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ABSTRACT This paper proposes a robust position control scheme for a quadrotor UAV system under
uncertainties. The proposed control algorithms combine integral slidingmode and backstepping slidingmode
controllers in a double-loop control structure (i.e., inner-outer loop control). The design of the proposed
controller is divided into two subcontrollers, namely, attitude and position controllers for the quadrotor.
In this work, a nonsimplified six-degree-of-freedom quadrotor model is first established in the presence of
disturbances. Afterward, we develop a robust backstepping sliding mode controller for the attitude control
of the quadrotor. Next, a robust integral sliding mode controller is designed for the outer loop of the
quadrotor to ensure the position trajectory tracking capability in the presence of disturbances. The stability
and performance of the quadrotor is thoroughly investigated using Lyapunov stability analysis. Numerical
simulations demonstrate the effectiveness of the developed solutions for a quadrotor.

INDEX TERMS Backstepping control, sliding mode control, robustness, disturbance, quadrotor, unmanned
aerial vehicle (UAV), quadcopter.

I. INTRODUCTION
Unmanned aerial vehicles (UAVs) have a wide range of
practical and innovative uses, ranging from military appli-
cations such as defense, exploration, military surveillance,
navigation, and safety inspections to civil applications such
as media, entertainment, journalism, agriculture, shipping,
and delivery. Around the globe, the number of applications
of quadrotor UAVs has been increasing over the last few
years in particular thanks to their precise maneuverability,
high robustness, and ability to fly in any directions, land
and take off in limited space, and hover precisely above the
desired target. Indeed, all these unique features make quadro-
tors particularly promising among currently emerging tech-
niques [1]. However, certain factors related to safety, security
and reliability limit what can be achieved with this technol-
ogy. For example, a high degree of autonomy of quadrotors
is an essential requirements for many quadrotor applica-
tions. Thus, designing an unmanned flight system, whether it
functions autonomously or nonautonomously (remotely con-
trolled from a ground station), often poses many engineering
challenges, including challenges related to sensor technology
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and hardware and software designs. Because a quadrotor
UAV is a very complex control system, such systems have
received considerable attention from researchers in the field
of automatic control.

The design of controllers for quadrotors faces at least
two formidable challenges from the perspective of control
theory. First, quadrotors are multiple-input multiple-output
(MIMO) unstable nonlinear systems. Such a control system is
coupled and under-actuated due to its six degrees of freedom
(DOFs) and four actuators. Second, quadrotors, like other
types of UAVs, are always subject to external and internal dis-
turbances, model uncertainty, and parametric perturbations.
To ensure the stability of quadrotors, robust controllers are
often developed to reduce the effects of disturbances and
uncertainties.

The development of effective control strategies for quadro-
tors has been extensively studied and applied in a diverse
range of applications for quadrotor applications. For sim-
plicity, quadrotors are initially linearized around preselected
equilibrium conditions. The operation point(s) of quadrotors
are usually chosen to be a hover point or any other tracking
point. As a result, various linear control algorithms such
as proportional-integral-derivative (PID) control [2]–[5],
proportional-derivative (PD) control [6], proportional plus
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second-order differentiator (PD2) control [7], and linear
quadratic regulator/Gaussian (LQR/LQG) control [8], have
been applied to achieve the control objectives. These tradi-
tional linear controllers for quadrotors, which involve linear
approximations of the system dynamics around single or
multiple operating points, are desirable in realistic autopi-
lot design. However, these methods face the drawback of
performance degradation when the aircraft deviates from its
designed operating points. Strictly speaking, the inherent
nonlinearity and strong coupling properties of a quadrotor
pose many limitations for these linear control strategies.

To overcome the limitations of linear strategies, a variety
of nonlinear algorithms have been proposed in the literature.
Generally speaking, robust nonlinear techniques efficiently
increase the stability of the basin of attraction and achieve
acceptable performance under unpredictable changes in the
environment, enabling aggressive maneuvering and accurate
trajectory tracking. Nonlinear control techniques were ini-
tially considered in [9] and [10] to autonomously control the
vertical take-off and landing (VTOL) of a 3-DOF helicopter
and aircraft. The motion of a fixed-wing helicopter is con-
trolled through the force produced by varying the angular
speeds of two rotors: the main rotor and tail rotor. In con-
trast to a fixed-wing helicopter, a quadrotor has 6-DOF air-
frame dynamics and strong coupling of the yaw, pitch and
roll motions, which render the control design much more
challenging [11]. However, in some cases, the design of a
controller for a classical helicopter could be applied to a
quadrotor with some modifications and vice versa. Many
studies have considered multiple nonlinear controllers for
different autonomous control designs of quadrotors, such
as feedback linearization [12]–[15], dynamic inversion [16],
singular perturbation [17], sliding mode control [18]–[21],
backstepping [18], [22]–[28], and other related adaptive non-
linear controllers [10], [18], [29], [30]. Considering fault tol-
erant control (FTC), various nonlinear algorithms including
backstepping, sliding mode and adaptive FTC approaches for
quadrotor attitude and altitude tracking can be found in [31],
[32], and references therein.

In the context of nonlinear control, [13] was the first work
to propose a nonlinear controller for a quadrotor, in which
the authors designed a dynamic feedback controller based on
so-called exact feedback linearization for the position track-
ing of the quadrotor. Simulation of their proposed control
strategy showed acceptable performance even in the pres-
ence of external disturbances such as wind and turbulence.
Nonetheless, designing a controller using only the feedback
linearization approach requires an accurate model with stable
zero dynamic in order to cancel out nonlinear terms (see
[10], [33]). Thus, real-time implementation using a feedback
linearization controller is unfeasible since the zero dynamics
of a quadrotor are “marginally” stable, and it is difficult to
achieve an accurate model in practice due to the unavoidable
internal uncertainties such unmodeled dynamic uncertainties
and parametric uncertainties [10], [15]. Although the authors
of [13] utilized the simplified model of a quadrotor presented

in [9], they found that controlled quadrotor was sensitive to
sensor noise as well as modeling uncertainty. In this context,
dynamic inversion, presented in [16] and falling under the
definition of feedback linearization control to some sense,
can achieve satisfactory trajectory tracking only if the resid-
ual or internal dynamics are stable. This situation renders
the control design much more challenging in the presence
of marginally stable zero dynamics. Thus, if such a feedback
linearization approach is to be implemented in practice, then
it should be accompanied by another control technique, such
as neural networks or sliding mode control [14].

With recent dramatic developments in control strategies for
quadrotors, increasing attention has been paid to recent robust
control approaches such as sliding mode and backstepping
control. Generally speaking, a controller designed for quadro-
tors is divided into two subcontrollers: an attitude controller
(inner loop) and an altitude/position controller (outer loop).
For example, in [19], the authors proposed a slidingmode alti-
tude controller for a quadrotor in which they replaced the sign
function with a saturation function to significantly reduce the
effect of chattering. This work was extended in [20] by using
integral sliding mode altitude control for a quadrotor. In [21],
[34], the authors proposed an integral sliding mode controller
for the attitude control of a quadrotor system and a PID and
LQR controller for position control. A terminal sliding mode
position controller and a conventional sliding mode attitude
control were proposed in [35].

Some other researchers have also attempted the design of
backstepping controllers for quadrotor systems. For example,
[18], [24], [36] presented backstepping controllers for the
position control of the quadrotors. Nonetheless, most authors
have not considered uncertainties in their models and con-
troller designs. In a recent work [37], a robust backstepping
controller was successfully designed for the position control
of a quadrotor considering a specific type of uncertainty,
i.e., constant and maintained uncertainty. However, in many
existing works in the literature, backstepping controllers have
only been developed for the position (i.e., outer-loop) control
of quadrotors [18], [38]. According to the literature, it is very
important to focus more on the attitude control of a quadrotor
even when position control cannot be achieved.

Using this as a motivation, our paper presents a new robust
nonlinear control strategy for a quadrotor under uncertainties.
The design of the proposed controller is divided into two
subcontrollers: an attitude controller and a position controller.
In this paper, we develop a robust backstepping sliding mode
controller for the attitude control of the quadrotor and an
integral sliding mode controller to ensure the position trajec-
tory tracking capability of the quadrotor in the presence of
external disturbances. The main contributions of this paper
are summarized as follows:

1) A nonsimplified 6-DOF dynamic model of a quadrotor
based on the Newton–Euler formula with additive esti-
mated internal and external disturbances is established.

2) A robust nonlinear controller, namely, a backstep-
ping sliding mode controller, is designed for the inner
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control loop (i.e., attitude control) of the quadrotor in
order to achieve hover stability.

3) A robust integral sliding mode controller is designed
the outer control loop (i.e., position control) of the
quadrotor to generate the desired Euler angles.

4) Based on the hierarchical control scheme, the designed
controllers correspond to a rotational controller and a
translational controller and their stability is validated
by the Lyapunov stability theorem. More precisely,
the proposed controllers can overcome the effect of
disturbance.

5) The proposed theoretical results are validated by
presenting the simulation results for the quadrotor
model ender the influence of internal and external
disturbances. The necessity of the developed robust
controllers is clearly shown.

To the best of our knowledge, this is the first work in the liter-
ature that uses a robust backstepping sliding mode controller
for the attitude control of a quadrotor and a robust integral
sliding mode controller for the position control.

The rest of this paper is organized as follows. The 6-DOF
dynamic model is developed in Section II. Afterward, the
robust backstepping sliding mode controller for the attitude
control of the quadrotor is designed in Section III.A., and
the robust integral sliding mode controller is developed in
Section III.B. Numerical simulations are presented to demon-
strate the effectiveness of the developed solutions for a
quadrotor in Section IV. Conclusions and future work are
discussed in Section V.

II. QUADROTOR MODEL
The Newton-Euler equations of motion are commonly used
to model quadrotors with respect to two observational frames
of reference: the body-fixed frame and the inertial frame. The
body-fixed frame, which is denoted by ΣFB , is attached to
the center of mass of the quadrotor. Let ΣFG represent the
inertial frame, with p = [x, y, z]T denoting the Euclidean
position of the quadrotor w.r.t. ΣFG . The attitude of the
quadrotor is denoted by η = [φ, θ, ψ]T , in which |φ| < π

2 ,
|θ | < π

2 , and |ψ | < π . The associated angular veloc-
ity is denoted by ξ = [p, q, r]T . The dynamic model of
the quadrotor includes the linear translational velocity υ =
[υx , υy, υz]T .
The rotation matrix from ΣFB to ΣFG is obtained as

follows:

R(η) =

 cψcθ cψ sθ sφ − cφsψ cφcψ sθ + sφsψ
cθ sψ sφsθ sψ + cφcψ cφsθ sψ − sφcψ
−sθ cθ sφ cφcθ


where φ, θ and ψ denote the Euler angles of roll, pitch, and
yaw, respectively, with c(∗) = cos (∗) and s(∗) = sin (∗).
In particular, R(η) is a special orthogonal SO(3) matrix such
that R(η)−1 = R(η)T and det

(
R(η)

)
= 1, given that R(η)

is invertible.
Consider η, ξ , p and υ; the perturbed model of

the quadrotor system can be described by the following

equations:

η̇ = R−1
T

(η) ξ (1a)

ξ̇ = f1(η, ξ)+1fI (t)+ JP
−1τη (1b)

ṗ = υ (1c)

υ̇ = f2(υ)− gz3 +1fO(t)+ RT (η)
uth
m
z3 (1d)

y = p (1e)

where XT
=
[
ηT , ξT , pT ,υT

]
∈ R12 is the state vector, y is

the output vector, Jp = diag
{
Jx , Jy , Jz

}
represents the coef-

ficients of the rotary inertia, τη =
[
τφ, τθ , τψ

]T denotes the
moments in the body-fixed frame, g denotes the acceleration
due to gravity, z3 = [0, 0, 1]T , uth denotes the total thrust,
m denotes the mass of the quadrotor and RT (η) is the matrix
relating the rotation angles η to the angular velocity ξ and is
described as

RT (η) =

 1 0 −sθ
0 cφ cθ sφ
0 −sφ cθcφ

 , (2)

In this model, we assume that f1 : R3
× R3

→ R3 and
f2 : R3

→ R3 are sufficiently smooth vector fields on X,
which are given by

f1 (η, ξ) = −J−1p
(
fg(ξ )+ fa(η, ξ)+ S(ξ ) Jpξ

)
(3a)

f2 (υ) = −
1
m
dpυ (3b)

where dp = diag
{
dx , dy , dz

}
denotes the air drag coefficients,

S(ξ) is a skew-symmetric matrix expressed as

S(ξ) =

 0 −r q
r 0 −p
−q p 0

 .
and fg(ξ ) and fa(η, ξ ) are the gyroscopic effect and aerody-
namic friction torques, respectively:

fg(ξ ) = S(ξ)[i = 1]4
∑

(−1)i+1 Jiωiz3 (4a)

fa(η, ξ ) = dηR
−1
T

(η) ξ (4b)

where Ji ∈ R and ωi ∈ R denote the moment of inertia and
the angular velocity (in rad/sec), respectively, provided by
motor i for all i = {1, 2, 3, 4} and dη = diag

{
dφ, dθ , dψ

}
denotes the aerodynamic drag coefficients.

The control signal will be constructed in the following
section using the thrust uth given by uth = b

∑4
i=1 ω

2
i and

the torque τη given by

τη =

 τφτθ
τψ

 =
 lb

(
ω2
4 − ω

2
2

)
lb
(
ω2
3 − ω

2
1

)
k
(
ω2
2 + ω

2
4 − ω

2
1 − ω

2
3

)
 (5)

where bω2
i denotes the lift force provided by motor i; the

parameters b and k are positive constants that denote the
effects of the drag force, the shape and number of blades and
the pitch angle; and l denotes the distance between the motor
and the center of gravity.
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FIGURE 1. The schematic configuration of a quadrotor with the origin of
the body-fixed frame and the inertia frame.

Remark 1: In control theory, the robustness of a con-
trol system is often defined in relation to disturbances and
uncertainties. Thus, robust controllers should be designed to
behave ‘‘robustly’’ under the estimated matched/unmatched
disturbances and uncertainties [33], [39]. In this way, the sta-
bility of a closed-loop control system in the presence of
the existing disturbances can be guaranteed. To emphasize
the novelty of this work, we here discuss the differences
between the proposed work and the one published in [18]
in terms of the quadrotor modeling. In [18], the authors
designed their controllers without considering the estimated
uncertainties or disturbances in the model (see Eqs. (1)-(8),
(9), and (11) in [18]). Thus, neither the regular sliding mode
controller in the inner loop nor the backstepping sliding
mode controller in the outer loop was developed to behave
robustly in the presence of disturbances or model uncertain-
ties. In this paper, we fill this gap by proposing nonlinear
controllers that are developed based on nonlinear control
strategies to behave robustly under the estimated internal
and external disturbances. Unlike in [18], we incorporate
the estimated internal and external disturbances i.e., 1f

I
(t)

and 1fO(t), respectively, in (1), into the quadrotor model.
Our controllers are developed to behave robustly under these
disturbances.

III. ATTITUDE AND POSITION CONTROLLER DESIGN
In this section, a feedback control system with a two-loop
form, i.e. an inner loop and an outer loop, is designed for
position trajectory tracking. First, a backstepping sliding
mode controller is presented for the inner loop to ensure the

trajectory tracking capability of φ and θ along the desired roll
and pitch angle trajectories φd , and θd , respectively. Next,
the outer loop, i.e., the so-called position control subsystem,
is designed using robust integral sliding mode control. This
controller is mainly designed to overcome the effect of dis-
turbances and generate

1) the desired roll and pitch angle trajectories (φd , andθd ),
and

2) the thrust control signal (uth ).

A. ATTITUDE CONTROL PROBLEM STATEMENT
Consider the perturbed inner-loop subsystem represented by
(1a) and (1b), where 1fI (t) : R → R3 denotes the pertur-
bation introduced into the inner-loop system due to noise and
discretization. The system is said to be free of perturbation
if 1fI (t) = 0. The following assumptions are adopted when
designing the quadrotor control system.
Assumption 1: The desired reference signals ηd and its

first and second derivatives, i.e., η̇d and η̈d , are bounded
and available online. Moreover, the disturbance 1fI (t) is
bounded such that

∥∥1fI (t)∥∥ < γI for some known γI .
Assumption 2: In this work, we considered only matched

disturbance for ease of analysis.
Our first objective is to develop a robust controller

for the attitude control system such that η and ξ in (1)
track the desired reference signals ηd =

[
φd , θd , ψd

]T
and ξd =

[
pd , qd , rd

]T , respectively, in the presence of the
perturbation 1fI (t). The tracking errors of the inner-loop
control system are as follows:

ηe = ηd − η

ξ e = ξd − ξ

= RT (η
d ) η̇d − ξ

where ηd can be obtained from the outer loop (to be discussed
later) and the desired reference signal ξd can be precisely
estimated as

ξd = RT (η
d ) η̇d (6)

using (1a). The change of variables eT
I
=

[
ηeT ξ eT

]
in (1a)

and (1b) yields

η̇e = η̇d − R−1
T

(η)ξd + R−1
T

(η)ξ e (7a)

ξ̇
e
= ξ̇

d
− f1(η, ξ )−1fI (t)+ uI (7b)

where

uI = −J
−1τη (8)

denotes the attitude controller to be designed. Let

uI = ub
I
+ us

I
(9)

where ub
I
and us

I
represent for backstepping and robust sliding

mode controllers, respectively.
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1) BACKSTEPPING CONTROLLER FOR STABILIZING A
PERTURBATION-FREE INNER-LOOP SUBSYSTEM
Let us design a backstepping controller ub

I
for the case

of a perturbation-free inner-loop subsystem by substituting
1fI (t) = us

I
= 0 into (7) such that

η̇e = η̇d − R−1
T

(η)ξd + R−1
T

(η)ξ e (10a)

ξ̇
e
= ξ̇

d
− f1(η, ξ )+ ub

I
(10b)

where

ξ̇
e
= ξ̇

e
+1fI (t)−u

s
I
. (11)

This can be referred to as the nominal inner-loop tracking
error.

Clearly, ξ e in (10a) is the virtual input control that can be
used to stabilize ηd . The desired stabilizing function can be
selected as follows:

8 = ξd − RT (η) % (12)

where

% = 0ηe + η̇d (13)

in which 0 ∈ R3×3 is a designed positive definite matrix.
The stabilizing function given in (12) is selected by replac-

ing ξ e with 8 in (10a), i.e.,

1η̇e = η̇d − R−1
T

(η)ξd + R−1
T

(η)
(
ξd − RT (η)

)
%

= η̇d −%
= −0ηe

which shows that the origin ηe = 0 is globally exponentially
stable. Furthermore, using (6) and (12), it can be shown that

8|ηe=0 = ξ
d
− RT (η

d ) η̇d = 0. (14)

Now let us define a new variable

ϕe
1
= ξ e −8 (15)

and transform (10) into (ηe,ϕe) coordinates such that

η̇e = −ηe + R−1
T

(η)ϕe (16a)

ϕ̇e = ξ̇
d
− f1(η, ξ )− 8̇+ ub

I
(16b)

where

8̇ = ξ̇
d
− ṘT (η)% − RT (η)%̇ (17)

with %̇ = 0η̇e + η̈d and

ṘT (η) =

 0 0 −θ̇cθ
0 −φ̇sφ −θ̇sθ sφ + φ̇cθcφ
0 −φ̇cφ −θ̇sθcφ − φ̇cθ sφ

 . (18)

Taking V
b

I
=

1
2η

eTηe + 1
2ϕ

eTϕe as a composite Lyapunov
function (LF), we obtain

V̇ = ηeT η̇e + ϕeT ϕ̇e

= −‖ηe‖2 + ηeTRT

−1
(η)ϕe + ϕeT ϕ̇e

= −‖ηe‖2 + ϕeT
(
R−1
T

(η)Tηe + ϕ̇e
)

Considering (16b) and (17), taking

ub
I
= 8̇+ f1(η, ξ )− RT

−1(η)Tηe − ξ̇
d
− ϕe (19)

yields V̇
b

I
= −

(
‖ηe‖2 + ‖ϕe‖2

)
< 0.

Remark 2: This result shows that the origin ηe = ϕe = 0
in (16) is asymptotically stable. Since ϕe = 0 and 8|

ηe =

0 = 0 as per (14), we conclude that the origin ξ e = 0 is also
asymptotically stable.

2) ROBUST SLIDING MODE CONTROLLER FOR AN
INNER-LOOP SUBSYSTEM WITH UNCERTAINTY
Given that the desired output should track ηd and ξd ,
we define the inner-loop sliding surface in the error space as
fo1lows:

sI =
[
ηe

ξ e

]
(20)

where sI ∈ R6. Clearly, on the sliding surface sI = 0,
the trajectory is governed by ηe = ξ e = 0. Taking the time
derivative of the sliding manifold in (20) yields

ṡI =
[
η̇e

ξ̇ e

]
(21)

Consider the LF V = 1
2 s
T
I
sI , which implies that

V̇ = s
T

I
ṡI (22)

Considering the backstepping controller and substituting (21)
into (22) yields

V̇ = V̇ (ηe, ξ e)+ ξ e
T ˙̂
ξ e (23)

where V̇ (ηe, ξ e) = ηeT η̇e + ξ eT ξ̇ e and ˙̂ξ e = us
I
− 1fI (t).

Given that V̇ (ηe, ξ e) → 0 as shown in Remark 2, this leads
to the following inequality:

V̇ < −ξ e
T
(
1 fI (t)− us

I

)
(24)

Consider

us
I
= −βI Sgn

(
ξ e
)

(25)

where Sgn
(
ξ e
)
=
[
sgn (pe) sgn (qe) sgn (re)

]T and βI is
the constant to be designed to ensure the robustness of the
attitude controller. Substituting (25) into (24) yields

V̇ < −ξ e
T
1fI (t)− βI

∥∥ξ e∥∥1
<
∥∥ξ e∥∥ (ξ1 − βI )

< 0, ∀ βI > ξ1 > 0 (26)

since
∥∥ξ e∥∥1 ≥ ∥∥ξ e∥∥p for any p > 1.

Remark 3: The inner-loop controller (9), consists of two
parts: backstepping defined in (19) and sliding mode
controller defined in (25). In the first part of the inner-
loop controller, we designed backstepping to stabilize the
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FIGURE 2. Block diagram for the quadrotor control structure.

disturbance-free inner-loop quadrotor sub-system. In the sec-
ond part, the sliding mode control is designed to work
robustly together with backstepping controller against the
disturbance. Thus, the proposed inner-loop controller does
not have to switch between both backstepping and sliding
mode controllers and; therefore, it does not need to have any
disturbance detection mechanism.

B. POSITION SUBSYSTEM PROBLEM STATEMENT
Consider the perturbed outer-loop subsystem introduced in
(1c) and (1d), where 1f0(t) : R12

→ R3 denotes the
perturbation introduced into the system due to noise and
discretization.

The following assumption is adopted when designing the
quadrotor control system.
Assumption 3: The desired output pd and its first and sec-

ond derivatives, i.e., ṗ
def
= υ and p̈d

def
= υ̇d , are bounded

and available online. Moreover, the uncertainty 1f0(t) is
bounded such that

∥∥1f0(t)∥∥ < γ2 for some known γ2.

1) STABILIZING THE OUTER LOOP
The main control objective is to design an outer-loop control
system with a robust controller such that p and υ in (1c) and
(1d) track the desired outputs pd and υd , respectively. The
tracking errors of the outer-loop control system are, therefore,
expressed as: pe = pd − p and υe = υd − υ.

The change of variables eo =
[
pe

υe

]
in (1c) and (1d) yields

ṗe = υe (27a)

υ̇e = p̈d − υ̇e (27b)

If we assume that the desired ψd , that is the desired yaw
(ψ), is provided along with the waypoints, then we have the
remaining desired inputs, i.e., the roll φd , the pitch θd , and

the total torque uT , to reconstruct the control. Let

uo = col
(
φd , θd , uT

)
(28)

denote the robust control inputs for perturbed outer loop that
is to be designed.

Let us define the outer-loop sliding-surface function as
follows:

so = α1
∫ t
−∞

pedτ + α2pe + ṗe (29)

where α1 and α2 are selected to be positive constants. Taking
time derivative of the sliding manifold in (29) and using (27b)
yields

ṡo = α1pe + α2ṗe + p̈e (30a)

= α1pe + α2υe + υ̇e (30b)

= E (p, υ)−1fO(t)− R(η)z3uT (30c)

where uT =
uth
m and

E (p, υ) = α1pe + α2υe + p̈d + gz3 − f2(υ) (31)

For the equivalent sliding mode control, where ˙so = 0, and
given that α1 and α2 are positive definite matrices, it is easy to
show that (30a) satisfies the following Hurwitz polynomial:
λ2+α2λ+α1 = 0. Therefore, the position error will converge
to zero under the appropriate control design.

Let

R(η)z3uT = Ê(p,υ) (32)

with Ê(p,υ) defined as

Ê(p,υ) 1=

 ε1ε2
ε3

 = E (p, υ)+ βo Sgn (so) (33)

where βo is the constant to be designed to ensure robustness in
the outer loop. Assume that the desired yaw (ψd in assump-
tion 1) is provided along with the waypoints. Under this
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FIGURE 3. The performance of the tracking trajectory for perturbation-free control systems.

assumption, (32) basically consists of three equations with
three manipulated inputs, i.e., the desired roll φd , the desired
pitch θd , and uT , which can be found by solving (32). After
simple algebraic computations, the following equations are
obtained:

φd = arcsin

ε1sψd − ε2cψd∥∥∥Ê(p, υ)∥∥∥
2

 (34a)

θd = arctan
(
ε1cψd + ε2sψd

ε3

)
(34b)

Substituting (34) into (32) yields z3uT = R(ηd)T Ê(p,υ)
since R(ηd)−1 = R(ηd)T . Equivalently,

uT =

 cφd cψd sθd + sψd sφd
sθd sψd cφd − cψd sφd

cφd cθd

T Ê(p,υ). (35)

If βo is selected such that
βo ≥ γ2 >

∥∥1fO(t)∥∥ (36)

then it is easy then to show that s
T

o ṡo < 0 holds.
Remark 4: To emphasize the novelty of this work, we here

present the major differences between our work and the one
published in [18] in terms of control structure. The work [18]
proposed a backstepping sliding mode control technique for
the outer loop to achieve position trajectory tracking for a
quadrotor. They first developed a regular sliding mode con-
troller for the attitude subsystem (inner loop) to guarantee fast
convergence of the Euler angles. Then, the backstepping slid-
ing mode control technique was applied for position control
(outer loop) to generate the desired attitude (Euler angles).
By contrast, in our work, we develop a robust backstepping
slidingmode controller for the inner loop and a robust integral
sliding mode controller for the outer loop.
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FIGURE 4. The performance of the tracking trajectory for the perturbed control system.

Remark 5: In future work, it may be of interest to con-
sider replacing (29) with the recent integral or adaptive
sliding mode laws augmented with neural network proposed
in [40]–[45].

IV. SIMULATION
Here, the performance of the proposed control strategy is
illustrated through extensive numerical simulations using
MATLAB/Simulink. In this study, we consider the quadrotor
model given in (1)-(5) with the identified parameters given
in Table 1 and zero initial conditions for all states, i.e. η =
ξ = p = υ = 0.

A. SIMULATION RESULTS
The two controllers, i.e., the inner-loop backstepping-based
sliding mode controller defined in (9), (19) and (25) and the

TABLE 1. Quadrotor model parameters.

outer-loop integral sliding mode defined in (28), (34) and
(35), are applied to validate the robustness and trajectory
tracking performance of the proposed scheme. The desired
trajectory is chosen to be

pd =

 (1+ t) cos(0.5t)
(4+ 0.1t) sin(0.5t)

1+ 0.5t


and the desired yaw is initially set to zero, i.e., ψd

= 0. It is
obvious that pd = [1, 0, 1] at t = 0. Thus, the mission of the
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FIGURE 5. The performance of the tracking trajectory for the quadrotor control system with wind disturbances.

quadrotor is to start from the origin [0, 0, 0] and to proceed
to [1, 0, 1].

To explore the effectiveness of our proposed controller,
the following three scenarios are considered. Each simulation
lasts for 30 seconds.

Scenario I: In this scenario, numerical simulations are
carried out for the perturbation-free case (trajectory tracking
with the designed parameters given in Table 2). As shown
in the table, the parameters of the robust controllers, i.e., βI
in (25) and βo in (33), are designed to be small as possi-
ble. The performance of the proposed tracking control strat-
egy is illustrated in Fig. 3. The three-dimensional path (see
Fig. 3.(a)) shows that when the proposed scheme is applied,
the quadrotor successfully achieves the desired waypoint
tracking with very low control effort (see Fig. 3.(d)). It is
obvious that the velocity vector is directed toward the desired
path. Fig. 3.(a) and (b) demonstrate that the transition time

TABLE 2. Controller parameters.

required to move from the origin [0, 0, 0] to [1, 0, 1] is less
than one second, with less that 10% overshoot (see zd and z
in Fig. 3.(b) and the thrust uth in Fig. 3.(d)).
Scenario II: In this scenario, we consider trajectory track-

ing with uncertainty with the designed parameters given
in Table 2. The perturbation comes from high-frequency
additive white Gaussian noise (

∥∥1fI ∥∥∞ = ∥∥1fo∥∥∞ = 1),
which is added to the feedback signals from the noisy
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communication channels that connect the ground station to
the onboard processor or is generated by the undesirable
weather conditions (e.g., external wind gusts) and directly
affects the center of mass of the body.

As shown in Table 2, the robust property of the proposed
scheme is activated when the parameters, βI in (25) and βo in
(33), are designed to satisfy the stability conditions given in
(26) and (36), respectively. The performance of the proposed
tracking control strategy is depicted in Fig. 4. The three-
dimensional path in Fig. 4.(a) and the actual position response
in Fig. 4.(b) show that the proposed scheme succeeds in
tracking the desired tracking with a very small tracking error
and little deviation to the left and right in the X-Y plane.

Scenario III: In this scenario, we consider trajectory track-
ing with wind disturbances. The designed parameters of the
proposed controllers are given in Table 2. The perturbation
comes from wind gust with varying wind speed less than
2m/s, that is directly applied to the vx , vy and vz-axises. The
considered wind guest in this scenario results in

∥∥1fI ∥∥∞ = 1
and

∥∥1fo∥∥∞ = 2.
As shown in Table 2, the parameters βI in (25) and βo

in (33), are designed to satisfy the stability conditions given
in (26) and (36), respectively. The performance of the pro-
posed tracking control strategy is depicted in Fig. 5. The
three-dimensional path in Fig. 5.(a) shows that the proposed
scheme succeeds in tracking the desired tracking with a small
tracking error and little deviation to the left and right in the
X-Y plane. The peak position errors in the steady state are
pe ≈ [0.5, 1.9, 0.05]T as shown in Fig. 5.(b).

V. CONCLUSION
In this paper, robust nonlinear control strategies for a quadro-
tor subject to uncertainties have been presented. The pro-
posed control algorithm, which combines integral sliding
mode and backstepping sliding mode controllers in a double-
loop control structure, effectively ensures the trajectory track-
ing capability for the desired position. The stability and
performance of the quadrotor control system has been thor-
oughly investigated through Lyapunov stability analysis.
Numerical simulations demonstrate the effectiveness of the
developed solutions for a quadrotor. The simulation results
demonstrate that the proposed control algorithm effectively
controls the quadrotor system and achieves the desired spec-
ifications even under sever uncertainties.
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