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ABSTRACT With recent breakthroughs in Deep Learning (DL), DL systems are increasingly deployed
in safety-critical fields. Hence, some software testing methods are required to ensure the reliability and
safety of DL systems. Since the rules of DL systems are inferred from training data, it is difficult to know
the implementation rules about each behavior of DL systems. At the same time, Random Testing (RT) is
a popular testing method and the knowledge about software implementation is not needed when we use
RT. Therefore, RT is very suitable for the testing of DL systems. And the existing mechanisms for testing
DL systems also depend heavily on RT by the labeled test data. In order to increase the effectiveness of
RT for DL systems, we design, implement and evaluate the Adaptive Random Testing for DL systems
(ARTDL), which is the first Adaptive Random Testing (ART) method to improve the effectiveness of RT
for DL systems. ARTDL refers to the idea of ART. That is, fewer test cases are needed to detect failures by
selecting the test case with the furthest distance from non-failure-causing test cases. Firstly, we propose the
Feature-based Euclidean Distance (FED) as the distance metric that can be used to measure the difference
between failure-causing inputs and non-failure-causing inputs. Secondly, we verify the availability of FED
by presenting the failure pattern of DL models. Finally, we design ARTDL algorithm to generate the test
cases that are more likely to cause failures based on the FED. We implement ARTDL to test top performing
DL models in the field of image classification and automatic driving. The results show that, on average,
the number of test cases used to find the first bug is reduced by 62.74% through ARTDL, compared

with RT.

INDEX TERMS Deep learning testing, adaptive random testing, distance metric, metamorphic testing.

I. INTRODUCTION

In the past few years, Deep Learning (DL) systems have
demonstrated amazing performance in various domains such
as image classification [1], [2], speech recognition [3], and
playing games [4]. Based on these advances, DL systems
are increasingly deployed in safety-critical fields such as
autonomous vehicles [5], medical diagnostics [6] and air-
craft collision avoidance [7]. Unfortunately, DL systems,
despite their significant capabilities, are known to demon-
strate unexpected or incorrect behaviors. Specially, such
incorrect behaviors can lead to some fatal crashes when
DL systems are deployed in safety-critical domain [8], [9].
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This naturally raises an urgent need to test and verify behav-
iors of DL systems to ensure their reliability and safety in the
real-world deployment.

Random Testing (RT), as one of the most fundamental and
popular software testing methods, is a possible strategy to test
DL systems. The benefit of RT is simple in concept and easy
to implement [10]. Most importantly, it may be the only prac-
tically feasible technique if we have no knowledge about the
implementation of software [11]. Obviously, this characteris-
tic also is an important benefit for the testing of DL systems
because of the shift of development paradigm induced by
DL [12]. Traditional software is constructed deductively by
writing down the rules as program code and the behavior of
system can be governed by these known rules. However, for
DL systems, the implementation rules are inferred inductively
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from training data and these rules are not exactly known
to us. The paradigm shift makes DL systems do not have
source code corresponding to some of their critical behav-
iors. Therefore, RT is a very suitable test method for DL
systems. In practice, the standard approach for testing DL
systems is to gather and manually label as much test data as
possible and these test data is used to test DL systems by RT
method [13], [14].

Furthermore, in order to increase the effectiveness of RT
for DL systems while maintaining the benefits of RT, we pro-
pose a new test method denoted as Adaptive Random Testing
for DL systems (ARTDL). ARTDL refers to the basic idea of
the Adaptive Random Testing (ART) [15] which is proposed
as an enhancement to RT. ART is based on the intuition that
fewer test cases are needed to detect failures by analyzing
the failure pattern. Failure pattern is the distribution and
geometry of the failure-causing inputs in the input space [11].
Existing empirical observations show that failure-causing
inputs of many numerical programs tend to form contiguous
failure regions [16]. Based on such failure pattern, the test
case with the furthest distance from the executed non-failure-
causing test cases is more likely to cause failure behavior.

However, a major challenge will arise on how to define
the distance metric that can be used to measure the differ-
ence between failure-causing inputs and non-failure-causing
inputs of DL systems, if we want to improve the effectiveness
of RT for DL systems by ART method. In this paper, we focus
on the DL systems where the inputs are images. Existing
distance metrics of ART methods include intuitive distance
of numerical values [15], object distance for object-oriented
software [17] and the distance based on the concepts of cat-
egories and choices [18], [19], [20]. However, these distance
metrics cannot be directly applied to DL systems. Therefore,
it is necessary to propose a new distance metric so that ART
can be applied to test DL systems.

Given above discussions, in this paper, we design, imple-
ment and evaluate an automated black-box test method for
DL systems: ARTDL, which can be used to improve the effec-
tiveness of RT. Firstly, we define the Feature-based Euclidean
Distance (FED) as the distance metric to measure the differ-
ence between failure-causing inputs and non-failure-causing
inputs. FED measures the difference between inputs by cal-
culating the distance between the feature vectors extracted
from input images by VGGNet [21]. Secondly, we present the
failure pattern of DL models by visualizing feature vectors
of failure-causing inputs and non-failure-causing inputs in
the three-dimension space. The results verify that FED can
be used to estimate the difference between failure-causing
inputs and non-failure-causing inputs. Therefore, it is feasible
that the ART is used to test DL models based on the FED.
Finally, based on the FED, we design the ARTDL algorithm
to generate the test cases that are more likely to cause failure.
We implement and evaluate ARTDL to test four DL models
using two real-world datasets including MNIST [22] and
Udacity self-driving car challenge data [23]. The results show
that ARTDL can improve the effectiveness of RT. The main
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contribution of this paper is that we propose, to the best of our
knowledge, the first ART method for DL systems, denoted
as ARTDL. We implement and evaluate the ARTDL,' on
average, which reduces 62.74% of required test cases.

Il. RELATED WORK

A. ADAPTIVE RANDOM TESTING

Adaptive Random Testing (ART) is an attempt to improve the
failure-detection effectiveness of RT [11], [30]. The first ART
was proposed aiming at numerical program [15]. ARTOO
[17] proposed the object distance for object-oriented appli-
cations. Kuo et al. [18] and Merkel et al. [19] proposed a
difference measure that can be applied to a broad range of
software input types, based on the concepts of categories
and choices. Furthermore, a linear-order ART algorithm was
proposed [20], which takes advantage of the properties of
the distance measure that is based on the concepts of cate-
gories and choices to achieve linear-time test case selection
overhead. However, existing ART methods cannot be directly
applied for DL systems.

B. TESTING OF DEEP LEARNING

With the tremendous progress of DL, the concerns about
trustworthiness of DL systems are aroused and many
researchers focus on the techniques for testing DL-enable
systems [31], [32]. The testing methods of DL systems
include white-box testing and black-box testing. As shown
in Table 1, we summarized the related work and compare
ARTDL with others. Some coverage-guided white-box test-
ing methods towards DL system have been proposed to guide
the generation of inputs. Specifically, the DeepXplore [24]
first proposed neuron coverage criteria to drive test genera-
tion. More failures of DL models will be exposed by increas-
ing the neuron coverage of test inputs. DLFuzz [25] overcame
the trouble that DeepXplore needs to rely on multiple DL
systems of the similar functionality by combining the fuzzing
testing and neuron coverage. DeepGauge [26] proposed a set
of testing criteria based on multi-level and multi-granularity
coverage for testing Deep Neural Networks (DNN). DeepTest
[27] maximized the neuron coverage by applying different
realistic transformations on a set of seed images to find many
erroneous behaviors of the DL-based autonomous vehicles.
Different from these criteria that only consider the activation
of individual neuron, Sun et al. [28] proposed MC/DC cov-
erage criterion for DL, which took into account the causal
relation between features in DNNs. However, Li et al. [33]
argued that these proposed structural coverage criteria for
DL systems could be misleading and they suggested that
reported fault-detection ‘““capabilities” conjectured from high
coverage testing are more likely due to the adversary-oriented
search but not the real “high” coverage. Overall, although
these white-box testing methods play an important role in
promoting the research of DL system testing in infancy, it is
not clear whether these criteria are directly related to the

1 https://github.com/yan-min/ARTDL
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TABLE 1. The summary of related software testing methods for DL systems.

Type Method

The internal implementation
can be unknown

Guided method is used to improve
the effectiveness of testing

DeepXplore [24]

DLFuzz [25]

white-box | DeepGauge [26]

DeepTest [27]

Sun et al. [28]

Random Testing [13], [29]

black-box ARTDL

<
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FIGURE 1. The workflow of testing a DL model through the ARTDL.

system decision logic, due to the black-box nature of a DL
system.

Besides, black-box testing methods are also needed, which
test from the functional level, without knowing the inter-
nal implementation of the software. In practice, black-box
testing methods and white-box testing methods are often
used together to ensure the reliability and safety of the
software. The RT, as a popular black-box software testing
method, has been widely used to evaluate DL systems by
measuring their accuracy on test cases randomly drawn from
manually labeled datasets [13] and ad hoc simulations [29].
Furthermore, ART as an enhancement to RT is often used to
improve the effectiveness of RT [11]. In this paper, we are
interested in the problem that when RT has been chosen as a
viable testing method for a DL system, is it worthwhile to use
ART instead and how to apply ART in DL systems?

lIl. METHODOLOGY

A. OVERVIEW

In this subsection, we provide an overview for the testing
of DL systems by the ARTDL. The workflow of the testing
is shown in Figure 1. Firstly, ARTDL takes the combina-
tion of seed images and image transformations as the input
domain of DL systems. Seed images are small quantity of
labeled test data. Image transformations are different ways
to add noises to seed images, which also exist in practice
(e.g., changing brightness, camera lens distortions, adding
moving blur, etc.). Secondly, ARTDL selects the test case
that is more likely to detect failure based on the idea of
ART. Finally, we estimate the performance of ARTDL by the
metric: F-measure, which is used to evaluate the effectiveness
of testing method in the field of software testing and it is
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FIGURE 2. Overview of the ARTDL method.

defined as the expected number of test cases generated until
the first fault is detected [15]. We leverage metamorphic
relations [34] to automatically decide whether the output of
the program is correct, which will be described in detail in the
Section III.D.

Importantly, the ARTDL should select the test cases that
are more likely to detect failure from input domain. In our
method, as shown in Figure 2, three steps are required to
to achieve this goal. Firstly, an appropriate distance metric
should be defined to reflect the difference between non-
failure-causing inputs and failure-causing inputs. Secondly,
the failure pattern of DL systems should be presented to verify
the availability of proposed distance metric. Finally, based
on the distance metric and the failure pattern, an algorithm
should be designed to generate the test cases that are more
likely to detect failures. These three steps will be described
in detail in following subsections.

B. DISTANCE METRIC

In this paper, we define the Feature-based Euclidean Dis-
tance (FED) as the distance metric to measure the distance
between inputs. FED aims to estimate the difference between
failure-causing inputs and non-failure-causing inputs and
make failure-causing inputs far away from non-failure-
causing. Empirical observations showed that failure-causing
inputs of numeric programs tend to form contiguous failure
regions [16], since adjacent numeric inputs are likely to result
in similar computations. It is known that DNNs of DL model
have amazing ability to automatically identify and extract
the relevant features from raw inputs without any human
guidance besides labeled training data [35]. It is critical
that DNN can automatically extract features from the input
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FIGURE 3. The workflow for extracting the features of the convolutional
layer conv3_2 of VGGNet from an input image.

images to obtain the output. Hence, in the DL systems of
image classification and image-based autonomous vehicles,
adjacent features extracted from input images are likely to
result in similar output. Therefore, the difference between
failure-causing inputs and non-failure-causing inputs can be
measured by the distance between the features extracted from
images instead of measuring the distance between images
directly.

Empirical research on visualization of the extracted fea-
tures of Convolutional Neural Network (CNN) has shown
that the features extracted from each layer represent the
hierarchical nature of the features in the network [36]. The
features of low layer represent corners and other edge/color
conjunctions. The mid layer capture similar features of tex-
tures and background. The features of high layer represent
entire objects with significant pose variation and are more
class-specific [36]. However, we don’t know which features
can better distinguish the difference between failure-causing
inputs and non-failure-causing inputs. In this paper, we find
the features that can be used to distinguish the differ-
ence between failure-causing inputs and non-failure-causing
inputs through the experiments of testing multiple models on
different datasets. The results will be described in detail in
Section V.

To be specific, as shown in Figure 3, we extract the feature
from the image by VGGNet [21], which is a widely used
DNN to extract features from each image. We take the feature
of convolutional layer conv3_2 of VGGNet as an example.
For one image, we can get a feature matrix F 3_2 with size
(xi, yi) by the convolutional layer conv3_2, where x; and y;
are the width and height of the feature maps respectively.
The feature vector of the given image is V that is the vector
flattened from feature matrix F 3_2. In summary, the process
of extracting features is defined as follows:

V, = h(l,), M

where [, denotes a input image, h(-) denotes the method of
extracting features as mentioned above, and V), denotes the
feature extracted from I, by conv3_2 layer of VGGNet.
Based on the feature extracted by the convolutional layer
conv3_2 of VGGNet, we propose FED as the distance metric
to measure the distance between features of input images
through the Euclidean Distance (ED). Specifically, the feature
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vectors V), and V, are represented as V, = {p1,p2, ..., pm}
and V,; = {q1,q2, ..., qm} respectively. FED is defined as
follows:

FED(Ip, I) = ED(h(Ip), h(l,))
ED(Vp, Vy)

> i —a)?, )
i=1

where I, and I, denote two images respectively, V,, and V,
denote two feature vectors extracted from I, and I, respec-
tively, ED(-, -) denotes the Euclidean Distance between two
vectors.

C. FAILURE PATTERN

Failure pattern is the distribution and geometry of the
failure-causing inputs. Essentially, the goal of testing is to
generate test cases with a view to maximize the number of
failures revealed. In order to achieve this goal, the distribution
and geometry of the failure-causing inputs should be consid-
ered. Empirical studies have shown that the failure patterns in
numerical software are categorized into three patterns [37]:
block pattern, strip pattern, and point pattern. The block
pattern and the strip pattern denote that the failure regions of
input domain is contiguous and the ART method can be used
to improve the performance of RT. Therefore, the failure pat-
tern of DL models should be presented to determine whether
ART can be used for the testing of DL models.

In this paper, we present the failure pattern of DL mod-
els by Principle Component Analysis (PCA) technique [38].
PCA is a dimension-reduction tool that can be used to reduce
a large set of variables to a small set that still contains most
of the information of the large set. We apply PCA to reduce
the dimension of feature vector extracted from input image
by VGGNet as follows:

Ly = Vi X Py, 3)

where V,,, denotes an k-dimension feature vector, P, denotes
the projection matrix with size (k,[), and L,, denotes a
target /-dimension vector. We set [ as 3 and the feature
vector of image can be shown in three-dimension space.
Through this way, the distribution of failure-causing inputs
and non-failure-causing inputs can be showed intuitively in
three-dimension space.

D. ARTDL ALGORITHM

We design the ARTDL algorithm to generate test cases that
are more likely to cause failures for DL systems. The most
popular existing ART algorithm is Fixed-Sized-Candidate-
Set ART (FSCS-ART) [15]. In FSCS-ART algorithm, a fixed-
size candidate set of random inputs is first generated when-
ever a new test case is needed. For each candidate set,
the test case with the furthest distance from non-failure-
causing test cases will be selected as a new test case. The
ARTDL algorithm shares the idea of fixed-sized candidate
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Algorithm 1 ARTDL

Input:
executed_data: executed non-failure-causing inputs
input_data: the set of combination of all seed images and

image transformations
DL: the DL model under test

Output:
F: F-measure

1: // main procedure

2: inital F := 0, counter := 0

3: reveal_failure := False

4: while not reveal_failure do

5: executed_set = random sample m data from
executed_data

6: candidate_set = random sample n data from
input_data

7: test_data = SELECT_BEST_TEST_DATA

(executed_set, candidate_set)
if DL(test_data) is incorrect then

9: reveal_failure := True

10: else

11: executed_set = executed_data union test_data
12: counter = counter + 1

13: end if

14: input_set.remove(test_data)

15: end while

16: return F’;

17: // utility function for select best test case

18: function SELECT_BEST_TEST_DATA(executed_set,
candidate_set)

19: best_distance := —1.0

20: for each Image in candidate_set do

21: dis = average of FED(Image, elements in exe-
cuted_set)

22: if best_distance < dis then

23: best_data = data

24: best_distance = dis

25: end if

26: end for

27: end function

set of FSCS-ART. As shown in Algorithm 1, the inputs of
ARTDL algorithm include the DL model under test and two
sets of data including executed data and input data. Executed
data include the input that has been tested and it doesn’t cause
failure. Input data includes all possible inputs that are gener-
ated by image transformations of seed images. Firstly, we get
the candidate set by sampling n data samples from input data
and the executed set is obtained by sampling m data samples
from executed data. Secondly, ARTDL selects the best test
case from candidate set by comparing the FED between the
test data of candidate set and the test data of executed set
(Algorithm 1 line 18-28). Specially, we calculate the average
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value of FED between the test data and elements of executed
set, which is different from the calculated minimum in the
original FSCS-ART. The test data with the largest FED value
will be the best test case. Finally, the best test case is fed into
the DL model to determine whether the test case can expose
the failure of the model. Repeat above steps until the first
failure is detected. After the first failure is detected, we get the
value of F-measure of ARTDL algorithm, which can be used
to estimate the effectiveness of ARTDL method. F-measure is
defined as the expected number of test cases generated until
the first fault is detected [15], which reflects the effectiveness
of a testing method.

Besides, there is an oracle problem [39] in testing DL
systems, that is, how to automatically determine whether
the software program performs as expected upon the given
test inputs (Algorithm 1 line 8). Many studies have shown
that metamorphic testing is a popular solution to this prob-
lem [34], [40] and it has been widely used in the testing
of self-driving systems. DeepTest [27] tested three different
DNN models for autonomous deriving by a set of meta-
morphic relations based on image transformations. Zhou and
Sun [41], [42] introduced an innovative testing strategy that
combines MT with fuzzing and detected previously unknown
fatal errors in the real-life LIDAR Obstacle Perception system
of the Baidu Apollo self-driving software. The key to meta-
morphic testing is a set of metamorphic relations [43], which
refer to the relations among multiple inputs and their expected
outputs. In this paper, we define metamorphic relations by
different image transformations and leverage metamorphic
relations to automatically decide whether the output of the
program is correct. For example, the results of handwritten
numeral recognition should not be changed for the same
image under any lighting conditions, blurring, or any affine
transformations with small parameter values.

IV. IMPLEMENTATION

We implement ARTDL using TensorFlow 1.12.0 [44] and
Keras 1.2.2 [45] DL frameworks. All the experiments are run
on the Ubuntu 16.04 (Intel(R) Xeon(R) CPU E5-2620 v4 @
2.10GHz with 16 cores, 32GB of memory)

A. TEST DATASETS AND DL MODELS
We adapt two popular public datasets including MNIST and
Driving to evaluate ARTDL. For each dataset, we evaluate
ARTDL on two different DL models. We provide a sum-
mary of the two datasets and the corresponding DL models
in Table 1. All the evaluated DL models are pre-trained
(i.e., we use public weights reported by previous researchers).
MNIST [22] is a dataset for handwritten digits recogni-
tion, which contains 28 x28 pixel images with class babels
from O to 9. The dataset includes 70,000 input data in total,
of which 60,000 are training data and 10,000 are test data.
On MNIST, two different DL models(LeNet-1, LeNet-4)
based on the LeNet family [46], [47] are used to test.
Driving is the dataset released by Udacity self-driving car
challenge [23]. The dataset has 5614 labeled testing samples.
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TABLE 2. Details of DL models and datasets used to evaluate the ARTDL.

Dataset | Dataset Description DL models
. .. LeNet-1 [46], [47]
MNIST | Hand-written digits LeNet 4 [46], [47]
.. .. . Rambo [48]
Driving | Driving video frames Autumn [49]

TABLE 3. Image transformations and parameters used in ARTDL and the
details of these transformations can be found in [27].

Transformation Parameters Parameter ranges
Translation (z,y) (10, 10) to (100, 100)
with step (10, 10)
Brightness bias 1 to 10 with step 1
Moving (degree, angle) (1, 45) to (12, 45)

with step (1, 0)
3x3,4x4,5x5

Blur | Averaging | Kernel size

Gaussian Kernel size 3x3,4x4,5x5
Median aperture linear | 3,5

size
Bilateral diameter, sigma- | 9, 75,75

Color, sigmaS-
pace

Each sample contains an image and the corresponding labeled
steering angle. The images were captured by a camera
mounted behind the windshield of a driving car and the simul-
taneous steering wheel angles were obtained by the human
driver for each image. We evaluate ARTDL on top performing
DL models released by Udacity driving challenge: Rambo
[48] and Autumn [49]. Rambo model is consisted of three
CNNs whose outputs are merged at the final layer [48].
One of the CNNss is inspired by comma.ai’s steering model
[50], and two of the CNNs are inspired by the NVIDIA’S
self-driving architecture [5]. Autumn model is composed of
a data preprocessing process and a CNN model [49]. Specif-
ically, Autumn computes the optical flow of images, which
is fed into the CNN model. The architecture of the CNN
model includes three 5x5 conv layers with stride 2, pluses
two 3x3 conv layers and followed by five fully-connected
layers with dropout.

B. IMAGE TRANSFORMATIONS.

Generating input images that are likely to cause fault may
be very useful if the inputs seem to appear in the real-world.
Therefore, we focus on generating realistic synthetic images
by applying image transformations [27] on seed images and
mimic different real-world phenomena like camera lens dis-
tortions, object movements, different brightness, etc. In this
paper, we define eight realistic image transformations includ-
ing changing brightness, translation, scaling and blurring,
where the blurring includes moving blurring and four differ-
ent types of blurring filters: averaging, Gaussian, median, and
bilateral [29]. The detail descriptions of parameters for each
transformation are shown in Table 2. We implement these
image transformations by OpenCV [51].

3060

o
. 500
100,004, 1000 1000

500
000
3000 ~2000 Ts00 1500

(a) conv3-2 (b) conv4-2

FIGURE 4. Results of the failure pattern of Driving dataset, which are
obtained by the features of conv3-2 and conv4-2 layer of VGGNet
respectively. The yellow dots represent the non-failure-causing inputs
and the blue dots represent the failure-causing inputs.

V. RESULTS

A. FAILURE PATTERN

In this subsection, we present the failure patten of DL models
and verify that the FED can be used to estimate the differ-
ence between failure-causing inputs and non-failure-causing
inputs. In order to present the failure pattern of DL models,
we have to get the non-failure-causing input set and the
failure-causing input set. We generate synthetic images by
transforming seed images. The failure patterns are obtained
by the transformed test cases. These transformed test cases
are fed into the DL model and we judge whether the output
of the model is correct by metamorphic relation [34]. For
the Driving dataset, after a synthetic image is fed into the
DL model, if the difference between the output of model
and the output of corresponding seed image is less than the
parameter §, the synthetic image belongs to the non-failure-
causing input set. Otherwise, it belongs to the failure-causing
input set. For the MNIST dataset, if the output of synthetic
image is different from the output of corresponding seed
image, the synthetic image belongs to the failure-causing
input set. Otherwise, it belongs to the non-failure-causing
input set.

In order to verify which feature of convolutional layer
of VGGNet is the most suitable feature to distinguish the
difference between failure-causing inputs and non-failure-
causing inputs, we present the failure patterns obtained from
each convolutional layer of VGGNet. Firstly, we get the
feature vectors of input images by every convolutional layer
respectively. Then, we apply PCA to reduce the dimension
of feature vectors and visualize them in three-dimension
space. To reduce the computational complexity, we ran-
dom sample 400 input images from failure-causing input set
and non-failure-causing input set respectively. As shown in
Figure 4, when the failure pattern is obtained by the feature
of conv3_2 or conv4_2, non-failure-causing inputs are in con-
tiguous areas and absolute majority failure-causing inputs are
far away from non-failure-causing inputs although minority
failure-causing inputs are close to the non-failure-causing
inputs. Besides, other results of failure pattern are shown
in Figure 5. From Figure 5(a), we present the failure pat-
tern that is obtained directly by images instead of the fea-
ture extracted from images by VGGNet. That is, the pixel
vectors of image are directly visualized in three-dimension
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FIGURE 5. Results of the failure pattern of Driving dataset. (a) shows the failure pattern that is directly obtained by input images and the failure patterns
obtained by the features of each convolutional layer of VGGNet (except for conv3-2 and conv4-2) are presented from (b) to (I). The yellow dots represent
the non-failure-causing inputs and the blue dots represent the failure-causing inputs.
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FIGURE 6. Results of the failure pattern of MNIST dataset, which are
obtained by the features of conv3-2 and conv4-2 layer of VGGNet
respectively. The yellow dots represent the non-failure-causing inputs
and the blue dots represent the failure-causing inputs.

space by the PCA technical. From Figure 5(b) to Figure 5(1),
we present the failure patterns obtained by the feature
extracted by each convolutional layer of VGGNet as shown
in Figure 2 (except for conv3-2 and conv4-2). The results
show that the failure patterns obtained by these methods can
not distinguish the difference between failure-causing inputs
and non-failure-causing inputs. Furthermore, we also present
the failure pattern of MNIST dataset. Since MNIST dataset
is used for classification, we calculate the distance for the
inputs of same classification. In this experiment, we take
classification 1 as an example. The results of the failure
pattern of MNIST dataset, as shown in Figure 6 and 7, are
similar with the results of Driving dataset.

Therefore, the results of Driving dataset and MNIST
dataset all show that the feature of convolutional layer
conv3 2 and conv4_2 of VGGNet are the suitable fea-
tures to distinguish the difference between failure-causing
inputs and non-failure-causing inputs. The reason may be
the convolutional layer conv3_2 and conv4_2 of VGGNet
can capture the features which causes failures of DL model.
Empirical research on visualization of the extracted features
of CNN has shown that the features extracted from each
layer show the hierarchical nature of the features in the net-
work and the mid layer capture similar features of textures
and background [36]. At the same time, in the DL-based
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autonomous vehicles, some fatal crashes happened because
they were under unseen driving environment, such as rain
fall [8] and bright sky [9], which is related to the features
of textures and background captured by the mid layer. So,
the features extracted by mid layer, such as conv3-2 and
conv4-2, may be related to the failures of DL models.

In conclusion, when we use the feature of conv3_2 and
conv4_2 as the metric to present the failure pattern of DL
model, the results show that non-failure-causing inputs are in
contiguous areas and absolute majority failure-causing inputs
are far away from non-failure-causing inputs although minor-
ity failure-causing inputs are close to the non-failure-causing
inputs. Therefore, the FED is available to estimate the differ-
ence between non-failure-causing inputs and failure-causing
inputs. And we can improve the effectiveness of RT for DL
models by ART method based on the FED.

B. THE PERFORMANCE OF ARTDL
We evaluate the performance of ARTDL with the metrics:
F-measure, which is the expected number of test cases gen-
erated until the first failure is detected. It reflects the effec-
tiveness of a testing method and has been the most frequently
used metric to compare the effectiveness of ART and RT [11].
In practice, when a failure is detected, testing is normally
stopped and debugging starts. Hence, the F-measure is not
only more intuitively appealing but also more realistic from a
practical perspective. In order to get the value of F-measure,
we select the test case by ARTDL or RT method to test the
DL model until the first failure is detected and we repeat this
process many times. In our experiment, we set the values of m
and nto 10 in the ARTDL algorithm. Then, we will get a set of
the value of F-measure M = {uy, ua, ...}. The central limit
theorem [52] is used to determine when the process could be
stopped so that we have enough samples to provide reliable
statistic estimates.

Suppose we want to estimate the F-measure with an
accuracy of +r% and a confidence level of (1 — o) x 100%,
where 1 — « is the confidence coefficient. In order to achieve
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(g) conv3-3 (i) conv4-3

(h) conv4-1

(d) conv2-1 (e) conv2-2 (f) conv3-1

(j) conv5-1 (k) conv5-2 (1) conv5-3

FIGURE 7. Results of the failure pattern of MNIST dataset. (a) shows the failure pattern that is directly obtained by input images and the failure patterns
obtained by the features of each convolutional layer of VGGNet (except for conv3-2 and conv4-2) are presented from (b) to (). The yellow dots represent
the non-failure-causing inputs and the blue dots represent the failure-causing inputs.

TABLE 4. Comparing the value of F-measure between ARTDL and RT in four DL models with different failure rates. ARTDL(a, ) represents the ARTDL
method whose distance metric is calculated by the features extracted by the conv3_2 layer of VGGNet. ARTDL(a,) represents the ARTDL method whose
distance metric is calculated by the features extracted by the conv4_2 layer of VGGNet. ARTDL(a5) represents the ARTDL method whose distance metric is

directly calculated by the input images. RT(r) represents the RT method.

F-measure . r—a
DL models ARTDL(a;) | ARTDL(a,) | ARTDL(az) | RT() Reduction(=* x 100%)

Rambo (failure rate=2.47%) 14.37 29.20 31.88 40.5 64.52%
Rambo (failure rate=0.52%) 57.11 162.58 149.3 167.2 65.84%
Autumn (failure rate=6.32%) 5.48 5.62 6.28 14.95 63.34%
Autumn (failure rate=2.93%) 14.31 16.14 18.26 40.54 64.70%
LeNet-1 (failure rate=7.65%) 6.82 8.10 6.90 12.94 47.30%
LeNet-1 (failure rate=2.90%) 15.89 19.94 18.26 33.19 52.12%
LeNet-4 (failure rate=1.41%) 17.24 21.93 18.93 71.21 75.79%
LeNet-4 (failure rate=0.85%) 28.67 38.72 45.75 103.86 72.40%

Average 62.74%

this goal, the size of M should be at least as

= (22 @)
reu

where z is the normal variate of the desired confidence level,
u is the population mean, and o is the population standard
deviation. In our experiment, the confidence level is set to
95% and r is set to 5. From the statistical tables, we know that

for 95% confidence, z = 1.96. Thus, equation (4) becomes
100-1.96-0 ,
54 )
We compare the F-measure between ARTDL and RT
in four DL models. Besides, we also compare three
ARTDL methods with different distance metrics including
the Euclidean distance between pixel vectors of input images,
the FED between the feature vectors of conv3_2 layer and the
FED between the feature vectors of conv4_2 layer. In order
to ensure the universality of our conclusion, we conduct the
experiments with different failure rates, to see how the value
of F-measure varies. The results, as shown in Table 4, show
that the values of F-measure of all ARTDL methods are lower

M| = ( &)

3062

than RT. Besides, the ARTDL that calculates distance by
using the features of conv3_2 layer has the best effect, that
is, its value of F-measure is the smallest. Furthermore, when
failure rates change, there is no significant change in the
reduction ratio of the value of F-measure for all DL models.
Hence, in this paper, we propose the ARTDL whose distance
is calculated by the features extracted from input images by
the conv3_2 layer of VGGNet. As shown in Table 4, the pro-
posed ARTDL reduces the value of F-measure by 62.74% in
average, compared with RT. The results show that the ARTDL
has higher capability to detect fault than RT. Therefore, when
we have chosen RT to test DL model, it is feasible to improve
the effectiveness of RT by the ARTDL.

VI. THREATS TO VALIDITY
In this section, we will discuss the validity of ARTDL and
the possible threats to the validity from four points: construct
validity, external validity, internal validity, and reliability.
From the point of external validity, the ARTDL is suitable
for DL systems whose inputs are images, but not for all DL
systems. The ARTDL is based on the distance metric: FED.
However, the FED is only suitable for calculating the distance
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between two images because it relies on features extracted by
VGGNet from images. So the ARTDL is only suitable for DL
systems with image inputs, but not for the DL systems with
other inputs such as speech, natural language and so on. From
the point of internal validity, for some minority special cases,
the conclusions of this paper may not be established. The
results of the failure pattern of DL models show that absolute
majority failure-causing inputs are far away from non-failure-
causing inputs but there are minority failure-causing inputs
that are close to the non-failure-causing inputs. Therefore,
ARTDL may cease to be effective when the DL system
contains only a few failures and they are all located very close
to the correct inputs. From the point of construct validity,
we measure the F-measure of ARTDL, which can validly
evaluate the effectiveness of the ARTDL. From the point
of reliability, our study can be easily repeated by others.
In the experiment, there are no factors that may hinder the
experiment from being repeated.

VII. CONCLUSION

In this work, we designed and implemented ARTDL, which
can improve the effectiveness of RT for DL systems.
We proposed a distance metric: FED, which is used to select
random inputs by utilizing the fact that test cases with the
furthest distance from non-failure-causing test cases are more
likely to cause failures. Based on the guidance of the metric,
the ARTDL reduced the expected number of test cases to
detect the first failure by 62.74%, compared to RT. Therefore,
we verified that it is worthwhile to replace RT with ARTDL
when RT has been selected as a feasible test method for DL
systems. And we presented potential usage of the ARTDL to
expose the faulty behaviors of DL systems with less cost and
ensure the reliability and safety of DL systems.

In the future, we will focus on how to make the ART
method more applicable for more DL systems with different
kinds of inputs (e.g., natural language and speech) to reduce
the costs of RT for speech recognition system and machine
translation system. Besides, we will further consider other
distance metrics for DL systems and comprehensively anal-
ysis and compare the effectiveness of ART methods of DL
systems with different distance metrics.
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