IEEE Access

Mltidscpinary : Rapid Reiew : Open AccessJournl SPECIAL SECTION ON NEURAL ENGINEERING INFORMATICS

Received November 24, 2019, accepted December 23, 2019, date of publication December 27, 2019,
date of current version January 17, 2020.

Digital Object Identifier 10.1109/ACCESS.2019.2962658

EEG Signals Denoising Using Optimal Wavelet
Transform Hybridized With Efficient
Metaheuristic Methods

ZAID ABDI ALKAREEM ALYASSERI“12, (Senior Member, IEEE),
AHAMAD TAJUDIN KHADER !, MOHAMMED AZMI AL-BETAR"“3, AMMAR KAMAL ABASI“1,
AND SHARIF NASER MAKHADMEH !

!School of Computer Sciences, Universiti Sains Malaysia, Pulau Pinang 11800, Malaysia
2ECE Department, Faculty of Engineering, University of Kufa, Najaf 54001, Iraq
3Department of Information Technology, Al-Huson University College, Al-Balga Applied University, Irbid 19117, Jordan

Corresponding author: Ahamad Tajudin Khader (tajudin@usm.my)
This work was supported by the University Science Malaysia (USM) under Grant 1001/PKOMP/8014016. The work of Zaid Abdi

Alkareem Alyasseri was supported by The World Academic Science (TWAS) and USM through the TWAS-USM Postgraduate Fellowship
2015 under Grant 3240287134.

ABSTRACT Background. The most common and successful technique for signal denoising with non-
stationary signals, such as electroencephalogram (EEG) and electrocardiogram (ECG) is the wavelet
transform (WT). The success of WT depends on the optimal configuration of its control parameters which
are often experimentally set. Fortunately, the optimality of the combination of these parameters can be
measured in advance by using the mean squared error (MSE) function. Method. In this paper, five powerful
metaheuristic algorithms are proposed to find the optimal WT parameters for EEG signal denoising which are
harmony search (HS), 8-hill climbing (8-hc), particle swarm optimization (PSO), genetic algorithm (GA),
and flower pollination algorithm (FPA). It is worth mentioning that this is the initial investigation of using
optimization methods for WT parameter configuration. This paper then examines which efficient algorithm
has obtained the minimum MSE and the best WT parameter configurations. Result. The performance of the
proposed algorithms is tested using two standard EEG datasets, namely, Kiern’s EEG dataset and EEG Motor
Movement/Imagery dataset. The results of the proposed algorithms are evaluated using five common criteria:
signal-to-noise-ratio (SNR), SNR improvement, mean square error (MSE), root mean square error (RMSE),
and percentage root mean square difference (PRD). Interestingly, for almost all evaluating criteria, FPA
achieves the best parameters configuration for WT and empowers this technique to efficiently denoise the
EEG signals for almost all used datasets. To further validate the FPA results, a comparative study between the
FPA results and the results of two previous studies is conducted, and the findings favor to FPA. Conclusion.
In conclusion, the results show that the proposed methods for EEG signal denoising can produce better results
than manual configurations based on ad hoc strategy. Therefore, using metaheuristic approaches to optimize
the parameters for EEG signals positively affects the denoising process performance of the WT method.

INDEX TERMS EEG, signal denoising, wavelet transform, metaheuristic algorithms, optimization, flower
pollination algorithm.

I. INTRODUCTION ionic current flows within the neurons of the brain [1], [2].
Electroencephalogram (EEG) is a graphical recording of Therefore, EEG signals can provide most of the required
brain electrical activity that is recorded from the scalp. This information about brain activity. EEG signals from the brain
recording represents the voltage fluctuations resulting from are captured using invasive or non-invasive techniques [3].

The main difference between these techniques is that the inva-
The associate editor coordinating the review of this manuscript and .SIV?’ approach .anOIVCS the use of electrode arra.ys 1mplanted
approving it for publication was Peng Xu. inside the brain, such as the eastern cooperative oncology
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group-Brain Computer Interface (ECOG-BCI) for arm move-
ment control [4]. Meanwhile, there are several techniques
to record the brain activity can also be captured using dif-
ferent types of signal capturing devices, including EEG for
electrical activity from the scalp, MEG for magnetic field
fluctuations caused by electrical activity in the brain, and
functional magnetic resonance imaging (FMRI) and func-
tional near-infrared spectroscopy (fNIRS) for changes in
blood oxygenation level resulting from neural activity [4]. In
[5], Berger proposed for the first time the use of EEG signals
as a non-invasive technique for capturing brain activities.
Over the past several decades, researchers have developed
Hans’s technique to suit multiple applications. For instance,
EEG signals have been used in medical applications for pre-
vention, detection diagnosis, rehabilitation and restoration.
This technique has also been used for non-medical applica-
tions, such as education and self-regulation, neuromarketing
and advertisement, neuroergonomics and smart environment,
games and entertainment, and learning and education [6], [7].
Recently, EEG signals have been used as a new biometric
technique in security and authentication applications [1], [6].

Several artifact noises can corrupt the original EEG signal
during its recording time, such as eye blink, eye movements,
muscle activity, and interference of electronic device sig-
nals [8]. Therefore, the EEG signal must be processed to
reduce such noise. Several EEG noise removal techniques
have been proposed in the literature, such as filtering and
adaptive thresholding. Recently, wavelet transform (WT) has
been successfully applied for denoising non-stationary sig-
nals, including ECG and EEG [9]-[12].

In general, WT has five parameters with each parameter
having different types (Table 1). The efficiency of EEG signal
denoising depends on the selection of the best combina-
tion of WT parameters. The selection is usually performed
based on experience or empirical evidence. In previous
research, the WT parameter configuration is formulated as
an optimization problem with MSE as its objective function
[11]. As aforementioned, WT has five parameters, namely,
(i) mother wavelet function (MWF) @, (ii) decomposition
level L, (iii) thresholding function 8, (iv) threshold selection
rules A, and (v) threshold re-scaling methods p. Each of
these parameters has several values and is used for a specific
denoising level. The optimal values of these parameters are
required to empower WT in the denoising process. For ECG
signals, El-Dahshan in [9] attempted to obtain the optimal
configuration using GA, the results were better than those
that were produced experimentally. Alyasseri ef al. [10], [13]
proposed a hybrid scheme for non-stationary signals denois-
ing, such as ECG and EEG that is based on $-hill climbing
(Bhc) optimization algorithm [14] with WT to obtain the
optimal wavelet parameters. The proposed method (8hc-WT)
was tested using an MIT-BIH dataset [15], where the original
ECG signal was corrupted with white Gaussian noise (WGN)
using different input SNR noises that corrupted the ECG from
0 dB to 40 dB. The performance of the Bhc-WT method was
evaluated using minimum squared error (MSE) and SNR.
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TABLE 1. The ranges of the wavelet denoising parameters.

WT denoising parameters Method (range)

Symlet (sym1..sym45), Coiflet (coifl..coif5),
Daubechies (dbl..db45), and Biorthogonal

(biorl.1.. biorl.5&bior2.2 .. bior2.8& bior3.1..bior3.9).
Thresholding function 3 soft or hard threshold

Decomposition level L 5

Thresholding selection rule A Heursure, Rigsure, Sqtwolog, and Minimax

Re-scaling approach p one, sln, mln

Mother Wavelet function &

The proposed method successfully removed WGN from the
ECG and EEG signals [10]-[13]. Several metaheuristic opti-
mization algorithms have also been employed. Metaheuristic
is a general optimization framework for several kinds of
optimization problems that uses efficient learning operators
to explore the search space regions and to exploit the accumu-
lative search controlled by certain parameters. Metaheuristic
algorithms are conventionally categorized into: i) evolution-
ary algorithms (EAs), including GA [16], harmony search
(HS) [17], and genetic programming (GP) [18]; ii) swarm-
based intelligence algorithms (SI), including particle swarm
optimization (PSO) [19], artificial bee colony (ABC) [20],
flower pollination algorithm (FPA) [21], and iii) trajectory-
based algorithm (TAs), including B-hill climbing (8HC) [14],
simulating annealing (SA) [22], tabu search (TS) [23], greedy
randomized adaptive search procedure (GRASP) [24], vari-
able neighborhood search (VNS) [25], iterated local search
(ILS) [26] meta-heuristic. The main research question of this
paper is what is the best choice optimization algorithm that
can be find the optimal parameters values for WT to empower
its denoising process for EEG signals? The main objective of
this paper is to propose five metaheuristic algorithms from
different metaheuristic categories for optimal settings of WT
parameters. This paper also attempts to determine the most
efficient metaheuristic algorithm for finding those parameters
and that can help WT denoise EEG signals efficiently. These
metaheuristic algorithms include some SI algorithms (i.e.,
FPA and PSO), some EA algorithms (i.e., GA and HS),
and one TA algorithm (i.e., f-HC). These algorithms are
carefully chosen based on their performance in successfully
solving a wide variety of signal and image processing prob-
lems [10]-[12], [27]-[29]. Therefore, five versions of WT,
namely, FPA-WT, GA-WT, HSA-WT, PSO-WT, and BHC-
WT are tested in an experiment. The original EEG signal
benchmark taken from two de facto EEG datasets, namely,
Kierns! and Motor Movement/Imagery dataset? are used for
the evaluation process [15], [30]. To evaluate the performance
of the meta-heuristic algorithms, EEG signals are corrupted
using three different noise mechanisms, including power line
noise (PLN), electromyogram (EMG), and white Gaussian
noise (WGN) [9], [31], [32]. Initially, each proposed meta-
heuristic algorithm generates optimal parameter settings for
WT to denoise the EEG signal of each dataset. Afterward,
the denoising results are evaluated using five measurement

1 http://www.cs.colostate.edu/eeg/main/data/1989_Keirn_and_Aunon
2https :/lwww.physionet.org/physiobank/database/eegmmidb/
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factors, namely, SNR, SNR improvement, MSE, RMSE, and
PRD. For comparative evaluation, the denoising results of
the five proposed methods are compared with one another.
Interestingly, FPA-WT achieves efficient EEG signal denois-
ing for EMG and WGN datasets. In addition, FPA-WT and
GA-WT obtain the best denoising levels for PLN dataset.
In conclusion, FPA is the best algorithm that can be incorpo-
rated with WT to achieve an efficient EEG signal denoising.

This paper is organized as follows. Section III provide
a background to Wavelet Transform (WT). Section III-A
presents a Wavelet denoising principle for EEG signal
denoising. The selected meta-heuristic algorithms presents
in Section IV. The hybrid scheme between meta-heuristic
algorithms and WT explains in Section V. The results and
discussion presents in section V1. Finally, the conclusions and
future works describes in Section VII.

Il. RELATED WORKS

Kumar and Vaish in [1] proposed a user identification sys-
tem on the basis of EEG signal collected from six users
using EMOTIVE EPOC headset with 14 channels. These
researchers used wavelet transform (WT) for EEG signal
denoising where a db4 mother wavelet function (MWF) is
used with five levels of signal decomposition. They tested
their method using the EEG dataset established in [30].
Afterwards, the same authors investigated several cogni-
tive tasks to design an individual identification system [2].
These researchers used standard EEG datasets related to
motor/movement and imaginary tasks [15] with only one
channel (i.e. Cz) to obtain an input signal. In addition,
the authors used WT to decompose the EEG signal into five
levels and then extract four features from each EEG sub-band.

Al-Qazzaz et al. [33], [34] conducted a comparative study
to determine the efficient MWFs that can provide high signal
characteristics for an EEG channel. These authors tested
45 MWFs that are categorized into Daubechies, Symlets
and Coiflets families. An MWF called ’sym9° showed effi-
cient results in nearly all brain regions. The same team of
researchers applied WT with independent component anal-
ysis to decompose the EEG signals for obtaining an effi-
cient feature for discriminating stroke-related mild cognitive
impairment and vascular dementia [35].

Reddy [36] proposed WT for processing the EEG signal.
These authors applied WT to EEG signal denoising and used
db8 as an MWF with eight EEG signal decomposition levels.
Furthermore, these authors classified the EEG signal on the
basis of the features that are extracted from the WT signal
denoising process [37].

Padmaja et al. [38] proposed a method for removing ocular
artifacts from EEG signal by using Hilbert-Huang transform
(HHT). The proposed method has two steps. Firstly, input
EEG signals are decomposed using empirical mode decom-
position; secondly, HHT is applied to obtain the frequency
of each intrinsic mode functions. The proposed method was
tested using an EEG signal recorded from six patients. The
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results of HHT showed better performance than fast Fourier
transform in terms of signal-to-noise ratio (SNR) criteria.

Yang et al. in [7] proposed an artificial method for remov-
ing the EOG artifacts from the EEG raw. The proposed
method (CCA-EEMD) involves three steps. In the first step,
the input EEG signal proposed using CCA to spread the EOG.
In the second step, the EOG will be decomposed into multi-
level and apply intrinsic mode functions (IMFs) using EEMD
approach. Finally, the clear EEG data are ready to use and
extract more features. The (CCA-EEMD) tested using seven
subjects. The results show that the (CCA-EEMD) method
it is not only EOG removal method but also it can keep
the EEG features to the maximum extent. Torabi e al. in
[39] introduced a combining method between nonlinearity
EEG features and wavelet coefficients for improving the
performance of the recognition rate classification. The pro-
posed method applied a linear SVM classifier and the effect
of the combining technique shown significant improvement
in the classification results from (54%) to (73%). Further-
more, the proposed method has been also applied for feature
selection for the same problem, while it is selected up (44%)
for nonlinear features.

Ill. WAVELET TRANSFORM

Wavelet Transform (WT) is a common and powerful tool for
representing signals in the time-frequency domain. WT has
been successfully used for non-stationary signals, such as
ECG and EEG, to address several problems, such as those
related to signal compression, feature selection, and signal
denoising [10], [40], [41]. Recently, WT has been extensively
tailored for non-stationary signals because of its powerful
performance in removing several EEG artifact noises that can
corrupt the original EEG signal during its recording time.
These noises include eye blinking noise, eye movement noise,
muscle activity noise, electromyogram (EMG) noise, and
interference of electronic device signals [42], [43].

A. WAVELET DENOISING PRINCIPLE FOR
NON-STATIONARY SIGNALS

As aforementioned in Section III, WT is a powerful tool
for time-frequency domain representation. This technique
represents the signal on the basis of the correlation between
the translation and the dilation of mother wavelet function
(MWF) [9], [44], [45]. In general, the problems solved by WT
can be categorized into two WT versions, namely, continuous
wavelet transform (CWT) and discrete wavelet transform
(DWT) [46]. In this paper, DWT has been proposed for EEG
signal decomposition whereby inverse DWT (iDWT) is used
for EEG signal reconstruction. DWT was originally estab-
lished in [47] as the so-called Donoho’s approach. In general,
DWT decomposes a signal by using set of filtering (i.e.,
low pass and high pass filters) to product the approximation
and details coefficients, respectively. The main objective of
using DWT is to decompose the input signal via different
coefficient levels to correct the high frequency of the input
signals [48]. In other word, DWT decomposes the EEG signal
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Signal Decomposition Phase ‘

i Decomposition level = 1

\

{ Decomposition
level=3 |
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[ﬂlresholdingPhaSe | Threshold 4 H Threshold 3 | ‘ Threshold 2 | | Threshold 1 |]
I

EEG Denoised Signal

FIGURE 1. EEG denoising process taken from [50].

into several frequency bands because it assumed that the arti-
facts will have large amplitudes in the respective frequency
bands. Fig. 1 shows the wavelet denoising procedure with
decomposition level L = 3. Normally, the denoising process
involves three phases:

o« EEG signal decomposition phase: Assuming the
original EEG signals with n samples x(t) =
[x(1), x(2), ..., x(n)] will be divided into three levels,
and each level will be decomposed into two parts,
namely, approximation coefficients (cA) and detail coef-
ficients (c¢D). ¢D will be processed using a high-pass
filter, while cA will continue to be decomposed for the
next level.

cAlt) = Y cAi (k) dilt — k) (1)

k=—00

Di(t) = Y eDii(k) Wit — k) )

k=—o00

where cA;(t), c¢D;(t) denotes the approximation and
detail coefficients of level i, W, ¢ refers to scaling and
shifting, respectively.

o Applying thresholding phase: A threshold value is
defined for each level according to the noise level of the
coefficient.

e Reconstruction phase: The EEG denoised signal is
reconstructed using iDWT. The formula of iDWT as
follows [49]:

EEG iean = Z;:_Oo cAr(k) it — k)
+Z,~L: | Z:o:_oo cDiy1(k) Wit —k) (3)
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where EEG joqn(t) denotes the reconstructed EEG sig-
nal, i refers to decomposition level,

Signal noise removal is considered a challenging task in
signal processing [51]. Therefore, researchers have devel-
oped several approaches to solve this problem, such as
using the filtering technique [52]-[54], thresholding tech-
nique [55], [56], and other techniques [57], [58]. WT is
one of the powerful techniques for non-stationary signal
denoising [44], [S9]-[61]. WT has five parameters, with each
parameter having different types (Table 1) the success of
EEG signal denoising relies on the selection of WT param-
eters. As shown in Fig. 1, the wavelet denoising parameters
are defined in three phases. In the decomposition phase,
the first parameter, namely, MWF (®), is used in the EEG sig-
nal decomposition task. The second WT parameter, namely,
the decomposition level (L), is also selected in the decompo-
sition phase based on the EEG signal and experience.

The third parameter, namely, thresholding functions
(i.e, B)), can be divided into hard and soft thresholding [47],
[62]. Figure 2 shows the difference between hard and soft
thresholding. The thresholding types (soft or hard) in the sec-
ond phase must be selected along with the fourth parame-
ter, namely, the selection rules (1), and the fifth parameter,
namely, the rescaling methods (p). These threshold mech-
anisms must be applied because the selection will affect
the global denoising performance. The thresholding value is
generally defined based on the standard deviation (o) of the
noise amplitude [9]. Tables 2 and 3 provide the different types
of parameters for the thresholding selection rule and rescaling
methods. The thresholding rules are selected according to
Equation (4).

EEGpisy(n) = x(n) + oe(n) 4

where x(n) is the original EEG signal, e is the noise, o is
the amplitude of the noise, and n is the number samples. The
wavelet parameters (8, A, and p) must be separately applied
for each wavelet coefficient (approximation and details)
level.

In the last phase, the denoised EEG signal is reconstructed
by iDWT as shown in Eq (3).

TABLE 2. Thresholding selection rules.

Thresholding selection rule  Description

Threshold is selected using the principle of Stein’s Unbiased

Risk Estimate (SURE)

Threshold is selected equal to \[(21057]\17)

Threshold is selected according to mixture (Rigrsure and Sqtwolog)
Threshold is selected equal to Max(MSE)

Rule 1: Rigrsure

Rule 2: Sqtwolog
Rule 3: Heursure
Rule 4: Minimaxi

TABLE 3. The wavelet thresholding rescaling methods.

Wavelet threshold rescaling methods p  rescaling

one No scaling
sln Single level
min Multiple level
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X(t)

(a) hard threshold

FIGURE 2. Soft and hard thresholding methods.

IV. METAHEURISTIC ALGORITHMS

As previously mentioned, metaheuristic-based approaches
are conventionally classified into: evolutionary algorithm
[27], [28], swarm intelligence [63], and trajectory algorithms
[14]. In this paper, five metaheuristic algorithms are adopted
to find the optimal WT parameters for the EEG signal denois-
ing problem. These algorithms are carefully selected based on
their performance in solving the signal and image processing
problems. These algorithms have shown an excellent ability
in solving various signal and image processing problems [10],
[11], [28], [29]. The selected metaheuristic-based algorithms
are described as follows:

A. GENETIC ALGORITHM

GA was developed in [16] to mimic the natural phenomenon
of Darwin evolution theory. Based on the ‘survival of the
fittest’ principle, GA starts with many solutions, with each
solution being a vector of decision variables and each deci-
sion variable having a specific range of values. In evolution
context, the set of solutions is equivalent to population, each
solution is analogous to chromosome, each decision variable
is analogous to gene, and each value of the decision variables
is analogous to allele.

In order to apply a successful GA to COPs, both the objec-
tive function and problem representation must be properly
adjusted together with parameter tuning. GA typically has a
set of parameter, including the size of the population Pigig,
the number of generations P, the crossover rate P qossovers
and the mutation rate Pjusarion. In order to build an effi-
cient and robust GA, the parameter settings of each COP
must be closely examined. Algorithm 1 shows the high-level
schematic pseudo-code of GA that starts with a population
of candidate solutions X pom, Where Xcprom 1S an augmented
matrix of size Pgj;e X N and N is the number of decision vari-
ables in each solution. Initially, the population X, is filled
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Ysoft(t)

-5 ) X(t)

(b) soft threshold

with random candidate solutions across the problem search
space, that is, Xcnrom= chmml, Xchromz,- . ~aXchromPSize- Each
candidate solution Xj,' is evaluated based on an objective
function. The improvement loop in GA (see Algorithm 1,
line 3 to 9) repeats the following steps until a termination
criterion is met: select the parents (new population X¢pom”)
that will be used to generate the next population which will
pairwise crossover with a probability of Pyyssover t0 cOme
up with a new population X pp,”" . Afterward, each pairwise
solution will be checked if it must be mutated with probability
Prutation to come up with Xeprom’”. The new population will
be reevaluated, and the X ;0m”° Wwill be substituted with
the population Xj,;om based on such selection method. This
procedure is followed to determine whether the offsprings are
fit or not. This process will be repeated several times until an
optimal solution is reached.

Algorithm 1 Genetic Algorithm Pseudo-Code
1: Xcnrom <— Generate_Initital _Population
2: Evaluate(X 0m)
3: while (Stopping criterion is not met) do
4 Xeprom < Selection(X prom)
5 Xenrom” < Crossover (Xchrom’)
6: Xchrom”” < Mutation (Xeprom™)
7. Evaluate(Xcnrom™”)
8
9

: Xehrom < Rep]acement Xenrom™ Y Xehrom)
: end while

B. HARMONY SEARCH ALGORITHM

Harmony search (HS) is an evolutionary algorithm estab-

lished by Geem Z.L. [17]. HS has five main procedural steps

that are summarized in Algorithm 2 and described as follows:
Step 1: Initialize HS parameters: The HS param-
eters that are required for solving the optimization
problem are specified in this step. These parameters

VOLUME 8, 2020
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Algorithm 2 Harmony Search Algorithm Pseudo-Code

SetN,X;,Vi=1,2,...,N,
Initialize harmony search parameters HMCR, PAR, NI,
HMS, FW.
Generate HM solutions
Evaluate (f (x/))), Vj = (1, 2, ..., HMS)
while Stop criterion is not met do
if (U(0, 1) < HMCR) then
x" = Memory consideration(x)
if (U(0, 1) < PAR) then
x" = Pitch adjustment(x")
end if
else
x" = Random consideration(x")
end if
if (F(x") < f(x’Vorsty) then
Update the HM by include x” and exclude x "™,
end if
end while

include the harmony memory consideration rate
(HMCR), which determines the rate of selecting
the value from the memory, the harmony memory
size (HMS), which is similar to the population size
in other EAs, pitch adjustment rate (PAR), which
determines the probability of local improvement,
the fret width (FW), which determines the dis-
tance of adjustment, and the number of improvisa-
tions (NI) or the number of iterations.

Step 2: Initialize the harmony memory:
The harmony memory (HM) is a repository
of the population individuals, where HM =
[x!, %%, ... ,xHMS]T. In this step, these individuals
are randomly generated as follows: xl’ = LB; +
(UB; — LB;) x U(0,1),Vi=1,2,...,Nand Vj =
1,2,...,HMS, and U(0, 1) generates a uniform
random number between 0 and 1.

Step 3: Improvise a new harmony: A new har-
mony vector is generated as x’ = (x], x5, -, xy)
based on three operators, namely, (1) memory con-
sideration (MC), (2) pitch adjustment (PA), and (3)
random consideration (RC). These operators assign
a value for each decision variable x| in the new
harmony as formulated in equation (5):

x/ € {xl.l,xl.z, . ..,xl.HMS}
w.p. HMCR x (I — PAR) {MC}
' — x4+ U(=1.1) x FW
g Eu UL Dx ©)

w.p. HMCR x PAR {PA}
xl.’ € X,’
w.p.1-HMCR {RC}

Step 4: Update the harmony memory: If better,
the new harmony vector, X' = (x|, x5, -+, xy),
replaces the worst harmony x%' stored in HM.
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Step 5: Check the stop criterion: Repeat steps 3
and 4 of the HS algorithm until the stop criterion
(which usually depends on NI) is met.

C. PARTICLE SWARM OPTIMIZATION

The application of PSO in optimization was initially studied
in [19]. The PSO algorithm is initialized with a population of
candidate solutions called swarm. Each candidate solution is
called a particle, and each particle iteratively vacillates across
the search space. In each iteration, each particle is influenced
by the position of the best solution that is found in terms of
the objective function achieved earlier by itself (local best)
and by the best solution among the neighbors of the particle
(global best). Each particle which performance is decided by
an objective function is continually attracted to the local and
global best. This situation mimics the social behavior of bird
flocks [64].

Algorithm 3 shows the pseudo-code of PSO. in which each
particle is basically represented by the following characteris-
tics: (i) x; - the current position of particle #; (ii) v;- the current
velocity of particle i; (iii) y; - the local best of particle i;
(iv) y;- the global best of particle i. During the improvement
loop (see Algorithm 3, lines 6 to 16), these four characteristics
are updated for each particle at each time ¢ as follows:

WO FG 4+ 1) = Foi0)
i 1 6
WEED Ve i fout + 1) <fOoue) O

§ = binli =arg_min_f(3(1) (7)
where N is the number of particles in the swarm. In order to
update the velocity for each dimension j € [1, Ny], in Eq. (8),
v;j refers to element j of the velocity vector of particle i.
Eq. (8) also combines the following factors: (i) wv; j(t): where
v;j is the previous velocity and w controls the impact of
the previous velocity. The larger the value of w, the greater
the concern with exploration. By contrast, the smaller

Algorithm 3 Particle Swarm Optimization Pseudo-Code
1. for i=1,...,Ndo
2:  x; = GenerateNewPositionForParticle (i)
3 vi=20
& yi=X
5: end for
6: repeat
7
8
9

for i=1,...,Ndo

f (i) = EvaluateParticle (i)
: y; = Update Using Eq.(6)

10: v = Update Using Eq.(7)

11: for j=1,...,N;ydo
12: v; = Update Velocity Using Eq.(8)
13: end for

14 x;= Update Using Eq.(9)
15:  end for
16: until (Stopping Criteria is met)
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the value of w, the greater the concerns with exploitation.
(ii) yi j(t) — x; j(¢t) means that the particle i is attracted to the
local best direction. (iii) jzj(t) — x; j(t) means that the particle
i is attracted to the global best direction.

vi(t + 1) = wv; j(t) + c1r1 j(O)(ij(0) — x;,5(t))
+ o j(OG;() — xi (1)) (8)

where w is called the ‘intra weight’ that controls the historical
velocity, ¢ and ¢, are two acceleration constants, and | and
ry generate a uniform distribution random number between
0 and 1, thatis, r; and r» ~ U(O, 1).

The current position of the particle i, is updated as Eq.(7)

xi(t + 1) = x;(t) +vit + 1) ©))

D. FLOWER POLLINATION ALGORITHM

Flower pollination algorithm (FPA) is classified as nature-
inspired algorithm which inspired from the pollination
behaviour of the flowering plants. FPA is established by Yang
in 2012 [21]. In addition, we can summarize the procedure of
FPA in four main rules which are describing as follows:

1) Global pollination involves the biotic and cross-
pollination where the pollinators are carrying the pollen
based on Levy flights.

2) Local pollination involves abiotic and self-pollination.

3) The reproduction probability can be considered as
the flower constancy is proportional to the similarity
between any two flowers.

4) The switch probability p € [0, 1] can be controlled
between local pollination and global pollination Due
to some external factors such as wind, local pollination
will be a significant fraction p in the overall pollination
activities.

Procedurally, FPA is a swarm-based optimization initiated
with a set of provisional solutions. At each iteration, either
one of the two operators is invoked: local pollination operator
and global pollination operator. In a local pollination opera-
tor, the decision variables of the current solution attract the
other two randomly selected variables from two population
members. In a global pollination operator, the decision vari-
ables of the current solution attract the globally best solution
found. The switch operator is responsible for exchanging the
improvement loop either locally or globally. This process
repeats until a stagnation point is obtained.

To illustrate the mechanism of the FPA based on these four
rules, three key steps can be described in the following three
subsections.

1) GLOBAL SEARCH OF FPA (BIOTIC)

As mentioned previously, in this type of pollination the flow-
ers pollens are transferred by pollinators such as bees, bats,
birds..etc. to long distances. This ensures the pollination and
reproduction of the most fittest. Therefore, we can represent
the first and third FPA rules mathematically as follows:

X = x4 L(g* — ) (10)
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where xi’ 1 the pollen i or solution vector x; at iteration #, and

g* is the current best solution found among all solutions at
the current iteration. The parameter L is the strength of the
pollination, which essentially is a step size. Since insects may
move over a long distance with various distance steps, we can
use a Levy flight to mimic this characteristic efficiently [21],
[29], [65]. That is, we draw L>0 from a Levy distribution

- AL W)sin(zr/2) 1

L 9
= NES

(s >>s50>0) (11

I'(%) denotes the standard gamma function, and this distribu-
tion is valid for large steps s>0. In all our simulations below,
we have used A = 1.5.

2) LOCAL SEARCH OF FPA (ABIOTIC)

In this kind of pollination occurs without any pollinators.
Where it based on the wind and diffusion to transfer the
pollen. The local pollination (rule 2) and flower constancy
(rule 3) can we represented as follows:

xlf-i-l :xl.’ + e(x; —x;{) (12)

where x/? and x}‘ are pollens from the different flowers of
the same plant type. This essentially mimic the flower con-

stancy in a limited neighborhood. Mathematically, if x; and

x}‘ comes from the same species or selected from the same

population, this become a local random walk if we draw €
from a uniform distribution in [0,1].

3) SWITCH PROBABILITY IN FPA
The third key steps that affects in the performance of the
FPA is switch probability (rule 4). Where the value of p
will determine which path will follow either local or global
pollination. To start with, the value of p = 0.5 is initialing
used then the author found p = 0.8 is the best value for most
applications.

The three key steps can be summarized in the pseudocode
of the FPA shown in Algorithm 4.

E. B-HILL CLIMBING ALGORITHM
Hill climbing is a simple trajectory-based method which is
an iterative approach that starts with an arbitrary solution
to a problem and then progressing the search by means of
trying a trajectory in the problem space to find a better
solution. If the previous step produced a better solution,
an incremental change will continue to find a new solution.
This process is repeated until the solution can no longer be
improved. The problem with hill climbing algorithm is that
only uphill movements are accepted, which leads to getting
easily stuck in the local optima [14]. Several extensions
have been proposed to overcome this problem. The most
recent extension is proposed by Al-Betar in 2016 called B-
hill climbing [14], wherein a learning stochastic operator is
adapted in hill climbing to strike an efficient balance between
both exploration and exploitation during the search.

As aforementioned, the B-hill climbing algorithm is a
trajectory search technique that begins with single random
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Algorithm 4 Flower Pollination Algorithm Pseudo-Code
1: Objective min f(x), x € nd
: Initialize a population of n flowers/pollens with random
solution
3: Fins the best solution g* in the initial population
4: Define a switch probability p € [0, 1]
5: Calculate all (f{x)) for n solutions
6: =0
7
8
9

[\

: while (Stopping criterion is not met) do

fori=1,..,N do

if rnd < p then

10: Draw a (d-dimensional) step vector L which
obeys a Levy distribution

11: Global pollination via x/ ! = x! 4 L * (g* — x)

12: else

13: Draw from a uniform distribution € [0,1]

14 Randomly choose j and k£ among all solution
15: Do local pollination via xl.H'l =x/+¢€ (x}-x,t()
16: end if

17: Calculate(f{x’))

18: if f(x") < f(x) then

19: x=x

20: end if

21:  end for

22:  Find the current best solution g* among all x!
23: t=t+1

24: end while

solution, x = (x1, x2, ..., xy). During the searching space,
the new solution, x" = (x}, x}, ..., xy), will be initiated by
updating the current solution using two operators namely:
N-operator and B-operator, where these operators repre-
sents the sources for exploitation and exploration, respec-
tively. Specifically, the A -operator works as neighbourhood
search, while B-operator works as similar to mutation oper-
ator. At each iteration, the new solution can be improved
by N -operator stage or B-operator stage until the optimal
solution is reached.

The algorithm begins to generate the solution randomly,
then the solution is evaluated using the objective function
f(x). The solution is then modified using A/-operator, which
employs the improve(N (x)) function within a random range
of its neighbors. The solution x is as follows:

Xl =x; £ U@, 1) x bw 3Jie[l,N]

where i is randomly selected from the space range, i €
[1,2,...,N]. The parameter bw represents the bandwidth
between the current value and the new value.

In B-operator, within the § range where B € [0, 1],
variables of new solution will be assigned based on selected
randomly from available range or from the existing values of
the current solution as follows:

, Xy rnd < Bhc
X <«
1 .
x; otherwise.
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where rnd generates a uniform random number between
0 and 1 and x, € X; is the possible range for the decision
variable x.

Algorithm 5 shows the pseudocode of the g-Hill Climbing
Algorithm.

Algorithm 5 g-Hill Climbing Algorithm Pseudo-Code
1: x = Build Initial Solution
2: fix) = Evaluate the initial Solution
3: while Stop criterion is not met do
4 x' = N — Operator(x)
5. x”" = B — Operator(x')
6: iff(x”) <f(x)then
7
8
9:

replace x by x”
end if
end while

Finally, the B-hill climbing has successfully achieved opti-
mal results in many global problems such as sudoku problem,
feature selection, and signal processing [10], [11].

V. META-HEURISTIC ALGORITHMS AND WAVELET
TRANSFORM FOR EEG SIGNAL DENOISING:

PROPOSED METHOD

This section provide a full discussion for the pro-
posed methodology of the meta-heuristic algorithms
with wavelet transform to solve EEG signal denoising
problem. Algorithm 6 shows the pseudocode of the proposed
method framework. The proposed methodology run through
four phases where the result of each phase is an input to the
consecutive one. The four phases are presented in Figure 3
and thoroughly described as follows:

Algorithm 6 Tuning WT Parameters Using a Meta-Heuristic
Algorithms for EEG Signal Denoising
1: Initialize noisy EEG signal (nEEG), calculate the SNR,
MSE, RMSE, and PRD for
input EEG signal.
2: Initialize meta-heuristic operators, initialize solution(s)
Xi(i=1,2,.,N)N =5 wavelet parameters,
the initial solution X;(®, L, 8, A, p)
3: X(’,pt = Metheuristic (X, X;)
4: EEG Denoise Signals = WT (X(’)pt,nEEG)
5: EEG Out Signals = Evaluate(EEG Denoise Signals,
SNRut, SNRimp, MSE, RMSE, PRD).

o Phase I: Initialization . This phase involves three steps:
firstly, reading the input EEG signal x(n) from its source.
The WT denoising approach was developed based on the
original EEG signal being corrupted with white Gaus-
sian noise (WGN), Power Line Noise (PLN), and Elec-
tromyogram (EMG) estimation [9], [31], [32]. Where
these noises are exactly simulating the noises which will
corrupt the original EEG signal during the recording
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FIGURE 3. Proposed method for EEG denoising.

time such as eye blink noise, eye movement noise, elec-
tro signal distortion. The original EEG signals are pro-
vided then the signals corrupted by PLN using Eq. (13)
followed by signals corrupted by EMG using Eq. (14)
followed by signals corrupted by WGN using Eq. (15))
are given. These three types of noises corruption EEG
signals are used as a dataset to evaluate the performance
of proposed methods.

N(t) = A*sin2+ 7 *f 1) (13)
N(t) = E x rand(t) (14)
N =x(t)+o (15)

where A = 60 uV, E = (0-10) uV, f = 60 Hz,e is
the noise, o is the amplitude of the noise in this work
o =15 uV. The N signal is added to the original EEG
signal x to simulate PLN, EMG, and WGN respectively.
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Secondly, initialize WT denoising parameters (P, L, 5,
A, p) which are shown in Table 9, as well as the param-
eter for each meta-heuristic algorithm is also initialized
as shown in Table 4. Finally, compute the signal to noise
ratio (SNR) by Eq.(25), percentage of root mean square
difference (PRD) by Eq.(24), mean square error (MSE)
by Eq.(16), and root mean square error (RMSE) by
Eq. (27). This is to record the results of EEG signals
before and after denoising process.

Phase II:Tuning WT parameters by meta-heuristic
algorithm. In the proposed methodology, such meta-
heuristic algorithm discussed in Sec.IV is adapted to find
the optimal WT parameters which can be used for EEG
signal denoising problem. Initially, the solution of WT
parameters configuration is represented as a vector x =
(x1,x2, ... x,) where n is the total number of parameter
used for WT which is normally equal to 5. x; represent
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i 0.00028 db4 5 soft | rigrsure | min
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FIGURE 4. Optimal solution of WT parameters for denoising EEG signals using meta-heuristic.

TABLE 4. Meta-heuristic algorithms parameters.

meta-heuristic method

Parameters

B-HC-WT
HSA-WT
PSO-WT

GA-WT
FPA-WT

B5=0.5,N'=5, and D=1, FEN=10000
HMCR=0.95,PAR=0.1, N'=5, and D=20, FEN=1000
c1=2,c2=2, N'=5, and D=20, FEN=1000
Prutation=0.2, Perossover=0.9, N'=5, and D=20, FEN=1000
P=0.8, N'=5, and D=20, FEN=1000

the value of mother wavelet function parameter ®, x;
denotes the value of decomposition level parameter L,
x3 refers to the thresholding method S, x4 represents the
value of thresholding selection rule parameter A, and x5
represents the re-scaling approach p, where the possible
range for these parameters are selected from Table 1.
Fig. 4 shows an example solution of WT parameters
for denoising EEG signals. The selected metaheuristic
algorithm evaluates the solution using the MSE objec-
tive function which is formulated in Eq.(16).

N
MSE = zlv > Lx(n) —F(m)1 (16)

n=1

where x(n) denotes the original EEG signal and X(n) is
the denoised EEG signal obtained by tuning the wavelet
parameters using the meta-heuristic algorithm.
Iteratively, the randomly generated solution(s) under-
goes refinement using the selected meta-heuristic algo-
rithm. The final output of this phase is an optimized
solution x;,, = (x],x3, ... x,) which will be passed to
the next phase.

Phase III:EEG denoising using WT based on x,,,.
As aforementioned in Sec. III-A, the denoising process
of WT involves three main steps that are visualized
in Figure 1 and described in more details below:

— EEG signal decomposition using DWT. In this step
the DWT is applied to decompose the noise of the
input EEG signals x(n). In decomposition process,
we must use the first two x(’)pt parameters, namely,
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the mother wavelet furcation p and the decomposi-
tion level L). Figure 5(a) shows the DWT procedure
for two levels as example, where the noisy EEG
signal is divided at each level into cA and cD. The
latter is processed using a high-pass filter, while the
former is processed using a low-pass filter and is
decomposed for the next level. The EEG signal is
convolved using the high-pass and low-pass filters,
while the block({2), which is represented by the
downsampling operator, is used to keep the even
index elements of the EEG signal. The EEG sig-
nals are separated into cA and cD based on their
frequency and amplitude.

— The second step of EEG denoising is Thresh-
olding which is applied based on the noise level
of the coefficients. In this step, the last three
wavelet parameters, namely, the thresholding type
(B), the thresholding selection rules (A), and the
re-scaling methods (p), must be selected from x(’)pt.

According to [66], using a thresholding operation

on the input noisy non-stationary signal X can esti-

mate the denoised EEG signal as follow:

7Z = THR(X, §), (17)

where the THR denotes a thresholding function,
while § denotes a threshold value. The EEG denois-
ing performance in the wavelet domain depends
on the estimation of §. Therefore, several methods
have been proposed for estimating 6. Donoho and
Johnstone [47] calculated the threshold é on an
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FIGURE 5. EEG denoising procedure.

orthonormal basis as follows

8 = 0+/2logM (18)

where o represents the standard deviation of DWT detail
coefficients, while M denotes the length vector of the
DWT coefficients. Given that the threshold value § only
depends on cD and that cA has a low frequency EEG
signal and the highest amount of energy. We estimate
the value of § based on the coefficients level as follows:

X4(l) = THR(xz(), 8, 1=1,2,.... (19)

where X, represents a vector of threshold DWT detail
coefficients, [ denotes a wavelet decomposition level,
and §; denotes the threshold value determined for that
level. The wavelet generally provides two standard types
of thresholding functions (8), namely, hard and soft
thresholding [47], [62]. As shown in Figure 2, different
between hard and soft thresholding are described as

follows:
2l) = [xai(D| — 8 |idi(l)| > (20)
0 [xai(D] < &
2i(l) = Xai(l) |fa’i(l)| > 6 21
0 [xai (D] < 6

where i denotes the index of the DWT details coeffi-
cients at a level /. The thresholding DWT coefficients
can be expressed as follows:

=[(1) Xa(2) Xa(2)] (22)

o Reconstruction of the denoising EEG signal by iDWT .
We estimate the value of the original EEG signals X by
applying iIDWT on X as follows:

dnl =Y " cAu(k) ¢in—k)

L
DD

o CDix1(k) Yi(n—k)
(23)
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The reconstruction convolves the EEG signals using
upsampling (12), which involves the insertion of zeros
at the even index elements of EEG signals. Figure 5(c)
shows the iIDWT procedure for five levels as an example.

o Phase V: EEG Denoising Evaluation . The final phase
is evaluating the EEG output of WT. The evaluation
will done based on five criteria which are: Signal-to-
Noise-Ration (SNR), SNR improvement, Mean Square
Error (MSE) eq. (16), Root Mean Square Error (RMSE),
and percentage root mean square difference (PRD).

S [x(m) — X(m)2

PRD = 100 x (24)
SN x(m)]?
SV ()P
SNRy: = 101og (25)
' o SV [x(n) — ()12 }
Yo [8(n) — x(w)]?
SNRiym, = 1010 (26)
' E1o | SV k() — R }
1 N
RMSE = v Z[x(n) —x(n)]? 27)

n=1

where x(n) denotes the original EEG signal, X(n) is the
denoised EEG signal obtained by tuning the wavelet
parameters through the selected meta-heuristic algo-
rithms, and N is the sampling number.

The final decision about the denoise results are decided
by comparing the original criteria (i.e., SNR, MSE,
RMSE, PRD) with improved one (i.e., SNRous, SNRinp,
MSE, RMSE, PRD).

VI. RESULTS AND DISCUSSIONS

In order to check the performance validity of the pro-
posed WT-based metaheuristic approaches, an extensive and
exhaustive evaluation procedure, which will be described in
this section, is applied. The EEG datasets used in this study
are fully explained in Section VI-A. A comparative analysis
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FIGURE 6. Distribution of electrodes in Keirn’s EEG dataset.

among the proposed metaheuristic algorithms is provided
in Section VI-B. The results of the metaheuristic with the
best performance are compared with those of other well-
established methods. The results of the EEG signals denois-
ing using WT with and without metaheuristic algorithms
are compared i) by comparing the results obtained by sev-
eral approaches without optimization such as [1], [33] as
described in Section VI-C. ii) by comparing the results of
the metaheuristic algorithms to determine the best algorithm
for EEG signal denoising using WT parameters as described
in Section VI-B, and iii) by comparing the results of the
best metaheuristic algorithms for EEG signal denoising using
wavelet with those of algorithms without optimization as
described in Section VI-C.

A. EEG DATASET

The meta-heuristic algorithms are tested using two standard
EEG signal datasets, namely, Keirn§ EEG dataset® [30] and
the ‘Motor Movement/Imagery’* [15].

Keirn’s EEG dataset recorded EEG from seven subjects,
and the EEG signals were recorded from six electrodes,
namely, C3, C4, P3, P4, Ol, and O2. Figure 6 shows the
distribution of these EEG electrodes as recorded in [30].
During the recording time, each volunteer is given five mental
tasks, while each task is repeated thrice for two sessions. The
recording is performed with both rest eyes closed (REC) and
rest eyes open (REO) in each session. The period of recording
for each task was 10 seconds with a sampling rate of 250Hz
per second. This dataset can be considered a small dataset
with seven subjects (males and females between the ages
of 21 and 48). The relevance of this database lies in the multi-
task recording paradigm.

The Motor Movement/Imagery dataset [15] collected the
EEG signals from 109 healthy subjects using a brain-
computer interface software called BCI2000 system. The
EEG signals are recorded using 64 Electrodes (EEG chan-
nels) with sampling rate of 160Hz per second, where each

3 http://www.cs.colostate.edu/eeg/main/data/1989_Keirn_and_Aunon
4https://Www.physionet.org/physiobank/database/eegmmidb/
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FIGURE 7. Distribution of electrodes in EEG motor movement/imagery
dataset.

signal is stored in a separate EDF file. Each volunteer per-
forms several motor/imagery tasks that are mainly used in
different fields, such as neurological rehabilitation and brain-
computer interface applications. In general, these tasks con-
sist of imagining or simulating a given action, such as opening
and closing the eyes. The EEG signals are recorded from each
volunteer by asking them to perform four tasks according
to the position of a target that appears on the screen placed
in front of them. If the target appears on the right or left
side of the screen, then the volunteer must open and close
his/her fist corresponding to the position of the target on the
screen. If the target appears on the top or bottom of the screen,
then the volunteer must open and close his/her fists or feet.
Fig. 7 shows the distribution of electrodes in the EEG Motor
Movement/Imagery Dataset.

B. A COMPARATIVE ANALYSIS OF THE PROPOSED
METAHEURISTIC METHODS

This paper aims to find the optimal wavelet EEG denois-
ing parameters by using five metaheuristic algorithms. The
optimal results of these algorithms will be passed to WT to
denoise the EEG signals with the least MSE value. Therefore,
the results of these algorithms are compared in this section
to determine the most efficient metaheuristic algorithm that
can feed WT with the right parameter configurations and
empower its final outcomes. As mentioned above, the pro-
posed metaheuristic algorithms include FPA-WT, GA-WT,
HSA-WT, PSO-WT, and BHC-WT. The parameter values of
these algorithms are reported in Table 4. These parameter
values are set by performing several trial-and-error processes
to find the best configurations that resemble what has been
suggested in the literature [1], [33].

As aforementioned, WT parameters selection is typi-
cally performed based on experience or empirical evi-
dence. Therefore, the metaheuristic algorithms are proposed
as optimization methods for finding the optimal wavelet
EEG denoising parameters. Table 4 shows the metaheuristic
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TABLE 5. The optimal wavelet denoising parameters obtained by selected meta-heuristic Algorithms for PLN, EMG, and WGN noise for [30] EEG dataset.

Algorithm  Noise  Best F(x)  W.Rescaling  Thr. Sel  Thr.type Decom. Level = Wavelet Fun.
B-HC-WT PLN 0.0187 heursure soft one 5 db17
HSA-WT PLN 1.6490 rigrsure soft sln 5 bior3.9
PSO-WT PLN 0.0226 rigrsure soft min 5 coif5
GA-WT PLN 0.0161 heursure hard one 5 demy
FPA-WT PLN 0.0144 heursure hard one 5 db27
B-HC-WT  EMG 0.1234 heursure soft one 5 bior6.8
HSA-WT EMG 10.5265 heursure soft mln 5 coif3
PSO-WT EMG 0.0132 heursure soft one 5 bior2.4
GA-WT EMG 0.0103 rigrsure hard min 5 sym§
FPA-WT EMG 0.0098 rigrsure hard one 5 dbl
B-HC-WT  WGN 26.7800 heursure soft sln 5 db10
HSA-WT  WGN 30.5982 rigrsure soft one 5 db39
PSO-WT WGN 26.3133 heursure soft mln 5 bior3.3
GA-WT WGN 24.7403 heursure hard min 5 bior5.5
FPA-WT  WGN 24.7403 heursure soft sln 5 db35
BHC-WT EOG 0.960 minimaxi hard One 5 db41
HSA-WT EOG 0.960 minimaxi hard One 5 db41
PSO-WT EOG 0.0011 minimaxi hard min 5 sym7
GA-WT EOG 0.0012 sqtwolog hard sln 5 db9
FPA-WT EOG 0.0010 heursure soft one 5 bior3.9

Bold value indicates best solution achieved (F(x) lowest is best)

TABLE 6. The optimal wavelet denoising parameters obtained by selected meta-heuristic Algorithms for PLN, EMG, and WGN noise for Motor_Imaging

EEG dataset.

Algorithm  Noise  Best F(x) W.Rescaling  Thr. Sel  Thr.type Decom. Level = Wavelet Fun.
BHC-WT PLN 0.0115 heursure hard one 5 coif4
HSA-WT PLN 0.0538 heursure soft one 5 db25
PSO-WT PLN 0.0113 rigrsure hard one 5 db45
GA-WT PLN 0.0112 heursure hard one 5 db19
FPA-WT PLN 0.0111 rigrsure hard one 5 coif3
BHC-WT  EMG 0.0166 rigrsure hard one 5 bior2.2
HSA-WT EMG 46.9164 rigrsure hard min 5 db28
PSO-WT EMG 0.0073 rigrsure hard one 5 sym2
GA-WT EMG 0.0072 heursure hard one 5 db12
FPA-WT EMG 0.0071 rigrsure hard one 5 db13
BHC-WT  WGN 27.2010 rigrsure soft min 5 sym?2
HSA-WT  WGN 31.3605 heursure hard one 5 bior3.5
PSO-WT  WGN 24.7363 rigrsure hard sln 5 demy
GA-WT WGN 24.4624 heursure hard min 5 db24
FPA-WT  WGN 23.8184 rigrsure soft sin 5 db31

Bold value indicates best solution achieved (F(x) lowest is best)

algorithms parameters. FEN is a parameter to determine the
number of iterations used in the experiments.

The WT denoising parameters are typically selected based
on experience or empirical evidence. Therefore, to find the
optimal WT EEG denoising parameters, the five metaheuris-
tic algorithms are adapted. Table (5, 6) shows the optimal
wavelet denoising parameters that are selected x(/)pt using five
metaheuristic algorithms for PLN, EMG, and WGN noise
datasets [15], [30].

The results above are obtained by implementing the
selected meta-heuristic Algorithms on a LENOVO Ideapad
310, Intel Core i7, RAM 8G, using MATLAB R2014a.

To evaluate the final results, five criteria are used, including
SNR, SNR improvement, PRD, MSE, and RMSE. Table 7
shows the results of the WT EEG signal denoising using
five metaheuristic algorithms for the PLN, EMG, and WGN
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noise datasets [30]. The results show that FPA has success-
fully achieved an efficient EEG signal denoising based on
the measurement factors for PLN, EMG, and WGN noises.
For PLN noise, FPA obtains values of 0.0144, 0.1200,
30.5449, -3.7858, and 2.9700 for MSE, RMSE, SNR,,;,
SNR;up, and PRD, respectively. For EMG noise, FPA obtains
values of 0.0098, 0.0990, 33.6418, -2.4149, and 2.0793 for
MSE, RMSE, SNRy:, SNR;imp, and PRD, respectively. For
WGN noise, FPA obtains values of 24.7403, 4.3497, 2.2045,
2.0730, and 78.7682 for MSE, RMSE, SNR .1, SNR;p;, and
PRD, respectively. Figure 8 visualizes the results of the
selected metaheuristic algorithms based on MSE, RMSE,
SNRout, SNR;sp, and PRD. Figures (9, 10, 11) shows the
EEG signal denoising results for PLN, EMG, and WGN
respectively, where the proposed methods have obtained effi-
cient EEG signal denoising results. However, in some cases,
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FIGURE 10. EEG signal denoising using meta-heuristic algorithms.

these methods have omitted most of the signal energy during
the denoising process. These methods include the HS algo-
rithm in Figure (10), PSO in Figure (9), and PSO and GA
in Figure (11).

Table (8) shows the WT EEG signal denoising results using
the five metaheuristic algorithms for PLN, EMG, and WGN,
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respectively [15]. FPA has successfully denoised EEG signals
based on the measurement factors for PLN, EMG, and WGN
noises. For PLN noise, FPA obtains values of 0.0111, 0.1054,
54.2624, -0.0397, and 0.1920 for MSE, RMSE, SNR,,,
SNR;;up, and PRD, respectively. For EMG noise, FPA obtains
values of 0.0071, 0.0843, 56.1710, -0.0240, and 0.1554 for
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FIGURE 11. EEG signal denoising using meta-heuristic algorithms.

TABLE 7. Performance of denoising the EEG signals for 5 meta-heuristic Algorithms for PLN, EMG, and WGN for Kiern’s Dataset.

Algorithm  Noise SN Rout SNRimp PRD MSE RMSE  Time (Sec)
BHC-WT PLN 24.0674 -10.2633 6.2608 0.0187 0.1367 6.26E+02
HSA-WT PLN 12.6701 -21.6605 23.2537 1.6490 1.2841 5.34E+02
PSO-WT PLN 5.1023 -29.2284 55.5760 0.0226  0.1503 8.54E+02
GA-WT PLN 22.2106 -12.1201 7.7530 0.0161 0.1269 6.80E+01
FPA-WT PLN 30.5449 -3.7858 2.9700 0.0144  0.1200  5.66E+02
BHC-WT  EMG 23.9283 -12.1283 6.3619 0.1234  0.3513 7.50E+02
HSA-WT EMG 4.6194 -31.4373 58.7532 10.5265  3.2445 5.10E+02
PSO-WT EMG 19.4463 -16.6103 10.6582 0.0132  0.1149 6.92E+02
GA-WT EMG 33.2292 -2.8275 2.1804 0.0103 0.1015 8.20E+01
FPA-WT EMG 33.6418 -2.4149 2.0793 0.0098  0.0990  6.62E+02
BHC-WT  WGN 0.5005 0.6321 94.4007 26.7800  5.1749 5.88E+02
HSA-WT  WGN 0.6313 0.7628 92.9900  30.5982 5.5316  4.10E+02
PSO-WT  WGN -0.0376 0.0940 100.4340  26.3133  5.1296  5.83E+02
GA-WT WGN -0.0490 0.0825 100.5659  24.7403 49740  7.73E+01
FPA-WT  WGN 2.2045 2.0730 78.7682  24.7403 43497  6.81E+02
BHC-WT EOG 28.575 14.5599 3.7261 0.9600  0.9797 5.86E+02
HSA-WT EOG 28.575 14.5599 3.7261 0.9600  0.9797  4.41E+02
PSO-WT EOG 15.2342 11.8282 17.3097 0.001 0.0329 5.82E+02
GA-WT EOG 17.8881 12.5256 12.7525 0.001 0.0329  7.00E+01
FPA-WT EOG 36.3513 15.6052 1.5221 0.001 0.0329  5.69E+02

Bold value indicates best results where for SNR, SNRimp, highest is best and for MSE,

RMSE, and PRD, lowest is best

MSE, RMSE, SNRy:, SNR;imp, and PRD, respectively. For
WGN noise, FPA obtains values of 23.8184, 4.8804, 0.6180,
0.4677, and 94.7577 for MSE, RMSE, SNR;, SNRy,p, and
PRD, respectively. Figure (12) visualizes the results of the
selected metaheuristic algorithms based on MSE, RMSE,
SNRout, SNRimp, and PRD. In addition, Figures (13,14,15)
shows the EEG signal denoising results according to
PLN, EMG, and WGN respectively. Notably, the proposed
WT-based metaheuristic algorithms have obtained efficient
EEG signal denoising results, but not in all cases. The main
shortcoming of the denoising process is that this process
neglects the most useful energy signal for HS algorithm
as shown in Figure (14) and for B-hc and GA as shown
in Figure (15).

In general, the FPA has many advantages comparing with
other metaheuristic algorithms such that FPA is easier to
implement, it has fewer parameters which need to tuning
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as well as it has a stronger ability in the exploitation of
the problem space. Overall, The FPA shows a robust ability
and dominance for solving real-world optimization problems
rather than other metaheuristic techniques [65].

Also, the computational time for the proposed metaheuris-
tic algorithms has been computed in seconds, as listed
in Tables (7) and (8). The GA-WT achieved the optimum
results for the overall EEG noises in which reaching the
optimal WT parameters consumed less than 2 min. This result
is due to the GA does not require processing all solutions indi-
vidually on the basis of the approach to solving the optimiza-
tion problem and on the basis of the GA operations. Other
proposed metaheuristic algorithms have achieved the optimal
WT parameters in approximately 10 min, thereby implying
feasible future enhancements to improve competitional time.
Figure 16 depicts the competitional time for the proposed
methods using different EEG datasets.
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TABLE 8. Performance of denoising the EEG signals for WT-based meta-heuristic Algorithms according to PLN, EMG, and WGN for EEG motor

imaging dataset.

Algorithm  Noise SN Rout SNRimp PRD MSE RMSE  Time (Sec)
BHC-WT PLN 54.2216 -0.0805 0.1945 0.0115 0.1072  2.65E+02
HSA-WT PLN 47.5091 -6.7930 0.4213 0.0538  0.2319 1.37E+02
PSO-WT PLN 51.3788 -2.9232 0.2698 0.0113 0.1063 2.10E+02
GA-WT PLN 54.1121 -0.1899 0.1930 0.0111 0.1054  2.83E+01
FPA-WT PLN 54.2624 -0.0397 0.1920 0.0111 0.1054  2.60E+02
BHC-WT  EMG 52.6254 -3.5697 0.2337 0.0166  0.1288 2.75E+02
HSA-WT  EMG 6.3358 -49.8593 48.2184 469164  6.8496 1.61E+02
PSO-WT EMG 55.3772 -0.8179 0.1703 0.0073 0.0854  2.21E+02
GA-WT EMG 56.1401 -0.0550 0.1560 0.0072  0.0849  2.48E+01
FPA-WT EMG 56.1710 -0.0240 0.1554 0.0071  0.0843  2.25E+02
BHC-WT  WGN 0.1851 0.3354 97.8912  27.2010 5.2155 1.04E+02
HSA-WT  WGN -0.1503 -1.1413e-06  101.7451  31.3605  5.6000 1.44E+02
PSO-WT  WGN 0.2031 0.3533 97.6893 247363  4.9736  2.34E+02
GA-WT WGN 0.0045 0.1548 99.9481 244624 49459  2.77E+01
FPA-WT  WGN 0.4677 0.6180 94.7577  23.8184 4.8804  2.40E+02

Bold value indicates best results where for SNR, SNRimp, highest is best and for MSE,

RMSE, and PRD, lowest is best
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FIGURE 12. EEG signal denoising using meta-heuristic algorithms.
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C. COMPARING THE PROPOSED METHOD WITH
STATE-OF-THE-ART METHODS

In this section, two state-of-the-art methods for EEG
signal denoising are discussed, namely, the Al-Qazzaz
method [33] and the Kumari method [1]. These methods use
WT for solving EEG signal denoising problems in which the
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WT parameters are set based on a comparative study. The best
parameter configurations for WT as identified by these two
methods are shown in Table 9.

We compare the results of these two methods with those
generated by our proposed FPA-WT method, which outper-
forms the other methods as shown in the previous subsection.

10599



lEEEACC@SS Z. A. A. Alyasseri et al.: EEG Signals Denoising Using Optimal WT Hybridized With Efficient Metaheuristic Methods

Original EEG Signal

200 400 600
500 T T T T

Noisy EEG Signal with EMG

0 1400 1600 1800 2000

uv
o

. ST NP i .
e it My SN ol MV Lk g g Grigand ™ AL TSP ANt g NI P

~500 | | | |
0 200 400 600 800

Optimal EEG Signal Denosing using BHC algorithm

| l
1000 1200 1400 1600 1800 2000
200

uv
o
o

Optimal EEG Signal Denosing using HSA algorithm

Gptimal EEG Signal Denosing uting PSO Sigorithm
200 T T T T T T T T T

0 200 400 1000 1200 1400 1600 1800 2000 0 200 800 1000 1200 1400 1600 1800 2000

-200
Opnmal £Re Signal Denosing using Genetic algorithm

uv
o

I A oA ARt

~200 L L L L L L I I I

200 T T T T T T T T T

200 T T T T

-200
0 200 400 600 800 1000 1200 1400 1600 1800 2000 O 200 400 600 800 1000 1200 1400 1600 1800 2000
Optimal EEG Signal Denosing using FPA algorithm

uv
)

N P A AV U PP

200 | | | |
0 200 400 600 800

1000 1200 1400 1600 1800 2000

Time, in Milliseconds

FIGURE 14. EEG signal denoising using meta-heuristic algorithms.
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TABLE 9. Wavelet parameters range for Al-Qazzaz and kumari methods.
Wavelet parameters Al-Qazzaz method Kumari method
Mother wavelet (¢) Symlet (sym9) Daubechies (db4)
Decomposition level (L) 5 5
Thresholding type (3) soft and hard soft and hard
Selection method () Rigrsure Rigrsure
Rescaling approach (p) sln, one sln, one

The comparison is performed based on Kiern’s dataset [30],
where the original EEG signal is corrupted with WGN, PLN,
and EMG [9], [31], [32]. The final results are evaluated using
five criteria, namely, MSE, RMSE, SNR, SNR;;,,, and PRD.
Table 10 shows the EEG signal denoising results of the Al-
Qazzaz, Kumari, and FPA-WT methods. The first column
presents the ranking of each method based on the evaluation
criteria adopted.

According to [7], the EOG is a major EEG artifact which
can corrupt the original signal during recording time. The
efficient method for removing the EOG artifacts from the
original EEG will help obtain useful feature extraction and
enhance classification rate accuracy. Therefore, the proposed
method is applied to remove the EOG artifacts for the original
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signal where these artifacts were recorded for the same
subjects. Tables 5 and 7 list the results of testing the pro-
posed method using EOG artifacts. The results were evalu-
ated using five measures, namely, MSE, RMSE, SNR_Out,
SNR_imp, and PRD). The performance of the proposed
method (FPA-WT) has been compared with two state-of-
the-art methods [1], [33]; the results show that the proposed
method achieves better outputs than [1], [33], as summarized
in Table (10), in terms of the overall EEG signal denoising
criteria.

Figure 17 proves that the proposed FPA-WT method out-
performs both the Al-Qazzaz and Kumari methods for EEG
signal denoising based on different noises. FPA-WT obtains
the best results for WGN and EMG based on MSE, RMSE,
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TABLE 10. Comparing the proposed FPA-WT method with state-of-the-art methods for EEG signals denoising with different noises .

Rank Method Noise MSE SNR SNRimp PRD RMSE (¢) L 5 A p
1 Proposed method FPA-WT  WGN 24.7403 2.2045 2.0730 78.7682 4.3497 db35 5  Soft heursure sln
2 Al-Qazzaz method [33] WGN  26.186927  0.661388 0.792952  92.668167  5.117316 sym9 5 Soft rigrsure sln
3 Kumari method [1] WGN  27.006156  0.527605 0.6592 94.106513  5.196744 db4 5  Soft rigrsure sln
1 Al-Qazzaz method [33] PLN 0.025316  30.808240  -3.522428  2.881296 0.1591 sym9Y 5 hard rigrsure one
2 Proposed method FPA-WT  PLN 0.0144 30.5449 -3.7858 2.9700 0.1200 db27 5 hard heursure one
3 Kumari method [1] PLN 0.030888  29.944328  -4.386341 3.182610  0.196744 db4 5 hard rigrsure  one
1 Proposed method FPA-WT  EMG 0.0098 33.6418 -2.4149 2.0793 0.0990 dbl 5 hard rigrsure one
2 Kumari method [1] EMG 0015076  33.059211  -2.99741 2.223511  0.122786 db4 5 hard rigrsure  one
3 Al-Qazzaz method [33] EMG 0019144  32.021900 -4.034729  2.505561  0.138361 sym9 5  hard rigrsure  one
1 Proposed method FPA-WT  EOG 0.001 36.3513 15.6052 1.5221 0.0329 bior3.9 5  soft heursure one
2 Al-Qazzaz method [33] EOG 3.8699 22.4421 13.5106 7.5491 1.9672 sym9 5  hard rigrsure one
3 Kumari method [1] EOG 4.6352 21.6583 13.3562 8.262 2.153 db4 5  hard rigrsure one

Bold value indicates best results where for SNR, SNRimp, highest is best and for MSE, RMSE, and PRD, lowest is best

SNRout, SNRjyp, and PRD. For PLN, FPA-WT outperforms
the Al-Qazzaz method [33] in terms of MSE (0.0144)
and RMSE (0.1200). Meanwhile, the SNRyy;, SNR;yp, and
PRD values of these two methods are very close. In gen-
eral, finding optimal parameter configurations for WT by
using metaheuristic-based algorithms especially FPA, can
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FIGURE 17. Comparative analysis between FPA-WT, Sym9 and db4.

directly improve the performance of WT in the EEG signal
denoising process.

The results show that the proposed methods (Bhc-WT,
HS-WT, PSO-WT, GA-WT and FPA-WT) for EEG signal
denoising can produce better results than manual configura-
tions based on ad hoc strategy. Therefore, using metaheuristic
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TABLE 11. Effect of selected optimal thresholding on EEG signal denoising with different noises.

EEG Signal Method () L ) B8 A MSE RMSE  SNRouwt SNRiymp PRD
WGN Optimal (FPA-WT) db35 5 sln Soft heursure ~ 24.7403  4.349 2.2045 2.0730 78.7682
WGN Random selection db35 5 min Hard Minimax  30.5523 5.527 (-)0.0082  (-)20.8596  100.094
EMG Optimal (FPA-WT) dbl 5 one Hard rigrsure 0.0098 0.099 33.6418 (-)2.4149 2.0793
EMG Random selection dbl 5 one Soft Sqtwolog  5.7428 2.396 7.2532 (-)8.6053  43.3853

PLN Optimal (FPA-WT) db27 5 one Hard  heursure 0.0144 0.120 30.5449 (-)3.7858 2.9700
PLN Random selection db27 5 sln Soft Minimax 5.9778 2.444 7.0769 (-)28.4984  44.2748

Bold value indicates best results where for SNR, SNRimp, highest is best and for MSE, RMSE, and PRD, lowest is best
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selection.

approaches to optimize the parameters for EEG signals pos-
itively affects the denoising process performance of the WT
method.

In real case, we require to apply the proposed algorithm in
real-world applications. Therefore, we must first use some fil-
ters (preprocessing phase) to remove some famous noises that
often corrupted the original EEG signal during the record-
ing time such as high-pass, low-pass, band-pass, and notch
filters. Then the literature normally used the wavelet trans-
form (WT) method to denoise the EEG signal and extract the
features from the denoised EEG signal based on its sub-band
frequency such as Delta, Theta, Beta, Alpha, and Gamma.
However, in the literature [1], [2], [33] they used WT to
denoise the input EEG signal with applying the specific
WT parameters such as mother wavelet function (db4 and
sym9). Therefore, some important features from the input
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EEG signals will be lost during the WT denoising process.
Consequently, the proposed FPA-WT method try to achieve
better results compared with other literatures of [1], [33]
according to five criteria which are (MSE, RMSE, SNR_out,
SNR_improvement, and PRD) please see tables (7 and 8).
In FPA-WT, although the results of the five measurements
criteria is better, the important features of EEG signals are
preserved.

D. THE EFFECT OF SELECTED OPTIMAL THRESHOLDING
ON EEG SIGNAL DENOISING

As mentioned in Section III-A, the WT has the follow-
ing five parameters. The first parameter (®) selects the
denoising method, and the second parameter (L) deter-
mines the number of levels of EEG input signal that will
be decomposed. The three remaining parameters, namely,
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B, A and p, address the thresholding. Therefore, the optimal
threshold value is selected through the proposed method
(FPA-WT) after searching in the different value ranges. The
selection of the optimal thresholding values is determined
using the objective function (min(MSE)). This process is
performed by compromising the EEG signals before and after
denoising to confirm that the performance of the proposed
method (FPA-WT) expectedly achieves the optimal tuning for
the thresholding of WT parameters compared with random
selection for these parameters. Table (11) summarizes the
results of the proposed method (FPA-WT) in comparison
with random selection for the thresholding parameters with
different EEG noises. The results show the significance of
using the FPA-WT method in comparison with random selec-
tion. The proposed method can obtain optimal results for all
the EEG noises in accordance with MSE, RMSE, SNR_Out,
SNR_imp, and PRD measures. Figure 18 shows comparative
analysis between Optimal (FPA-WT) and random threshold-
ing parameters selection.

VIi. CONCLUSION AND FUTURE WORK

This paper proposes several variations of wavelet trans-
form (WT) method for EEG signal denoising based on sev-
eral meta-heuristic algorithms, including FPA-WT, GA-WT,
HSA-WT, PSO-WT, and BHC-WT. As previously men-
tioned, the denoising performance of WT depends on its five
main parameters, with each parameter having different types.
Selecting the suitable WT parameters is a challenging task
that is usually performed based on empirical evidence or
experience. The proposed meta-heuristic algorithms aim to
find the optimal WT parameters that can obtain the minimum
MSE between the original and denoised EEG signals.

The proposed WT-based metaheuristic methods are evalu-
ated using two standard EEG datasets, namely Kiern EEG
dataset and the EEG Motor Movement-Imagery dataset.
These dataset contain 7 and 109 volunteers respectively, and
capture EEG signals from 6 and 64 EEG channels based
on different mental tasks. These EEG signals are corrupted
using three different noises namely, PLN, EMG, and WGN
[9], [31], [32]. Five evaluation criteria are used, namely,
SNR, SNR improvement, MSE, RMSE, and PRD. Several
experiments are conducted to compare the performance of
the proposed WT-based metaheuristic methods and to deter-
mine which of these methods can support WT in produc-
ing efficient EEG signal denoising outcomes. Interestingly,
FPA-WT outperforms the other proposed methods (i.e., FPA-
WT, GA-WT, HSA-WT, PSO-WT, and SHC-WT) in almost
all datasets with different noise types (i.e, PLN, EMG, and
WGN) based on the five measurement criteria (i.e., MSE,
RMSE, SNR, SNR;;p, and PRD). For further validation, two
well-established WT methods with the best WT parameter
configurations are used for comparative evaluation. Again,
FPA-WT outperforms these methods in almost all datasets
with different noise types based on the five measurement
criteria.
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WT demonstrates many advantages and has been suc-

cessfully used for denoising the non-stationary signals, such
as ECG and EEG [11], [13]; however, most of the current
proposed methods degrade the energy of the original sig-
nal when reducing its noise. This situation typically occurs
because these approaches consider only the MSE between the
original and the denoised signals. Thus, an optimum set of
parameters in terms of the WT for EEG signal denoising as
a multi-objective optimization task will be considered in the
future. The multi-objective framework shall be applied with
two objective functions, namely, min(MSE) and max(SNR),
to achieve minimum noise and maintain the EEG signal
energy of the maximum SNR.
Another limitation of the current version of the proposed
method is time complexity. The proposed method (i.e.
FPA-WT) takes 10 min to obtain the optimum WT param-
eters. Although the current version is not proposed for real-
time applications, this problem can be overcome by reducing
the search space of the WT parameters and modifying the
(FPA-WT) algorithm for improved efficiency in the future.
In order to apply the FPA-WT for real applications, the band-
pass and notch filter in the preprocessing phase can be ini-
tially trigged. Thereafter, the output of this phase is used as
input for FPA-WT to denoise the EEG signal and to extract
the most important features. These extracted features can be
useful to manipulate several applications such as medical
applications or person identification-based EEG.
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