively.
The results show that the three methods obtained signifi-
cant gains in details of the occluded terrestrial objects and
the edges of rivers and lakes were restored. Compared with
Fig. 9(c), the terrestrial objects in Fig. 9(d) and (e) are more
discernible, indicating that the S-G method is more affected
by the contaminated pixels and yields poorer results than the
two other methods.

To better compare the results in the temporal dimen-
sion, we randomly selected some forest sample points from
the study area, depicting the original and the reconstructed
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FIGURE 9. NDVI reconstruction results on day 161 of 2008. (a) Color composite image of MODIS (Red = band 2, Green =

band 1, Blue = band 3); (b) The original NDVI image; (c) Reconstructed results by S-G filtering; (d) Reconstructed results
by FIV+SG method; (e) Reconstructed results by HANTS; (f) Random samples selected from the study area.

NDVI curves. Because of space limitations, only 4 samples
are presented here, as shown in Fig. 10. Since these sam-
ples were from evergreen forest, their NDVI curves should
have exhibited strong seasonality. However, because of cloud
and snow cover, the original NDVI time series curves was
contaminated, resulting in abrupt drops. Due to the severe
influence of the invalid data, the S-Gmethod produced NDVI
curves (blue curves) that fell far below the upper envelope and
deviated from the seasonal trend of forest growth. By con-
trast, the two other methods produced better results, approxi-
mating the upper envelopes of the original curves. Comparing
the results of FIV+SG and HANTS, it can be observed that
the FIV+SGmethodwas less affected by invalid data because
it had eliminated the majority of the invalid data before
filtering, making the filtered results more consistent with the
seasonal trend of the forest. The results also demonstrate
that the curves reconstructed by FIV+SG were closer to the
upper envelope line of the original NDVI curves, whereas the
HANTS method did not approximate the upper envelope in
some parts of the time series.

2) ERROR EVALUATION
Time series reconstruction aims to restore contaminated val-
ues. To assess the performance of the proposed and other
existing methods, ground truth NDVI data are needed. How-
ever, since obtaining ground truth data was not possible for
this study, the assessment has been carried out on synthetic
data instead of real data. We followed the quantitative analy-
sis framework adopted in [12], [19]. Ideal NDVI data were
synthesized using the average of the reconstructed results
generated by the three methods and were regarded as ground
truth data. Then, five levels of noise were simulated by ran-
domly selecting 10%, 30%, 50%, 70%, and 70%of the points.
The values of these selected points were randomly reduced by
10% - 90%, simulating cloud contaminations. Subsequently,
the individual reconstructed data were compared against the
ideal data, and the absolute errors were calculated on these
modified points. Finally, the statistics (maximum, mean, and
standard deviation) of the errors were calculated on 116 ran-
dom samples of the study area drawn from different land
use types, including forest, farmland, bare land, cities, and
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FIGURE 10. Comparison of the reconstructed NDVI curves of forest samples.

FIGURE 11. Mean errors of the three methods under different levels of noise.

TABLE 2. Error evaluation under different levels of random noise.

other mixed types, as shown in Fig. 9(f). Table 2 shows the
statistical results under different levels of noise.

One can notice that S-G always produced the largest max-
imum errors under all levels of noise, whereas FIV+SG and
HANTS produced smaller maximum errors. FIV+SG did
not always outperform HANTS under all levels of noise.
It is worth mentioning that maximum errors may just occur
on several abnormal points, and thus they are not always
reliable for performance evaluation. By contrast, mean errors
aremore reliable. As expected, FIV+SG always produced the
smallest mean errors under all levels of noise, and S-G the
largest. Additionally, FIV+SG outperformed HANTS both
in terms of mean errors and standard deviations. Further
analysis on the mean errors indicated that the performance

of S-G degraded rapidly with increasing levels of noise,
whereas FIV+SG was stable and robust, as shown in Fig. 11.
Compared with HANTS, FIV+SG was more effective and
produced smaller and more concentrated errors.

3) FIDELITY EVALUATION
An excellent reconstruction algorithm should effectively
restore the contaminated data as well as preserve the original
valid data. To evaluate how well the algorithm can retain
the original high-quality data points, we conducted another
quantitative analysis by comparing the reconstructed results
with the original data. This assessment can be conducted
on the real data instead of the synthetic data, because some
pixels are acquired under clear weather and can be considered
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FIGURE 12. Evaluation of the data on day 113 of 2012. (a) Color composite image of MODIS data; (b) Original NDVI
data; (c) Reconstructed results of S-G, HANTS, and FIV+SG (from top to bottom); (d) Residual errors between the
original data and reconstructed data.

FIGURE 13. Reference images acquired throughout the time range of the study. The labels under each image indicate
the date when it was acquired, formatted as ’year - day of year’.

high-quality data. If the algorithm preserves high fidelity,
these high-quality pixels are expected to remain unchanged
after applying the reconstruction algorithm. Based on this
idea, the fidelity was evaluated on the difference between
the original high-quality pixels and the corresponding recon-
structed results. Fig. 12(a) and (b) show an example of a sub-
set of a high-quality image on day 113 of 2012. Comparing
the three results in Fig. 12(c), we can see that the color tone of
forest areas in the image reconstructed with S-G was darker
than that of the original data in Fig. 12(b), indicating that
the S-G filtering resulted in a decline of the NDVI values
in forest areas. In contrast, the HANTS and FIV+SG results
were consistent with the original data. Fig. 12(d) illustrates
the residuals between the original data and the three recon-
structed results. In the residual error images, red and orange

indicate larger errors, and blue and purple imply smaller
errors. Comparing the three residual error images, we can
notice that HANTS and FIV+SG produced smaller overall
residuals than the S-G method.

To obtain a comprehensive quantitative evaluation,
we selected 12 high-quality images from the entire dataset
through visual inspection. These images were acquired under
clear weather conditions, and several of them had only a
negligible portion of cloud cover (Fig. 13). To reduce the
cloud influence to the utmost extent, these cloudy areas were
detected and ignored during the evaluation. Therefore, the
rest of the chosen images were regarded as the reference
data that reflected the exact information from the terrestrial
surface, and the NDVI images derived from these reference
data were considered to be of high quality. The reconstructed
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TABLE 3. Evaluation on the residuals of the NDVI time series reconstruction.

FIGURE 14. Histograms of the residuals for images in group A.

NDVI images were then compared against these reference
NDVI images to check how well the algorithm retained the
original high-quality data.

Table 3 presents the evaluation results, in which the
summary statistics, namely, maximum, mean, and standard
deviation (stdev) are derived from the residuals of each
image. According to the magnitude of the mean residuals,
the 12 images can be divided into two groups: A and B. Com-
paring the statistics of S-Gwith that of FIV+SG andHANTS,
we can notice that, in both groups, the three methods pro-
duced comparable maximum residuals. Experiments show
that maximum errors often occur on several abnormal points
and make no sense for performance evaluation, whereas
mean errors can provide valuable information. As shown in
Table 3, in terms of mean residuals and standard deviations in
group A and B, FIV+SG and HANTS always outperformed
S-G. Smaller means and standard deviations indicate that
the residuals produced by FIV+SG and HANTS were more

concentrated around zero. This was further confirmed by the
histograms of the mean residuals in Fig. 14 and Fig. 15, from
which we can notice that all the histograms of FIV+SG and
HANTS were narrower and that their peaks were closer to
zero. On the contrary, S-G had a flatter histogram in each
image, especially in group B.

It is worth noting that in group A, FIV+SG and HANTS
produced comparable mean residuals and standard devia-
tions, indicating that both methods worked well in this case.
In group B, FIV+SG always outperformed HANTS in terms
of either mean residuals or standard deviations. Fig. 15 also
demonstrates that FIV+SG had narrower histograms than
HANTS.

From Fig. 14 and 15, we can further notice that S-G pro-
duced relatively steeper histograms in group A but very flat
ones in group B, whereas FIV+SG always produced steep
histograms in both groups. By inspecting Table 3, we can
notice that all the mean residuals produced by FIV+SG were
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FIGURE 15. Histograms of the residuals for images in group B.

FIGURE 16. Comparison of NDVI reconstruction under bad weather conditions. (a) Consecutive composite color images;
(b) Original and reconstructed NDVI curves from day 17 to 105 in 2005.

less than 0.1, whereas S-G produced mean residuals that were
less than 0.1 in group A and that were larger than 0.1 in
group B. By further inspection of the time series, we dis-
covered that the previous and subsequent images in group A
were also acquired under clear weather conditions or slightly
cloud contaminated, whereas those in group B were severely
contaminated.

Fig. 16(a), presenting 12 consecutive image subsets from
the 17th to the 105th day of 2005, is a typical example
of a dense evergreen broad-leaved forest located in San-
ming District, Fujian Province. Among these images, five
of them (2005-017,065,089,097,105) were acquired under
clear weather conditions, and the others were severely cloud
contaminated. Fig. 16(b) shows the original and recon-
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FIGURE 17. Comparison of mean residuals in group A and B.

structed NDVI curves at the center point of this region. The
clear data (2005-065) indicate that the NDVI values should
be about 0.7, but the reconstructed NDVI value in image
2005-065 decreased to about 0.3 after the S-G filtering, due
to the influence of the previous and subsequent contami-
nated NDVIs. By contrast, the FIV+SGmethod produced the
best result and restored the contaminated data while retain-
ing the original uncontaminated data. This example further
proved that FIV+SG can obtain satisfactory results under bad
weather conditions, whereas S-G is significantly influenced
and HANTS is moderately influenced by cloud cover.

To further clarify this fact, we plotted the mean resid-
uals of S-G, FIV+SG, and HANTS in group A and B,
as shown in Fig. 17. In group A, S-G did not produce severely
degraded results compared to FIV+SG and HANTS. How-
ever, in group B, the results of S-G significantly degraded
due to the influence of previous or subsequent contaminated
data. The results show that, under bad weather conditions, the
overall residuals produced by the S-Gwas about 5.5-9.2 times
larger than that of FIV+SG. Similarly, the HANTS method
also performedwell under clear weather conditions, but could
not rival FIV+SG under bad weather conditions.

According to the above fidelity evaluation results, we can
notice that the S-G method is severely influenced by weather
conditions and cannot retain the original high-quality data.
This means that applying the S-G filtering to the time series
will cause a decline in the values of the original high-
quality NDVI. Especially when cloudy weather conditions
are observed over consecutive acquisitions, the S-G results
are severely degraded. In contrast, the FIV+SG and HANTS
methods produce better results than S-G under either clear or
badweather conditions. Although bothHANTS and FIV+SG
produce comparable results under clear weather conditions,
FIV+SG outperforms HANTS in the case of severe cloud
contamination. In summary, compared with the S-G filtering
and the HANTS method, our proposed approach produces
time series data with high fidelity under both clear and cloudy
weather conditions.

V. CONCLUSION
High-quality VI time series data are the key prerequisite to
the long-term monitoring of forests. Although some methods

for reconstructing time series data have been proposed, none
of them has been recognized as the optimal solution. This
paper proposed a simple and easily implemented approach
that has achieved high fidelity on the severely contaminated
MODIS data of Jiangxi and Fujian provinces in Southeast
China. Instead of being a completely new method, the basic
idea behind the proposed approach is to mark and fix invalid
data points before applying the S-G filter. This paper also
proposed a method for fidelity evaluation. The experimental
results suggest the following conclusions:

1) Due to severe cloud obstructions in Southeast China,
it is difficult to obtain high-quality MODIS reflectance data.
Applying the S-G filtering algorithm directly to the VIs time
series data will unavoidably cause large residuals, resulting
in inaccurate time series data. Fixing the invalid data before
applying the filtering operation is an effective way to address
this problem.

2) To fill in the missing data, we can employ the averaging
method or the linear regression method. Both methods can
achieve satisfactory results. However, the averaging method
requires at least two cloud-free images, one of which is
acquired before the target image and the other after; therefore,
its application is restricted. Comparatively, the linear regres-
sion method requires only one valid image, which lowers the
data requirements, making it more applicable.

3) The simulation experiments indicate that the proposed
method works well in restoring the contaminated time series
data and produces smaller mean errors than the S-G filtering
and the HANTS methods. S-G filtering degrades rapidly
with the increase of noise levels, whereas HANTS is more
stable and the proposed method is the best of the three
methods.

4) The fidelity evaluation shows that the proposed method
preserves the original high-quality pixels better than the S-G
filtering and the HANTS method. In terms of fidelity, the
proposed method produces mean residuals that are less than
0.035 under any weather conditions, whereas the S-Gmethod
produces mean residuals ranging from 0.040 to 0.072 under
clear weather conditions and ranging from 0.111 to 0.202
under cloudyweather conditions. The proposedmethod rivals
the HANTSmethod under clear weather conditions, whereas,
outperforms HANTS under cloudy weather conditions.
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The key factor for the excellent performance of this
approach is that the proposed FIV+SG method fixes a large
number of invalid data points and uses mathematical mor-
phology to further remove abnormal points before applying
the S-G filter, which prevents these severely biased invalid
data from adversely influencing the valid data. This strategy
is not only applicable to S-G filtering, but it can also be
extended to other filtering methods.
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