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ABSTRACT Data transmission is the most critical operation for mobile sensors networks in term of energy
waste. Particularly in pervasive healthcare sensors network it is paramount to preserve the quality of service
also by means of energy saving policies. Communication and data transmission are among the most critical
operation for such devises in term of energy waste. In this paper we present a novel approach to increase
battery life-span by means of shorter transmission due to data compression. On the other hand, since
this latter operation has a non-neglectable energy cost, we developed a compression efficiency estimator
based on the evaluation of the absolute and relative entropy. Such algorithm provides us with a fast mean
for the evaluation of data compressibility. Since mobile wireless sensor networks are prone to battery
discharge-related problems, such an evaluation can be used to improve the electrical efficiency of data
communication. In facts the developed technique, due to its independence from the string or file length,
is extremely robust both for small and big data files, as well as to evaluate whether or not to compress data
before transmission. Since the proposed solution provides a quantitative analysis of the source’s entropy
and the related statistics, it has been implemented as a preprocessing step before transmission. A dynamic
threshold defines whether or not to invoke a compression subroutine. Such a subroutine should be expected
to greatly reduce the transmission length. On the other hand a data compression algorithm should be used
only when the energy gain of the reduced transmission time is presumably greater than the energy used to run
the compression software. In this paper we developed an automatic evaluation system in order to optimize
the data transmission in mobile sensor networks, by compressing data only when this action is presumed
to be energetically efficient. We tested the proposed algorithm by using the Canterbury Corpus as well as
standard pictorial data as benchmark test. The implemented system has been proven to be time-inexpensive
with respect to a compression algorithm. Finally the computational complexity of the proposed approach is
virtually neglectable with respect to the compression and transmission routines themselves.

INDEX TERMS Wireless sensor networks, data compression, entropy, quality of service, energy saving,
quality prediction, differential information entropy.

I. INTRODUCTION
Te micro-electro-mechanical systems (MEMS) technol-
ogy has encountered a tremendous evolution in the last
decades [1]–[3]. The reached integration level permits us
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to develop sensors embedding small computational devices
with fully functional storage and communication capabilities.
Such hardware systems are generally constructed in order
to perform some measurements and transmit the collected
data as digital signals. A multiplicity of sensors, deployed
in a collaborative strategy for data gathering, is called sen-
sors network. Moreover, if a sensor is mounted on a mobile
device, it is possible to rearrange their position during time,
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or randomly disperse sensors and reposition them in a succes-
sivemoment (e.g. due to temporary environmental limitations
or hazards, or in surveillance operations, etc. . .) [4], [5].

In this latter fashion, a mobile wireless sensor net-
work (MWSN) is a sensor network constituted by mobile
nodes that communicates through a radio signal. A large num-
ber of MWSNs have been developed for pervasive healthcare
systems [6]: some of them are devoted to continuousmonitor-
ing of elderlies, children, chronically ill or impaired people,
as well as patients affected by cognitive disorders, such as
Alzheimer syndrome; other kind of sensors networks are in
development for healthcare oriented environmental monitor-
ing, movement tracking, fall detection, live analysis of human
body stats and physiological parameters, etc. . . Pervasive
healthcare mobile sensor networks are capable to join differ-
ent data coming from different sources gathering amore com-
plete understanding of a diagnostic context, therefore such
sensors networks provide for advanced monitoring solutions.
Such solutions are extremely valuable due to their improved
ability to recognize unusual patterns due to themore complete
reference basis (e.g. in the case of body area networks, BAN,
or personal area networks, PAN, etc. . .). Among the many
BAN applications ofMWSNs, uttermost importance has been
gained by ECG-monitoring related solutions [7]–[9] on the
other hand for such applications it is paramount to work under
guaranteed quality of services conditions also in terms of
system autonomy and battery life-cycle [10]. In facts, while
remote control and monitoring is one of the main advantages
of MWSN healthcare systems, energy efficient sensors are
often critical [11], [12]. On the other hand communication
interfaces such as wifi and bluetooth, while mandatory com-
ponents of communicating networks, fail to provide support
for energy efficient systems [13]. Due to their nature such
sensors must be powered by means of electrical batteries,
on the other hand their operation cycle is limited due to the
unavoidable power exhaustion during time. It follows that,
while in a battery-powered sensor it is paramount to enforce
every possible energy-saving policies, in MWSN the data
transmission events constitute critical operations that tampers
with battery life. In pervasive healthcare sensors networks,
the amount of autonomy time between charging cycles makes
the difference between a usable technology and a non fea-
sible approach. I.e., while MWSN can be extremely useful
in preventing cardiac pathologies or to enforce preemptive
alert systems for health operators, it would be pointless to
develop such a technology if the resulting device should be
put offline, recharging, each few hours. Data compression
constitutes a possible solution for energy efficient sensors’
data transmission, on the other hand that preventive measure
should be carefully evaluated. In facts, while compressed data
requires a shorter communication time, and consequently
reduces the amount of energy wasted in data transmission,
the compression algorithm itself will require a certain amount
of energy to be executed. Therefore, as possible trade-off,
it would be agreeable to transmit compressed data only
when such operation greatly reduces the transmission time.

It follows that, for mobile senors networks communicating
by means of wireless signals, data should be compressed only
after a positive estimation of the compression efficiency of the
data compression algorithm (see Figure 1).

FIGURE 1. The interaction of the proposed entropy evaluation system
with the other hardware and software components is shown in the right
panel (b), with respect to the traditional interactions design shown in the
left panel (a).

The general problem is easy to state. Given many senders
and receivers and a channel transition matrix that describes
the effects of the interference and the noise in the network,
decide whether or not the sources can be transmitted over
the channel [14]. On the other hand a compression algo-
rithm does not represent an optimal solution in all condi-
tions, although there are many optimized software system
opportunely designed to achieve the best performances for
specific data formats (e.g. [15], [16].) While a large number
of algorithms are devoted to data compression for specific
applications (see Figure 2), the optimum is generally achieved
only by few specific compression algorithm. On the other
hand, such an optimality on regards the compressed data size
with respect to its original size. Unfortunately, the design
and development of an optimal compression system in terms
of battery-savings on the field of MWSN would become a
strongly data-dependent task and would require a significant
effort, both on theoretical and practical side. Moreover the
energy efficiency of a compression algorithm would strongly
depend on the accuracy of the related model. Hence such a
model should have to bemeticulously calibrated basing on the
structural and semantical topology of the data to compress.
Moreover both the complexity of the algorithms and the
overall computational effort are strongly influenced by the
admissible error in the process. The main issues preliminarily
examined when applying data compression are efficiency
aspects such as the total compression ratio, and the computing
resources (time and memory) required, especially for space
communications; other important issues are sensitivity to
errors and adaptability to different data types.

Data compression algorithms can be roughly classified
in two categories: lossy (or non invertible) or lossless
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FIGURE 2. A non exhaustive classification of existing compression algorithms.

(or invertible). While the algorithms that falls in the first
of such categories are generally capable of a greater result
in terms of compressed data size, this kind of algorithms
are unable to fully reconstruct the original data, suffering
therefore of an unavoidable information loss, hence they
ends by reducing the informational entropy, then definitively
neglecting an hopefully small portion of the original data.
On the contrary lossless compression systems reduces the
transmitted or stored data size by reducing information redun-
dancy from the source, therefore preserving the informational
entropy, and allowing the integral reconstruction of the orig-
inal data.

While lossy compression is in generally suitable for a wide
range of applications, on the field of sensors and sensor
networks such data requires to be perfectly reconstructed,
therefore, often, only lossless compression techniques are
applicable. It follows that, in lossless compression, an a priori

estimate of the source statistics is highly desirable since it
allows us to estimate the maximum theoretically-achievable
compression ratio. Such a knowledge becomes helpful to
improve the energy efficiency of communicating sensors net-
work. In facts, estimating the data compressibility it is also
possible to decide whether or not that procedure would be
convenient (e.g. a low compression ratio would not reduce
the communication time enough to justify the amount of
electrical power spent for the compression itself).

The key quantity which gives us useful information about
such items is the entropy content associated with a given data
source [17]–[19]. The better the stochastic approximation,
the better the compression. First-order entropy compressors
do not exploit the internal correlation of source sequences
(taken into account by higher-order entropies) unlike the
more advanced compression schemes, which obtain a signifi-
cant gain [20], [21]. ln this paper we present some algorithms
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which give an evaluation of the source statistics and compute
the related absolute and character-relative entropy up to a
preassigned order N. The algorithms presented are robust
and can deal with data files of arbitrary length. They have
been extensively tested with different kinds of files from the
Canterbury Corpus. In all cases the observed computing time
is typically one order lower than that required to actually
compress the files with the best data compressors on the
market.

II. ENTROPY BASED COMPRESSIBILITY ASSESSMENT
Elementary calculus then shows that the expected descrip-
tion length must be greater than or equal to the entropy,
the first main result. Then Shannon’s simple construction
shows that the expected description length can achieve this
bound asymptotically for repeated descriptions. This estab-
lishes the entropy as a natural measure of efficient description
length.

An open problem in the field of compressibility theory
is about reckoning the deviation from maximum compress-
ibility of the effective compression when using a selected
algorithm on the data. In [22] Shannon has devised that the
lowest entropy value of an ascii file occurs to be 1.3 bit/digit
by using an human being to solve the compression task, but
also restricting the related alphabet to 30 different symbols
(26 letter from the English alphabet and 4 punctuation sym-
bols). Expert linguists have been able to compress up to 108

consecutive digits, while software algorithms can compress
4 to 6 characters long strings. The reason for such a differ-
ence lies on the human knowledge of grammar rules, syntax,
semantics and the topic-related personal experience. These
latter makes the human linguist able to naturally infer or
predict portion of the information therefore cumulating the
informational entropy of a text in few significant portions, and
so naturally implementing a compression procedure ab initio,
such a compression capability is unfortunately unquantifiable
and actually inimitable by a software algorithm. The best
compression algorithms actually developed could achieve
0.88 bit/digit at their best performances, although such algo-
rithms are benchmarked using an alphabet of 256 different
symbols (give or take 32 control characters). Effectively
the real performances obtained by a compression algorithm
depends on the intrinsic compressibility of a file which can be
evaluated by characterizing the related informational entropy.
In order to evaluate the informational entropy of a file, and
consequently its intrinsic compressibility, first order statis-
tics does not suffice, therefore we need to consider larger
order statistics. In this context it is mandatory to distinguish
between the absolute entropy and the relative entropy of a
digit [20].

A. N-TH ORDER ABSOLUTE ENTROPY
Consider an ergodic source emitting sequences of symbols of
length L. The number of all possible subsequences of length
N (N ≤ L) is (L-N+1), therefore if the i-th subsequence Si

occurs Mi times, its relative frequency f (Si) is:

f (Si) =
Mi

L − N + 1
(1)

By using the interpretation of probability as a relative fre-
quency, we have:

P(Si) = f (Si) (2)

N-th order absolute entropy, Ha(N ), is defined as:

Ha(N ) =
L−N+1∑
i=1

HSi (N ) (3)

where

HSi (N ) = P(Si) log2 P(Si) (4)

is the contribution of the generic subsequence Si to Ha(N ).
A practical example of absolute N-th order entropy estimation
can be given with the text string

ABRACADABRA

and supposing to compute the 2nd order absolute entropy.
The subsequences to take into account are constituted by
all the pairs of character contained on the string. Such pairs
represents all the possible outcome using an alphabet of
2562 = 65536 alternatives. To each subsequences can be
associated a probability (see Table 1) considering that the
string is composed by a total number of 10 possible subse-
quences of 2 characters (since L = 11). Using (3) it follows
that

Ha(2) = −
[
4 ·

1
10
· log2

(
1
10

)
+ 3 ·

2
10
· log2

(
2
10

)]
= 2.7217 bits/digit (5)

TABLE 1. Subsequence probability for the string ‘ABRACADABRA’.

B. N-TH ORDER RELATIVE ENTROPY
The N -th order character-relative entropy for the same
sequence of L characters is computed by considering first all
theN -order contexts within the sequence (anN -order context
is any subsequence of length N − 1). The entropy associated
with the occurrence of the k-th character after the h-th context
constitutes the elementary contribution to the N -th order
character-relative entropy. The sum of all these contributions
gives the total N -th order character-relative entropy:

Hr (N ) = −
∑
h

FWh

L − N + 1

∑
k

Rh,k
FWh

log2

(
Rh,k
FWh

)
(6)

where FWh is the total number of occurrences of the subse-
quenceWh within the sequence of length L, Rh,k is the further
occurrences of the subsequence k after the considered one,
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and (L − N + 1) is the number of the occurrences of the
k-th character after the subsequence Wh. The above quantity
is a useful indicator to establish which of the different subse-
quences exhibiting the same first-order entropy can be further
compressed. Let use the same practical example to compute
the first order relative entropy on the string

ABRACADABRA

in this case it follows that L − N + 1 = 11, and given the
related Rh,k (see Tables 2 and 3), from (6) it follows that

Hr (1) = −
{
5
11
·

[
2
5
· log2

(
2
5

)
+

2
5
· log2

(
2
5

)]}
= 0.6625 bits/digit (7)

TABLE 2. Occurrences of the subsequences for the string ‘ABRACADABRA’.

Consider now the following two sequences having the
same first-order entropy

ABCDACBDBACDABACBCDC
AAAAABBBBBCCCCCDDDDD

It is evident that the second sequence can easily be com-
pressed whereas the first cannot.

III. THE IMPLEMENTED SOLUTION
In this paper we present an efficient algorithm to compute the
N-th order absolute and relative entropy of a string. This latter
will be then used to determine when to compress data for
transmission in a mobile wireless sensor network. In order to
calculate Nth-order absolute and character-relative entropy,
existing algorithms are generally articulated into three sepa-
rate steps. Before calculating entropies, all the strings con-
tained in the sequence are lexicographically ordered and
a couple of suitable counters are assigned to each string.
These two steps are time-consuming when higher values of
N are involved. In the algorithms presented, the above two
phases are performed simultaneously; ordering and counter
assignment are done in a single step. The algorithm is
thus composed of just two steps: first a suitable data struc-
ture is constructed and then entropy computations are per-
formed. The data structure used is a modified suffix tree by
which the source file is efficiently scanned and an implicit
ordering of substrings is simultaneously performed more
rapidly than classical ordering algorithms using a modified
suffix-tree [23].

A. THE MODIFIED SUFFIX-THREE
For a generic string composed by L digits, each node of the
modified suffix-three can represent:
• a prefix: a substring composed by the first characters of
a string

• a suffix: a substring composed by the last characters of
a string

• an explicit node: a node with 2 or more children
• an implicit node: a node made by collapsing edges with
only one child

• a leaf node: a node without children

Therefore the modified suffix-three can be populated
inserting each character form the beginning to the end of the
given string by operating three kinds of update:

1) an explicit node update
2) an implicit node update
3) an edge split

Each edge of the suffix-three contains a string, this lat-
ter is not entirely stored, in fact, in order to improve
the memory occupancy of the algorithm, due the implicit
invariance of the sting inherent its suffix-three, we only
stored the indexes of the first (first_char_index) and
last (last_char_index) digit as parameters of a class
(Edge). All the edges are then organized in an hash table.
Similarly we store the first and last index for each suffix,
along with the origin node index (origin_node) which
represents the node from which originates the edge contain-
ing the suffix at hand (see Table 4).

B. ENTROPY EVALUATION
When evaluating each individual contribution to entropy, it is
sufficient to visit the modified suffix-tree structure, avoiding
a new complete scan of the file; a sensible reduction in
the total computing time is thus achieved. In the modified
suffix-tree algorithm, counters are introduced at each branch
of the tree. Every counter takes into account how many
strings, beginning with the string in the branch considered,
there are in the complete sequence of length L. This number
is the context frequency and is equal to FWh .
Rh,k is found by considering all the first characters of the

strings contained in the subtrees departing from the node
considered. Moreover, a complete scanning of the tree does
not necessarily have to be performed: if we want to compute,
for example, fifth-order entropies, we only have to scan five
levels of the tree (in the worst case), because these levels
contain all the information about the statistics of 5 character
strings. An example of a modified suffix tree for the string
BANANAS is shown in Figure 3: it is possible to verify that

FIGURE 3. The modified suffix three for the string ‘BANANAS’.
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TABLE 3. Further occurrences of characters for the string ‘ABRACADABRA’.

TABLE 4. UML-like table showing several parameters (−) and methods (+) of Edge and Suffix classes.

FIGURE 4. The figure shows an order-wise comparison of the relative entropy Hr (h) with respect to the h0 order, the maximum relative entropy
Hr (1) and the computed slope proportional to Hr (2)−Hr (1). The superposition shows the behavior of different files extracted from the Canterbury
Corpus: [A] an image (lena.bmp), [B] an object code for VAX (obj1), [C] the first milion digits for π (pi.txt), and [D] an english text (alice29.txt).

the edges with only one child have been collapsed. If we
want to compute 2nd order entropies we only have to visit
the nodes labeled 0,1,8,6,10; all the other nodes do not
need to be visited at all; the time saving obtained with this
approach is significant, especially in the case of very long
sequences (over 108 symbols). By using the presented mod-
ified suffix-three the computation of entropy for an assigned
order N is quite straightforward; all the contributions to the
entropy are obtained by visiting only the tree levels from the
root to the levels representing N-length o subsequences. All
the other tree levels are ignored, thus achieving efficiency and
speed in the evaluation. In addition, no preliminary ordering
is required. Let consider again the string

BANANAS

and let suppose to compute the 3rd order absolute and relative
entropy for such a string. In order to obtain the occurrences of
a substring it suffices to count the repetition numbers on the
suffixes list. Each time a new substring of different length is

TABLE 5. Computed subsequence occurrences for the string ‘BANANAS’
when N = 3.

found, thenwewill have yet counted all the occurrences of the
previous substring. Therefore it will be possible to compute
its entropic contribute immediately. For the string BANANAS
the possible substring occurrences are shown in Table 5.
Therefore once computed the contributions:

Ha(3)[ANA] =
[
2
5
· log2

(
2
5

)]
ANA

(8)

Ha(3)[BAN] =
[
1
5
· log2

(
1
5

)]
BAN

(9)
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TABLE 6. The used Canterbury corpus (and the image lena.bmp, added for a more representative test).

Ha(3)[NAN] =
[
1
5
· log2

(
1
5

)]
NAN

(10)

Ha(3)[NAS] =
[
1
5
· log2

(
1
5

)]
NAS

(11)

it immediately follows that

Ha(3)[BANANAS]

= −

[
2
5
· log2

(
2
5

)
+

3
5
· log2

(
1
5

)]
BANANAS

= 0.8643 bits/digit (12)

The 3rd order relative entropy computation is a little more
difficult. In order to reckon the 3rd order entropy (N = 3)
we need to take into account substrings of 2 digits (N − 1).
Therefore the algorithms will execute the following steps:

1) scan the list considering the first two digits for each
suffix

2) compare the found substring with the previous suffix
3) count the digits position-related occurrences for each

substring
4) proceed to the next substring

After all the suffix occurrences have been computed,
the related counts are given as input for a statistical rou-
tine. This latter routine determines the occurrence probability

for each substring in order to compute the relative entropy
as in (6).

C. COMPRESSION EFFICIENCY ESTIMATION
Once the relative entropy have been evaluated at different
orders, the obtained values are considered to estimate the
possible compression efficiency. It must be pointed out that it
is not possible to precisely estimate an a priori compression
cost in terms of consumed power due to the many aleatory
variables that should be considered otherwise. On the other
hand, trough empirical evaluation, it is possible to establish
for each given device an entropy descent related threshold,
which could eventually be demanded to the hardware con-
structor. Such a threshold must be related to the slope of the
relative entropy value with respect to its order, as well as the
maximum non-zero entropy order (h0) defined as

h0 = min
h
{h : Hr(h) < ε} (13)

where ε is a number close to 0 (i.e. 10−8), used to avoid
machine’s related fluctuations.

Since an high slope for the relative entropy, as well as a
small maximum non-zero order suggest a low compressibility
ratio, and since, on the contrary, an high first order relative
entropy value will suggest an high compressibility, it follows
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FIGURE 5. Absolute and relative entropy for several of the files used for testing (see Table 6).

that we can define

χ =
Hr(1) · h0

Hr(1)− Hr(2)
(14)

as an evaluation parameter directly proportional to the com-
pressibility of the data at hand (see Figure 4). In this fashion,
given an empirically determined threshold θ , it will follows
that data will be compressed only if χ > θ .
Since the hardware configuration of a device could tamper

with the battery lifespan, as well as any implementation and
usage choice adopted by the constructor or the user, the said
threshold θ must be determined on field and could differ
for different devices. It follows that, in general, θ should
be provided as data-sheet parameter by the vendor or the
implementor of a specific protocol involving such a device.
On the other hand, θ could be experimentally determined
by measuring in controlled conditions, or in laboratory envi-
ronment, the maximum battery life-span as a function T (ϑ),
where ϑ represents a threshold candidate. In this manner it is
possible to devise an optimal threshold θ so that

θ : T (θ ) = max
ϑ
{T (ϑ)} (15)

In the following application for testing purposes the
threshold 2 has been defined as approximately 1% of the
average χ .

IV. APPLICATION AND TESTING
As common practice in literature, the algorithms imple-
mented in this paper has been extensively tested using the

Canterbury Corpus: a set of standard files used to test almost
all lossless compression algorithms.

A. THE CANTERBURY CORPUS
The Canterbury Corpus [24] is constituted of several collec-
tion of files that are commonly used as benchmark in order to
evaluate the performances of compression algorithms on dif-
ferent kinds of file types (such as text files, books, technical
papers, source code, object files, raw data, images, etc. . .).
The Canterbury Corpus has been devised as an upgrade of
the Calgary Corpus [25]. The purpose of the Canterbury
Corpus was to provide researchers with a set of files that
could be representative of information that an user would
like to compress, as well as provide testing means to gather
sufficient statistical data for both an analytical and empirical
study of the compression performances of an algorithm. The
overall Canterbury Corpus is composed by the following five
collections:
• The Canterbury Collection
• The Artificial Collection
• The Large Collection
• The Miscellaneous Collection
• The Calgary Collection

While the Canterbury Collection constitutes the main focus
of the corpus, the Calgary Collection has been included
mainly for historic reasons, as well as the Large Collection
has been included to provide a testing ground for algo-
rithms that are specifically designed, or best performing, for
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large files. Moreover the corpus also contains the Artificial
Collection providing a set of files that should tamper with
the standard performances of a compression algorithm due
to their intrinsic nature (due to the absence of repetition or
due to a large amount of repetitions). This latter Collection,
then, is unsuitable for performances characterization, while it
is useful to detect outliers. Finally, the Miscellaneous Collec-
tion actually contains only a file with the first million digits
of π . In Table 6 we report a list of the files constituting the
Canterbury Corpus, and that we used to test our algorithm,
along with the commonly used image lena.bmp.

B. ENTROPY EVALUATION
The various evaluations have been performed by using the
files of the Calgary Corpus and Canterbury Corpus that con-
tain different kinds of data. The results of this investigation
are summarized in Figure 5 where the absolute and relative
entropies of four data files are shown for increasing values
of the entropy order N . It is possible to notice that the said
entropy values are strongly affected by the analyzed data
types. As a matter of fact we observe that the shape of the
curves strictly depends upon the kind of data processed; more
precisely, shapes tend to be smoother for compressible files
while they become sharper for incompressible data. In par-
ticular for pseudo-random tiles, character-relative entropy
values always fall exactly to zero within the first five orders.
It is worth noticing that the behavior of the two quantities is
specular with respect to the value assumed for N = 1. The
character-relative entropy tends to a null value as N increases
whereas the absolute entropy reaches an asymptotic value
which depends on the nature of the source. Both absolute and
character-relative entropy approximately reach their asymp-
totic values for the same order N . This allows us to consider
only one of the two quantities to get an estimate of the entropy
content of the source.

C. EXPERIMENTAL RESULTS
The experiments have been conducted by using a
Zigbee hardware architecture (Libelium Comunicaciones
Distribuidas, Zaragoza, Spain) designed as ultra low power
technology due to the extremely small operation current. The
architecture, yet know for its use and versatility in mobile
sensor networks [26], is provided with 10 sensor boards and
16 radio technologies for short, medium and long range com-
munication. During the experiments (see Figure 6 the board
has been tested using the Wi-Fi interface to communicate
with a radio-base station at 40 m distance in different kind
of environments (office building, open field, wood, buildings
construction facilities, soccer fields, etc. . .). During the tun-
ing phase we defined a threshold of θ = 0.5 (approximately
1% of the average χ ). Within this configuration, the results
show an average the battery-life increment of about 11.8%
due to the reduced amount of energy used for data transfer.

The calculation of the average battery life in the test bed
scenario used for the validation of the proposed methodology
was made by using the experimental apparatus used by one of

FIGURE 6. Three examples among the many experimental results,
collected in different environmental conditions, of battery status of
charge (SOC) during time for a communicating sensor (baseline) when the
proposed system is implemented (proposed) with a threshold of θ = 0.5.

the authors in [27]. In fact, as shown in the in the previously
cited paper, the energy management of the batteries should
be based on the state of charge (SOC) checking. The basic
equations that relate the SOC to the discharge current and
voltage at the battery terminals are the listed in the following
while the equivalent electrical network is shown in fig. 7.

dq
dt
= i

SOC = 1−
q
C0

v = E(SOC)− R(SOC∗) ∗ i (16)

where SOC∗ it’s a fictitious SOC that depends on the effective
SOC value, current discharge rate and depth of discharge.

E(SOC) = E0 + Ee ∗ ln(SOC)

R(SOC∗) = R0 + R1 ∗ ln(SOC∗) (17)

The energy supplied by the battery to the load is related
to itself rated capacity Ct , expressed in Wh, minus a fac-
tor accounting the energy lost due the irreversibility of the
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FIGURE 7. Equivalent network of lead-acid battery.

electrochemical discharge phenomenon.∫
vidt = Ct − E(irr) (18)

with a little algebra yields the equation.∫
vidt =

∫
E0idt −

∫
R0i2dt

−

∣∣∣∣∫ Eeln(SOC)idt

∣∣∣∣− ∣∣∣∣∫ R1ln(SOC∗)i2dt

∣∣∣∣ (19)

where the integral is taken over the selected discharge time.
For the calculation of the average battery life, in this paper,

we used the equations (16) and (17). The calculus of the
parameters E0,Ee,R0,R1 and the relationship between the
fictitious (SOC∗) and the true SOC have been carried out
by using the neural network described in [27], trained with
the experimental results, collected in different environmental
conditions when the proposed system is implemented with a
threshold of θ = 0.5.

V. CONCLUSION
Data prediction techniques are often used in sensor networks
to mitigate the sensors energy consumption, avoiding unnec-
essary data transmissions, and extending the network life
cycle.

In this work we developed a new approach to increase
the energy data trasmission efficiency in pervasive health-
care sensor networks. In the presented approach the sensors
battery life has been extended by means of a shorter com-
munication time due to data compression. On the other hand
the evaluation of data compressibility has been a paramount
asset to avoid energy waste due to inefficient or inappropriate
data compression. This evaluations have been performed by
means of a novel algorithm for the evaluation of absolute and
relative N-th order entropies that allowed an ad-hoc decision
system to preliminarily estimate whether or not the reachable
compression ratio would justify the amount of energy spent
for the data compression itself. The computational cost of
this operation is about one order of magnitude lower than a
compression operation itself. Therefore entropy computation
can be advantageously executed before compressing data,
thus avoiding uncertain results.

It can be seen from the experimental results that our
scheme can efficiently decrease redundant transmissions
while improving the prediction precision. By this means,
the energy of sensor nodes is also saved and the fault tolerance
is improved. Then the implemented procedure allows an effi-
cient management of data compression for communicating
mobile wireless sensor networks, which can be of uttermost
importance for pervasive healthcare systems.
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