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ABSTRACT Detecting communities in complex networks has been one of the most popular research
areas in recent years. There have been many community detection algorithms proposed to date. However,
the local information (cliques) of communities and the search efficiency of algorithm have not been
considered both in previous studies. In this paper, we propose a novel local expansion algorithm for detecting
overlapping communities based on cliques. The algorithm draws on the assumption that cliques are the core
of communities, as the clique takes into account the local characteristics of the community. The proposed
algorithm adopts a single node with the maximum density as an initial community to prevent the formation
of a large number of near-duplicate community structures, which improves the search efficiency of the
algorithm. In many experiments using computer-generated and real-world networks, the proposed algorithm
based on this idea verifies that the algorithm is able to detect overlapping communities effectively. The
experiment yields better community uncover results, and the time efficiency and the complexity of algorithm
are also satisfactory.

INDEX TERMS Complex network, community detection, overlapping community detection, local opti-

mization, k-clique.

I. INTRODUCTION

Researchers are increasingly interested in the study of com-
plex networks [1]. They are typically used to represent com-
plex systems, such as in society, biology, computer and other
fields. The World Wide Web, the Internet, the actor collabora-
tion network, and communication networks are representative
examples of complex networks [2], [3].

Community structure is an important topological property
of complex networks. In a network, nodes are always clus-
tered into different communities (clusters or groups), there
is a widely accepted definition of the community structure,
nodes in the same community are densely connected and links
between nodes in different communities are sparse [4], [S].
There is another generally accepted view of a community,
the community in a network is a group of similar nodes that
differ from other nodes in the network. Nodes belonging
to the same community can be classified according to their
relationship in clusters. Nodes belonging to the same com-
munity may have more common characteristics than different
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communities [6]-[8]. Research on the clustering of complex
networks is not only great significance for understanding
the functions of complex networks, but also for predicting
the behavior in complex networks [9]. Clustering networks
are widely used in personalized recommendation, protein
function prediction and epidemic spreading [10].

A complex network consists of relatively independent
communities that influence on each other. For example,
a group of mutual acquaintances in a social network, a sub-
set of web pages on the same topic, a compartment in a
food network, a functional module in a protein interaction
network, a biochemical pathway in a metabolic network,
and so on [11]. The algorithms are: modularity-based opti-
mization clustering [12], [13], label propagation partition-
ing [14], [15], partition-based algorithms [16], [17], and
spectral methods [18], [19].

For community structure is one of the most important
topological features of complex networks, in networks, which
is characterized by densely linked internal nodes and sparse
connection of different community nodes. Further studies
have found that networks have many overlapping communi-
ties [20]-[22], for example, humans have a variety of social
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attributes, therefore, humans belong to different groups. Since
then, many community detection algorithms have been devel-
oped, and the algorithms can find overlapping communities
in which one node possibly appears in more than one com-
munity [23]. Communities can overlap in bipartite [24], [25]
and weighted networks. The algorithms are: the clique per-
colation method [26], [27], link-based partitioning [28] and
local extension based clustering [29]-[31].

In this paper, we propose a local optimization algorithm
based on cliques (LOC) for overlapping community detection
in complex networks. The proposed algorithm is an improve-
ment to the Local Fitness Method (LFM) [29] and Clique Per-
colation Method (CPM) [26] algorithm. The algorithm picks
a node with the highest density and focuses on a clique-based
expansion strategy, and it is also based on local optimiza-
tion function. The progress of clique-based locally optimized
expansion can avoid repeated calculation of local optimiza-
tion function and also fully considered the local character-
istics of a community when acquiring natural communities,
initializing the community with a node rather than cliques
avoids excessively near-duplicate, Different from previous
work, the proposed algorithm greatly improves the efficiency
of the algorithm and the quality of the community division.
The proposed algorithm is more suitable for large-scale and
dynamic networks. The LOC allows communities to overlap,
each node may appear in more than one community. Many
nodes may belong to multiple cliques, thus, the LOC algo-
rithm is able to detect overlapping community structures.

The remainder of this paper is organized as follows.
Section II discusses related work, and Section III describes
the proposed LOC algorithm. Section IV presents the exper-
imental results of the LOC algorithm obtained on both
computer-generated and real-world data sets, compares the
clustering accuracy of the proposed algorithm to several
overlapping community detection algorithms, and analyzed
the proposed algorithm’s time complexity. Conclusions and
suggestions for future work are presented in Section V.

Il. RELATED WORK

The number of communities in a network and their size are
unknown in advance, which will be calculated by community
detection algorithms [32].

The Speaker-Listener Label Propagation Algorithm
(SLPA) [33], it is a speaker-listener-based information prop-
agation process, in which a node acted as an information
provider or consumer to hold labels in the stochastic pro-
cess. A previous study [34] proposed the Label Propagation
Algorithm based on the Maximal Clique Network detection
(MCNLPA) to uncover highly overlapping communities. This
algorithm regarded maximal cliques as the nodes of another
network, and applied the LPA algorithm to this new matrix.
The label propagation algorithm [33], [34] showed some
uncertainty in label clustering. Another study [28] revealed
pervasive overlapping communities and hierarchies by links
rather than nodes However, this algorithm emphasized com-
munity external links rather internal links, which results in
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many small communities. In addition, the performance of this
algorithm was not superior to other algorithms. A previous
study [35]-[37] attempted to solve community detection
problems using a matrix, however, the matrix operations were
difficult for large-scale and dynamics networks.

In 2005, Palla et al. [26] proposed the CPM algorithm.
The key idea of the CPM is that communities comprise
overlapping complete sub-graphs. In the CPM, communities
were interconnected through a series of adjacent k-cliques.
Li et al. [38] introduced maximal cliques to uncover over-
lapping community structures. These algorithms [26], [27],
[38] were more suitable for edge-intensive networks, spare
parts would be inefficient, and the algorithm had no ability to
assign nodes that were not part of any cliques. Cui et al. [39]
also proposed an algorithm based on the Clustering Coeffi-
cient of two neighboring maximal sub-graphs (ACC) to detect
overlapping communities, maximal cliques were extracted
from a network and merged with the clustering coefficients
of neighboring cliques. However, the built-in parameters of
the methods [39]-[41] were difficult to determine. One study
[42] put forward an algorithm based on Optimization over
Maximal Cliques (OMC). The algorithm uncovered all max-
imum cliques in a network as initial communities, and it
repeatedly joined communities in each step when chose the
greatest increase in value of EQ function, The ““dendrogram”
corresponding to the largest modularity score is the most
accurate partition. Unfortunately, the algorithm consumes a
lot of time.

In 2009, Lancichinetti et al. [29] proposed the LFM algo-
rithm. It presented a fitness function based on random seed
and local optimization. However, The LFM might be inef-
ficient because it calculated only one node at a time, and
nodes were likely to be computed repeatedly. Eustace et al.
introduced a neighborhood ratio to identify community size
[43]-[45], Wang and Li [46] proposed the core-vertex to
expand a community according to intimate extent, and
Wang et al. proposed an overlapping communities method in
dynamic social networks [47].

In 2010, Lee et al. [30] proposed the Greedy Clique
Expansion algorithm (GCE). The algorithm found the largest
clique as an initial seed, around these seeds, a fitness func-
tion was optimized locally using greedy search strategies.
Cliques were near-duplicate in structure, so it was ultimately
necessary to eliminate similar communities. Another [31]
proposed a local community approach to perform community
expansion. The method was feed with the local information
of neighboring nodes as input, however, the nodes that did not
satisfy the optimization function were not promptly handled.

lll. LOC ALGORITHM
A. LOCAL DENSITY
Given an undirected and unweighted graph G = (V, E),
where V. = {v,v2,v3,..., vy} is a node set, and
E = {e1, ez, €3, ..., en} is an edge set.

The main idea of the Density Peaks Clustering Algo-
rithm (DPCA) [28] is to locate high-density regions separated
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FIGURE 1. Example of fitness function [29].

by low-density areas. We reference the local density of the
DPCA algorithm, the local density p; of node i is defined as
Equation (1):

pi =y x (dy—d) ¢))
J

where, x(x) = 1ifx < 0, otherwise, x(x) = 0.d, is a cutoff
distance, and dj; is the distance between nodes i and ;.

Here, we take the shortest path length between nodes as
distance d;j, which signifies that the result is robust in terms
of the selection of cutoff distance d;;. The magnitude of cutoff
distance d. changes in different measurements. According to
the literature [48], for simplicity, the cutoff distance dj; is
primarily set to constant d. = 1 mostly in this study.

B. FITNESS FUNCTION

Lancichinetti et al. [29] proposed a fitness function in the
LFM algorithm to identify local communities by maximizing
the following function. The paper adopt the expression in
Equation (2) as the optimization function.

Where respectively, kg is the inner degrees of community
G, which is equal to double the number of edges in commu-
nity G. kG, is the external degrees of community G, it is the
number of edges linking each community node with the rest
of the modules, and « is a positive-real tunable parameter to
control the size of a community. The larger the value of «,
the smaller the community size is.

G

k in
(Kfy + ki)
In Equation (3), given a module fitness function of node A,
the node fitness function in terms of a sub-graph fé‘ is defined
as the difference of sub-graph G with and without A, where

G + {A} and G — {A} represent whether node A is or is not
included in sub-graph G, respectively [38].

18 = foria) — fo-1a) 3)

In Figure 1, for the natural community extension of the sky
blue node, the fitness values of all blue nodes are positive,
f(v) > 0, and the fitness values of all red nodes are negative,
that is, f(v) < 0.

fe = @

C. LOC ALGORITHM DESCRIPTION
Palla et al. [26] argued that communities consists of a col-
lection of completely connected sub-graphs (cliques). In the

VOLUME 8, 2020

CPM, communities are interconnected through a series of
adjacent k-cliques. Since a node may belong to multiple
k-cliques simultaneously, thus the LOC algorithm has the
ability to uncover overlapping community structures.

The proposed LOC algorithm can be divided into two
phases, k-clique recognition and natural community expan-
sion. The first stage is to extract all k-cliques in a network.
A k-clique is the complete sub-graph which the numbers
of nodes are equal to k. The algorithm adopts a recursive
algorithm to uncover k-cliques. Let nodes be the sequence
{vi,v2,v3, ..., vy} of a network, and the procedure begins
with set {v1}. Then, detects the first backward node v; linking
to node v; in the preset order, then recursive this process from
{v1, vi}, until the recursive termination condition is satisfied
that there are k nodes in the collection. Then, the recursion is
stepped back to check other possible k-cliques.

In the second phase, the algorithm selects a maximum local
density node and takes the node as an initial community. The
node with the highest node density is always located in the
center area of the community, and other nodes in the network
are easily involved. It also addresses unstable partition caused
by the random seed selection strategy. The algorithm uses
local optimization search based on the fitness function, and
k-cliques are added each time when the natural community
expands, rather than including only one single node. For
expansion, the LOC algorithm finds the local maxima fitness
value of neighboring nodes in a community, and the algorithm
involves all k-cliques that include this node in the community.
Note that the negative fitness value nodes are removed after-
wards. This process is repeated until the fitness function value
of the community no longer increases, the community is the
ultimate one, select the maximum local density one that has
never been traversed, until there is no node in the network that
has not been visited.

The LOC algorithm considers a community as a collection
of fully connected sub-graphs (cliques). First, a node is picked
as the initial community, rather than a clique, because some
cliques structures are near-duplicate, thus, it is eventually
necessary to eliminate these similarly structured communi-
ties. The seed selection strategy can effectively simplify the
community detection procedure. Adding cliques rather than
a single node in the process of local optimization search
can speed up convergence to an optimal process. Moreover,
the community is extended by only a single node, which
involves a huge number of the fitness function calculations.
Obviously, the practice reduce the calculation time of the fit-
ness function, which improves the efficiency of the proposed
LOC algorithm.

0
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FIGURE 2. Example of community structures.
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FIGURE 3. Example of overlapping community structures.

In Figure 2, the network has eight nodes, and the network
consists of nodes {vi, v», v3, v4, vs, vg, v7, v8}. {4, 4, 4, 4, 6,
4,4, 4} is the local density of the corresponding nodes. The
above matrix is the shortest path length matrix for the network
shown in Figure 2. The algorithm first finds all 3-cliques,
and then the algorithm selects node vs with the maximum
value as the initial community, the fitness value of nodes
v1, v3, v and vg is the maxima among neighboring nodes,
pick v; for instance, all cliques which include node v; are
{v1, v2, v4} with respect to the choice of v{, the community
{v1, v2, v4} has no node with negative fitness value. They are
involved in the community to form the natural community
{v1, v2, v4, vs}. The fitness value of node v3 is the maxima
among adjacent nodes. The fitness value corresponding to
{v1, va, v3, v4, vs} is 0.824. However, the community fitness
value composed of nodes vi, vz, v3 and vgq is 0.833, and
node vs5 has a negative fitness value (—0.009), at this time,
the community {v1, v2, v3, v4} has no node with a negative
fitness value. The algorithm excludes node vs from the com-
munity to get the correct community {vy, v2, v3, v4}. Node vg
is randomly selected from the maximum node set which have
not yet been accessed. Repeat the above steps to get another
community {vs, ve, v7, vg}. The algorithm quickly uncover all
proper communities through 3-cliques.

o 1 1 1 1 1 1
1 0 1 1 2 2 2
1 1.0 1 2 2 2
1 1. 1 0 2 2 2
1 2 2 2 0 1 1
2 2 2 2 1 0 1
1 2 2 2 1 1 0

In Figure 3, the network has six nodes, and the network
comprises nodes {a, b, c,d, e, f, g}, and {7,4,4,4,4,4,4} is
the corresponding node local density. The above matrix is the
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shortest path length matrix for the network shown in Figure 3.
The algorithm first detects all 3-cliques. The algorithm selects
node a, which has the maximum value, and the fitness value
of nodes b, d, e or f is the maxima among neighboring nodes.
As random seed b, all cliques that include node b are involved
in the community to form natural community {a, b, c, d}.
Then the value of fitness function of the community is 0.8,
simultaneously, there is no node with a negative fitness value.
The fitness function of community {a, b, c, d, e} or {a, b,
c, d, g} is 0.78. In other words, f(e) or f(g) are less than 0.
Finally, node f is selected randomly from the nodes that have
not been visited. The above steps are repeated to obtain the
right community {a, e, f, g}. The algorithm also discovers
overlapping communities, and the overlapping node is node a.

Nodes with the maxima fitness value are selected itera-
tively. All k-cliques with this node are included to the same
community. Subsequently, nodes with negative fitness val-
ues are excluded to partition network community structures
and detect overlapping nodes. The algorithm emphasizes the
built-in parameters as k-cliques of k, and avoids random seed
strategy. Since many nodes belong to more than one clique,
the algorithm has the ability to uncover natural overlapping
groups.

D. FLOW OF LOC ALGORITHM

The flow of the proposed LOC algorithm is summarized as
follow:
1. Extract all k-cliques of network G;

2. Rank nodes by the local density in descending order;

3. Pick sub-graph G’ including node A with the maximum
local density value;

4. The fitness function value of each neighboring node
around sub-graph G’ is calculated using Equation (3);

5. If the maxima fitness of a neighboring node is greater
than or equal to 0, all k-cliques including the node are
added to sub-graph G/, yielding a larger sub-graph G”.
If such a k-clique does not exist, only the target node is
added;

6. Recalculate the
sub-graph G”;

7. If there is a node with a negative fitness, it is removed
from sub-graph G”. Generate a new sub-graph G”;

8. If step 7 occurs, go to step 6, else, go to step 4;

9. Pick a node with the maximum fitness that has not
been assigned, and go to step 3. This process is looped
until all nodes in the graph are assigned to at least one

community.
Figure 4 shows the flowchart of the proposed LOC algo-

rithm. The algorithm flow is vividly shown in this figure.

fitness function of node in

E. TIME COMPLEXITY
It is difficult to uniformly represent the time complexity of
the algorithm, because it depends on the extent of community
overlap and the community size.

Let n be the number of network nodes, and k max be
the average degree of the nodes in a network. The k-clique
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Algorithm 1 Main Procedures of LOC Algorithm

Input: Graph G
Output: communities of the Graph G
1. G « A;

/* node A is the maximum value of local density/
2. v <« the node with the maxima fitness value of all neighbors of G/;

[*calculate the fitness values of all neighbor

nodes in G’, and find the neighboring node v with the maxima fitness value*/

3.iff(v) >=0
4. if v exists in any k-clique
5. G’ .add(k-cliques);

6. else

7. G .add(v);

8. endif

9. while

10. recalculate the fitness of the node in G';
11. if f(vg) < 0

12. G’ delete(vy);
13. continue;

14. else

15. go to step 2;
16. end if

17. end while

18. else

19. return G;

20. end if

/* if the fitness value f(v) of node v is greater than or equal to 0 */
/*add all these k-cliques into sub-graph G’/

/*add node v to G'*/

/*there is node vo with a negative fitness value*/

/*delete vo from sub-graph G™*/

/*go to step (2) to loop™/

[*return G as the outcome™*/

generate
subgraph G'

find node v with
the maximum
fitness value in G

add node vto G’

FIGURE 4. Flow of LOC algorithm.

recognition phase uses a recursive algorithm, and the worst-
case time complexity of computing k-cliques scales as O(n?).

For sparse community structures, the second procedure of
the LOC algorithm, the algorithm has a worst-case computa-
tional complexity of O(n* log n). For dense communities with
high overlap, let the number of communities be ¢, and the time
complexity is approximately as O(c? log c).
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all these k-cliques
into subgraph G'

recalculate the
fitness of the node in
G

w0}<0and vO i
P

delete vO from
=

The time complexity of other comparison algorithms for
comparison, the SLPA algorithm, the time complexity scales
as O(T*m), where T is the defined maximum number of itera-
tions, and m is the total number of edges. The time complexity
of the GCE algorithm depends on community size and the
degree of community overlap. For the MCNLPA algorithm,
the maximal cliques stage is an NP-complete problem, and
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TABLE 1. The meaning of parameters.

TABLE 2. LFR benchmark of non- overlapping network parameters.

Parameter Meaning

N the number of nodes

k the average degree of nodes

maxk nodes’ maximum degree

minc nodes’ minimum cluster sizes

maxc nodes’ maximum cluster sizes

t the exponent of nodes degree distribution

t the exponent of cluster sizes

mu the mixed parameter

om the number of communities to which overlapping nodes
belong

on the number of nodes which belongs to multiple

communities

the remaining time complexity is nearly linear. In addition,
the complexity time of the ACC algorithm, the computing
time is at most O(n?).

IV. EXPERIMENTAL ANALYSIS

The CPU is Intel(R) i7 @3.4GHz with 8GB Memory running
Windows 10 operating system; Python version is 2.7.13 and
MATLAB version is 7.0.

A. LFR BENCHMARK NETWORK

LFR benchmark networks proposed by
Lancichinetti et al. [49] are a type of computer-generated
networks with predefined tunable parameters. The networks
possess real-world characteristics and are widely applied
in various overlapping network community detection algo-
rithms. The network parameters are illustrated in Table 1.
Table 2 and 3 shows the parameters settings for the LFR
benchmark networks in this experiment.

Figure 5 shows the heatmaps of the LFR computer-
generated networks. The parameters are LFR: the network
size¢ N = 128, k = 16, maximum degree of nodes
maxk = 16, [minc, maxc] = 32, mu value ranges from 0 to
0.8, and 1, #» equals to 2 and 1. With the increase of mixed
parameters mu. The figures from obvious clustering to impos-
sibly distinguishable partitions. The network has 128 nodes
and it is divided evenly into four communities. Here, a node
has z;, links connecting to nodes in the same community and
locates an average z,,; links to nodes in other communities.
The total degree of a node is z = zj; + Zouwr = 16. The value
of zy¢ 1s increased from O to 8. Figure 5 shows the heatmaps
of z,y from O to 8. Figure 5(a) is heatmap for zoyy = O.
Figure 5(i) presents zoy; = 8.

Lancichinetti et al. [29] extended the Normalized Mutual
Information (NMI) as an evaluation index for overlapping
community detection. The NMI can be used to effectively
evaluate the accuracy of community partition. NMI values
ranges from O to 1; the greater the NMI value, the better the
partition result.

1
NMI (xly) = 1= 2 [H 1) norm + H O orm] - (4)

We analyze the proposed LOC algorithms experimen-
tally on various datasets of artificial networks and real-
world networks, and we empirically compared with several
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Parameter  Network(a) Network(b) Network(c)  Network(d)
N 1000 1000 1000 1000
k 20 20 20 20
maxk 50 50 50 50

tl 2 2 2 2

12 1 1 1 1
minc 10 10 20 20
maxc 50 50 100 100
om 2 2 2 2

on 0-700 0-700 0-700 0-700
mu 0.1 0.3 0.1 0.3

TABLE 3. LFR benchmark of non-overlapping network parameters.

Parameter  Network(a) Network(b) Network(c)  Network(d)
N 1000 1000 5000 5000

k 20 20 20 20
maxk 50 50 50 50

tl 2 2 2 2

12 1

minc 10 20 10 20
maxc 50 100 50 100
om 1 1 1 1

on 0 0 0 0

mu 0.1-0.6 0.1-0.6 0.1-0.6 0.1-0.6

state-of-the-art algorithms: LINK [28], GCE [30], SLPA [33],
MCNLPA [34], MC [38] and ACC [39].

For the GCE algorithm, the key parameter k is 3, the built-
in parameter « is 1 and ¢ is 0.6. For the SLPA algorithm,
we record the optimal threshold ranges 0.1-0.45, and an inter-
val is 0.05. For the LINK algorithm, the built-in parameter
varies from 0.2-0.7, and with an interval value 0.1.

Figure 6 and 7 are the comparisons of experimental out-
comes of the proposed LOC algorithm. The X axis represents
on/N or mu, the Y axis represents NMI. In the experiment,
the resolution parameter « in Equation (2) is tuned to 1 in the
proposed algorithm, the k value in the k-clique is assigned to
3 or 4, the algorithm get comparative performance.

In Figure 6(a) and (b), the parameters of networks are LFR:
the network size N = 1000, the average degree k = 20,
maxk = 50, and the exponent of nodes degree distribution
1 and the exponent of cluster sizes 7, equals to 2 and 1.
om = 2, on ranges from 0 to 700, [minc, maxc] = [10, 50],
and the mixed parameter mu = 0.1 and 0.3, Experiment
evaluates the effect of the LOC algorithm and compares it
with state-of-the-art overlapping community detection algo-
rithms in terms of NMI, as the number of overlapping nodes
in the network increases. The performance of the algorithm is
shown in Figure 6(a) and (b). As can be seen from the figures,
the proposed LOC algorithm demonstrates higher community
detection accuracy with different mu values. The LOC is close
to the real community structures and the performance obvi-
ously exceeds its counterparts except for the GCE algorithm,
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FIGURE 5. Heatmaps of LFR (N = 128, k = 16, maxk = 16, minc = 32, maxc = 32, mu =0 — 0.8,

t =2t =1).

as the network structures become highly overlapped, the other
algorithm has significantly decreased scores as overlapping
nodes increase in the network. In Figure 6(a), the algorithm
correctly identified almost the nodes, the fraction of correc-
tion is 98.55% when on is 0, an average of 98.2%, of nodes
be revealed when on equals 700.

The community size distribution interval [minc, maxc] also
has an influence on various community detection algorithms,
the network parameters are LFR: the network size N = 1000,
the average degree k = 20, maxk = 50, and the exponent
of nodes degree distribution #; and the exponent of cluster
sizes 1, equals to 2 and 1, on ranges from 0 to 700, om = 2,
[minc, maxc] is [20, 100], and mixed parameter mu is 0.1 and
0.3, the percentage of overlapping nodes in the total number
of nodes of the networks increases, the outcome scores of
the algorithm are presented in Figure 6(c) and (d), As the
network distribution interval increases. Compared to the other
algorithms, the proposed algorithm shows slight fluctuation
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as the number of overlapping nodes increases. A large
community size distribution interval means a great com-
munity magnitude. Others performances has less ability to
uncover the accurate community besides the GCE algorithm.
In Figure 6(c), the correct proportion is 97% when the value
of on is 700, the fraction fail to only 69% in Figure 6(d)
counterpart.

The experiment also considers the impact of different
network scales and mixed parameter on the algorithm’s per-
formance. The non-overlapping community detection accu-
racy results of the algorithms along with the increasing mixed
parameter and network scale in the algorithms are illustrated
in Figure 7(a), (b), (c) and (d), a larger mixed parameter
value implies that the algorithm become more different to
identify the actual community whatever the algorithm is.
It can be concluded from the figures that when network
sizes are small and the mixed parameters are increasing,
the proposed LOC algorithm demonstrates better community
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detection performance. In addition, with the increasing net-
work scale, the proposed LOC algorithm also demonstrates
better community detection precision. The outcomes of the
LOC algorithm are similar to those of the GCE algorithm,
both of them has higher partition quality. Obviously, Experi-
ment other results investigate the NMI scores drop quickly
than the LOC algorithm as the community become more
obscure.

B. REAR-WORLD NETWORK

The first data set is the Karate Club network, which has
34 vertices and 78 edges. This dataset represents the com-
munity structure of a Karate Club at an American university.
After two years, the club was divided into two factions due to
disputes among its members. Figure 8 shows the outcome of
the LOC algorithm. The second case is Dolphin data. Lassran
observed 62 bottlenose dolphins between 1994 and 2001.
During this time, as a dolphin left, the dolphin society was
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divided into two parts. The third one we consider is college
football net for a regular season of 2000, where each node
represents a football team, and if two teams play, there is a
connection between them. Each team belongs to a conference
(community). A team always plays more games in its own
meetings and fewer games between meetings.

We evaluated the algorithms on 10 real-world networks
from different fields. The data adopted in the experi-
ment are: Karate Club Network by Newman [50], Dolphin
social network [51], American College football, US poli-
tics books, Jazz musicians, human interactions about email,
Power, Astrophysics collaborations, High-energy theory
collaborations and Internet [52]. Table 4 gives the net-
work parameters in the experiment. The metrics helps to
measure complex network clustering are described in the
literatures [53]-[55].

EQ [53] is the metric for evaluation of complex communi-
ties that extends Newman’s definition of modularity, and we
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FIGURE 8. Community structures of the Karate obtained by LOC algorithm.

express the modularity as follows: [32]
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=52 2 60,

i v,weCi

&)

dyd,,
5]

VOLUME 8, 2020

Zig
* Ripplefiuke

TRS2

TSNEZ
TRES

“Whitetip
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where O, is the number of communities to which node
v belongs, A is the adjacency matrix of a network,
m= % > ow A, and d, is the degree of node v,
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TABLE 4. Real-world networks.

No Network Nodes Edges <k> Communities
1 Zachary’s club [50] 34 78 4.59 2
2 Dolphins[51] 62 159 5.13 2
3 Football[52] 115 613 10.66 12
4 Political books 105 441 8.40 3
5 Jazz 198 5484 27.7 4
6 Email 1133 5451 9.62 11
7 Power 4,941 6,594 2.67 -
8 Astro-Ph 14,845 119,652 16.12 -
9 Hep-Th 27,400 352,021 25.70 -
10 Internet 124,651 193,620 3.11 -
TABLE 5. EQ comparison of real-world network algorithm results.
Q-value LOC GCE SLPA LINK MCNLPA ACC MC
Zachary’sclub ~ 0.3390/2 0.3771/4 0.3572/3 0.1336/22 0.3710/4 0.3836/3 0.3783/4
Dolphins 0.3605/3 0.4661/7 0.4710/5 0.1111/66 0.1957/2 0.4881/3 0.4744/4
Football 0.5908/10 0.5890/12 0.6005/10 0.0672/158 0.5094/5 0.6102/27 0.6013/28
Political books ~ 0.4980/4 0.4817/4 0.4652/2 0.0751/126 0.4978/10 0.5013/5 0.5020/4
Jazz 0.3039/3 0.2893/2 0.2815/3 0.047/223 0.2906/8 0.3015/2 0.2908/2
Email 0.4281/13 0.3841/19 0.4128/16 0.0338/3132 0.4078/17 0.4247/13 0.4137/14
Power 0.5579/226 0.4590/226 0.5452/603 0.0875/1028 0.3079/326 0.3452/503 0.3875/528
Astro-Ph 0.5676871 0.5166/1200 0.5516/1010 0.1609/884 0.5166/1086 0.5516/1165 0.5609/1514
Hep-Th 0.5074/942 0.5034/5102 0.4719/1273 0.1631/783 0.4934/542 0.4719/673 0.4531/783
Internet 0.3648/3910 0.3648/3970 0.3606/4221 0.2729/4380 0.3148/4210 0.3606/43121 0.3629/5380
TABLE 6. Qa comparison of real-world network algorithm results.
Q-value LOC GCE SLPA LINK MCNLPA ACC MC
Zachary’s club ~ 0.4079/2 0.4215/4 0.4935/3 0.2103/22 0.4273/4 0.4124/3 0.4561/4
Dolphins 0.5038/3 0.5021/7 0.5327/5 0.3128/66 0.5180/2 0.5091/3 0.5017/4
Football 0.5930/10 0.5876/12 0.6004/10 0.159/158 0.5853/5 0.6126/27/ 0.6085/28
Political books ~ 0.5315/4 0.5328/4 0.5183/2 0.2505/126 0.5007/10 0.5217/5 0.5388/4
Jazz 0.3555/3 0.3406/2 0.3451/3 0.1966/223 0.3551/8 0.3448/2 0.3393/2
Email 0.4220/13 0.4239/19 0.4187/16 0.0388/3132 0.4006/17 0.4399/13 0.4048/14
Power 0.5397/226 0.5235/226 0.5143/603 0.1876/1028 0.5058/326 0.5004/503 0.53226/528
Astro-Ph 0.6077/871 0.5662/1200 0.5980/1010 0.2994/884 0.5555/1086 0.5664/1165 0.5677/1514
Hep-Th 0.5593/942 0.5494/5102 0.5582/1273 0.2418/783 0.5546/542 0.5332/673 0.5389/783
Internet 0.4708/3910 0.4631/3970 0.45736/4221 0.3338/4380 0.4276/4210 0.4402/43121 0.4688/5380

Liu et al. [54] defined the following metric for the quality
of community division:

1 ViV; x x
Qa=EZZ|:Aij_2_mj:|A (CSJ)A(CS’J) ©)
u g

where A is the adjacency matrix for a network, V; is the degree
of node i for an unweight network, Cy is a community in the
network, and A (C T, i) represents the ratio of the number of
links of node i that belong to community Cy and the number
of edges connected to node i.

Since the most real community structures of real networks
are unknown, therefore EQ and the Qa function evaluate
the partition criterion for network clustering outcomes in
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this paper. Table 4 gives the parameters of the 10 real-world
networks in this evaluation.

Table 5 and Table 6 are the EQ and Qa values of the
algorithms on the 10 real networks. Therefore, we conclude
that a greater modularity score indicates higher quality of
community. The modularity value is always consistent with
the compact division in a network. It can be derived from the
table that the proposed algorithm in this paper achieves well
overlapping community detection precision on such types of
true-world datasets. Compared to the other overlapping algo-
rithms, the results of the proposed algorithm are reasonable.
For actual networks, the proportion of correctly classified
nodes is more or less the same as other algorithms.
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FIGURE 11. LOC algorithm runtime on LFR (N = 1000 — 5000, k = 20,
maxk = 50, minc = 10, maxc =50, mu=0.1,t;, =2,t, =1,om =2,
on = 100).

With the real-world networks, the detection accuracy of
the proposed LOC algorithm in some fields is higher than
that of the LINK and the MCNLPA algorithms, the scores
of the LOC algorithm are superior to them. However, slightly
less than the SLPA, the ACC and MC algorithms, the LOC
algorithms generally perform the same as the GCE algorithms
on the real-world data sets. High measure scores typically
means compactable communities, and the LOC algorithm
corresponds to the real partition, which is the reason why the
value of a few metric perform weakness here. For instance,
the GCE algorithm gets a great score with the Karate network
and uncover four parts, but the genuine partition of this net-
work is two. The conclusion is that the Qa function is consist
with the EQ metric in general.

In Figs 8, 9 and 10, different communities are repre-
sented by different colors and sharps. The first dataset is the
Karate Club network, which has 34 vertices and 78 edges.
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The second case is the Dolphins data. The third case is the
US college football network.

Figure 8 illustrates the results of partitioning of the
Karate Club network using the LOC algorithm. The algo-
rithm splits the Karate into two parts, and nodes 3, 9 and
10 are overlapping nodes. The result is identical with
the correct overlapping nodes and overlapping community
structures.

The LOC algorithm divides the Dolphins network into
three communities, and nodes Mus, Numberl and Notch
are overlapping nodes. Figure 9 denotes the visualization
of the clustering of the Dolphin network applying the LOC
algorithm. As can be seen, only node SN89 is incorrectly
partitioned.

Another example from American football team network is
the season schedule. It reveals that number of clusters is 12,
and it uncover all clusters, approximately 87% of the teams
are correctly identified into proper clusters. Figure 10 is the
result of our algorithm.

The LOC algorithm has the higher NMI, EQ and Qa values,
which indicates that its community detection outcomes are
consilient with the genuine cluster structures. The algorithm
is able to detect groups of networks, which the cliques can be
tightly linked. Nodes on the clique boundary that are not part
of the community may be deleted by the local optimization
function. Consequently, the research results are the same as
the true cluster structures.

The algorithm time efficiency and consumption are within
acceptable limits, as Figure 11 reveals. The artificial-
generated networks in the experiment are LFR benchmark,
the network size N ranges from 1000 to 5000, the interval
is 1000, the average degree k = 20, maxk = 50, and the
exponent of nodes degree distribution #; and the exponent of
cluster sizes t> equals to 2 and 1, on equals 100, om equals 2,
[minc, maxc] is [10, 50], the mixed parameter mu is 0.1.
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The time efficiency and complexity of the algorithm are also
within reasonable range.

V. CONCLUSION

This paper presents an algorithm to uncover overlapping
communities in complex networks. The algorithm focuses
on the assumption of k-cliques as the unit of communities,
and proposes to identify community networks as a collec-
tion of overlapping linked cliques. Unlike other algorithms,
a reasonable threshold should be set to determine whether
there is an edge between cliques, or an isolated node should
be considered separately. The algorithm looks upon as the
seed selection strategy and topology of network community
structures, a single node with the maximum density serves as
the seed can eliminate similarities among k-cliques, and adds
related-cliques as a natural community to expand, then, nodes
with negative local optimization functions are cleared. The
algorithm realizes the partition of overlapping network com-
munity structures. In both computer-generated networks and
real-world networks, the experiment results demonstrate that
the proposed algorithm can produce stable results. In addi-
tion, the time efficiency and time complexity of the algorithm
are within acceptable limits, which also proves that this idea
is practicable.

In the future, we plan to examine two points as the direc-
tions of the further work. First, we pointed out that the
algorithm is directly used to weighted networks. Second,
we will investigate applying to bipartite datasets for testing
the algorithm.
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