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ABSTRACT This paper proposed a method of modulation format identification using Radial Basis Func-
tion Artificial Neural Network (RBF-ANN) trained with Asynchronous Amplitude Histograms (AAHs).
Compare with the traditional RBF-ANN, the proposed method is improved by applying Expectation
Maximization (EM), which takes advantage of the statistical feature of AAHs, to select center vector for
radial basis function. Assuming distribution of each bin in AAH as Gaussian mixture model (GMM),
the mean values of the model can be exploited as the center vector which obtained using EM. This
approach ensures that the center vector is unbiased and optimal. The center vector is implemented to
RBF-ANN to identify different modulation formats. Numerical simulation results demonstrated that identi-
fication accuracy was about 99% for three commonly-used modulation formats within the OSNR between
40 ∼ 10dB. And the CD tolerance was 1000ps/nm. In comparison, former center vector selection approaches
include K-means and random selection were applied. The result showed that the EM method improved the
identification accuracy by 2% to 4% when OSNR = 10dB and CD = 100ps/nm. Owing to its excellent
performance, this method can be employed in the next generation optical transport network for auto-adaption
modulation format identification.

INDEX TERMS Modulation format identification, artificial neural network, asynchronous amplitude
histogram, expectation maximization.

I. INTRODUCTION
The increasing demands of data bandwidth and line rate in
modern information society have motivated the upgrading
of optical networks. To fulfill need of massive data trans-
mission, optical transmission techniques such as single-mode
fiber, single-frequency laser, Erbium Doped Fiber Ampli-
fier (EDFA), Wavelength Division Multiplexing (WDM) and
advanced modulation scheme develop rapidly, making the
transmission capacity nearly catching the limits specified by
Shannon’s theorem. To tackle this challenge, heterogeneous
optical networks have gained significant attention over the
past few years which may lead to the network architec-
tures becoming more dynamic, complex, and transparent in
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nature. The growth of heterogeneous optical networks brings
opportunities and challenges to the performance monitor-
ing and management technology of optical communication
networks. In order to realize the next generation dynamic
reconfigurable optical network, it is necessary to monitor
the important parameters, isolate faults in time and opti-
mize the processing to ensure the transmission quality of
the network. Hence, it is indispensable to have appropriate
optical performance monitoring (OPM) technology dedicat-
ing for enhancing quality of service (QoS) and non-mistake
transformation. OPM technology includes optical signal-to-
noise ratio (OSNR) estimation, modulation formats identi-
fication(MFI), symbol rate estimation and others fiber link
crucial injuries monitoring, to name a few, chromatic dis-
persion (CD), polarization mode dispersion (PMD) and non-
liner interferences. Network operators need the integration of
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OPM and network management urgently. In 10G/40G single
polarization intensity modulation optical networks, there are
equipment providers delivering service to long-haul trans-
mission system using OPM module which can provide real-
time power, wavelength and OSNR monitoring. For optical
network, OPM can enhance scalability and flexibility, guar-
antee the quality of transmission service, provide protection
and recovery. Currently Alcatel-Lucent, Huawei and Beacon
are all carrying out relevant research. In terms of network
management, optical performance monitoring and real-time
knowledge of the quality of optical network transmission
are the basic basis for operators to ensure the quality of
their services. Accordingly, OPM is not only a concernment
for the current optical network, but also significant for the
new generation of optical network. So far, many efficient
OPM schemes are proposed by researchers. The mathemat-
ical foundations of basic Machine Learning techniques for
OPMwas described in system byKhan et al. [1]. In paper [2],
joint OPM and modulation format/Bit-Rate identification
approaches based on CNNwas proposed. Paper [3] illustrated
the experimental demonstration of simultaneous MFI and
symbol rate identification. Optical spectrum based OSNR
monitoring approach was demonstrated in paper [4]. Xu pro-
posed a joint scheme of dynamic polarization demultiplexing
and PMD compensation in paper [5]. Modulation Format
Identification is a technology to acquire the modulation infor-
mation of the transmission signal, obtain the heterogeneous
transmission service information and provide important ref-
erences for allocating the optimal transmission in the middle
node of the network.

Modulation format Identification has gained significant
attention over the past decades. Signals with different modu-
lation formats have different anti-injuries capacities on trans-
mission links. It is foreseeable that future optical network will
transmit signals with different modulation formats. To sup-
port this heterogeneity, OPM technology is expected to have
modulation format identification function to identify differ-
ent modulation formats. MFI techniques for optical network
include identification based on artificial neural networks
(ANN) [6], [7], K-means-based constellation diagram iden-
tification technique [8], stokes space-based methods [9], [10]
and newly proposed nonlinear power transformation [11],
etc. K-means-based constellation diagram identification need
ideal constellation diagrams which is hard to acquire under
practical circumstances. Stokes-based methods describe the
polarization of light beam with four parameters and signal
modulation information can be reflected well in Stokes-
space. To calculate these parameters, synchronize sampling
data is required which could be hampered by lacking of
high speed sampling equipment. The nonlinear power trans-
formation technique is based on Fast Fourier Transforma-
tion (FFT) and higher-order spectral. The drawback is that
an artificial choice of peak-to-average power ratio (PAPR)
threshold is needed. In contrast, ANN shows great flexibility
and efficiency because of its learning ability. By simulating
the learning process of humans’ brain, ANNmake reasonable

judgements and decisions for complex problems based on the
learned knowledge and experiences. This feature enhances
ANN’s robustness in function approximation, classification
and identification, especially when supported with abundant
data set.

ANNs have developed various branches with the time
passing by. Many of ANNs have been employed for MFI in
OPM, namely Backpropagation (BP) Network, Radial Basis
Function Artificial Neural Network (RBF-ANN) and Deep
LearningMethods [12]. Conventional BP bas two drawbacks:
1). the convergence speed of is slow; 2).easy to get stuck at
local minima. Deep learning Methods improve performance
by increasing network complexity with at least eight lay-
ers in the net. To ensure the real-time performance of the
deep learning methods, more and better hardware support
are required. For this reason, Deep learning Methods are
resources consuming which are intensely limited in OPM
systems, especially in embedded processing system for OPM.
In contrast, RBF-ANN has three-layer perceptron structure
and partial response feature, which saves hardware resources
than deep learning and performs better in classification ability
and learning speed than BP. RBF network with PCA had been
used for center selection, with application to aerodynamic
modeling of airfoils by Zhang et al. [13]. Kou used RBF as
a component for novel Wiener model to identify and model
the nonlinear dynamic systems with strong nonlinearity [14].
In a nutshell, among machine leaning methods, RBF-ANN is
more efficient and resources saving for OPM system.

Asynchronous Amplitude Histogram (AAH) is an efficient
technology for OPM system because of its low cost and bit
rate transparency. In previous work, RBF-ANN trained with
eye-diagram had been proved to be of limited practical use in
OPM [15]. The drawback of this approach is that eye-diagram
will deteriorate when lacking of clock recovery and compen-
sation for transmission impairments. In spite of eye-diagram,
AAH is a conventional approach that contains features of sig-
nals, and in contrast, eliminates the disadvantages may occur
among its counterparts. Recently, it has been used for symbol
rate identification and shows its advantage in avoiding usage
of expensive sampling hardware [16]. But it is worth noting
that the statistical characteristics of AAH is not fully analyzed
and exploited. In our work, statistical method (Expectation
Maximization) is implemented to analysis AAHs to make
better use of the statistical characteristics.

In this paper we propose a resource saving and precise
MFI technique based on the EM improved RBF-ANN trained
with AAHs. AAHs are applied to train the RBF-ANN to
identify different modulation formats in optical network. The
RBF-ANN is improved by using Expectation Maximization
to select center vector. Assuming distribution of each bin
in AAH as Gaussian mixture model (GMM), the average
values of the model can be applied as the center vector
which can be obtained using EM.Numerical simulations have
been performed for three commonly used signal polarization
modulation formats: Non-Return to Zero (NRZ) 16 quadra-
ture amplitude modulation (16-QAM), NRZ binary phase
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FIGURE 1. Eye diagram and asynchronous amplitude histogram for QPSK
signal.

shift keying and NRZ quaternary phase shift keying to test
algorithms’ reliability. The simulations results demonstrate
that the new method can successfully recognize different
modulation formats with OSNR between 40dB to 10dB. And
CD and PMD tolerance is also evaluated by experiment simu-
lation. Further simulation is implemented and proved that EM
method is better than existing center vector selection methods
for RBF-ANN in MFI.

The paper is organized as follows. In Section 2 the prin-
ciple of the AAH, RBF-ANN and improved center vector
method (EM) is described. Section 3 details the simulation
setup to validate the proposed method. Section 4 presents
the results and discussion. Finally, conclusions are stated in
Section 5.

II. PRINCIPLE
A. PRINCIPLE OF ASYNCHRONOUS AMPLITUDE
HISTOGRAM
Asynchronous Amplitude Histogram is an efficient technol-
ogy for OPM system because of its low cost and bit rate
transparency. Eye diagram is synchronous amplitude diagram
from a full bit period signal. When lacking of clock informa-
tion, asynchronous sampling has to be applied which’s ampli-
tude diagram is random sampling from a full bit period signal.
In another word, we can obtain the pulse amplitude distri-
bution map when there are overwhelming sampling points.
Fig.1 shows the eye diagram and AAH for QPSK signal.
AAH is an efficient technology for OPM system because
of its low cost and bit rate transparency. And AAH can
reflect the distinct features of different modulation formats
signals [17]. Fig.2 shows AAHs of signals with different
modulation formats in different OSNRs. As shown in Fig.2,
the amplitude distributions of varies modulation formats have
significant differences, to name a few, the maximum value,

FIGURE 2. AAHs obtained from NRZ-16QAM (top panel), NRZ-DPSK
(middle panel) and NRZ-QPSK (bottom panel) signals with different
OSNRs (40dB, 30dB and 20dB).

the minimum value, the position and number of peaks and
the slope between bins, which means we can use these differ-
ences as the features to identify modulation formats. Hereby,
ANN is implemented for MFI.

AAH can be applied to evaluate the quality of signals and
is highly sensitive to OSNR and transmission impairments
such as CD and PMD. It has also been used to monitor
the OSNR of PDM-QPSK signal systems [18]. Literature
[19] demonstrated in both theory and experiment that asyn-
chronous amplitude histograms can be exploited to monitor
CD and OSNR. In our work, AAH is used as the input of the
neuron network to identify modulation formats.

B. STRUCTURE OF RBF-ANN
ANNs are neuroscience-inspired computational tools which
are trained by input-output data to generate a desired map-
ping from an input stimulus to the targeted output [6]. The
structure of RBF-ANN has been well laid out in many recent
work [20], [21]. In the proposed technique, the AAHs are
used as inputs which are represented by M× 1 vectors x.
In the training phase of ANN, each input vector x has a
corresponding N× 1 binary vector y with only one non-zero
element, indicating the signal modulation format type. The
number of hidden layer neurons is setup between 4-10 and
optimized by applying simulation. Gaussian kernel function
φ is selected as the radial basis function in hidden layer.
Fig.3 illustrates the structure of RBF-ANN model built for
ours MFI purpose.

The model can be represented as

yj =
N∑
i=1

wijφ (‖x−ui‖), (j = 1, . . . ,p)

where ‖x‖2 =
m∑
k=1

x2k (1)
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FIGURE 3. Structure of modulation formats identification model using
RBF-ANN trained with AAHs.

FIGURE 4. structure of hidden layer of RBF-ANN.

where y is the output vector, x is the input vector, φ is the
gaussian kernel function, ui is the i′th center vector and wij is
the weight between hidden layer and output layer. In practical
use, the center vector ui is the AAHs of different the signal
modulation format type with no transmission impairments.
The weight wij is initialized to be random value and updated
following least mean square (LMS) criterion.

To be specific, radial basis function takes the following
form

φ (‖x−ui‖) = e
−
‖x−ui‖

2

σ2i (2)

where σ is the standard deviation of center vector. Expansion
index item of the radial basis Function, we have

‖x−ui‖2

σ 2
i

=
1

σ 2
i

(x−ui)T (x−ui)

=
1

σ 2
i

(
xTx−xTui − uTi x+u

T
i ui
)

=
2

σ 2
i

(
‖x‖2 + ‖ui‖2

2
− uTi x

)
(3)

Define bias b (x,ui) as

b (x,ui) = −
‖x‖2 + ‖ui‖2

2
(4)

Combine with Eq.3 and Eq.4 we have

φ (‖x−ui‖) = e
2
σ2i

(uTi x+b(x,ui))
(5)

According to this equation, we can demonstrate the hidden
layer neuron as Fig.4
where net i and net

′

i are the output vector of sum function
and input of active function, respectively. The Eq.5 and

FIGURE 5. Distribution of AAH bins of center vector and different
modulation formats.

Fig.4 illustrate the distinctions between BP neural network
and RBF neural network: a). weights between input layer
and hidden layer in RBF-ANN is depend on center vector;
b). bias b (x,ui) has automatic gain control function to outputs
of hidden layer of RBF-ANN; c). input vector of active
function net

′

i is self-adaptive to width of RBF σi because of
net
′

i = 2net i/σ 2
i . These features decide selection of the piv-

otal parameters in RBF-ANN: center vector ui and standard
deviation of center vector σ .

Conventional approaches of center vector selection for
RBF include K-means and random selection. K-means algo-
rithm is widely used in selecting center vector. The fundament
thought of K-means is searching for the minimum Euclidean
distance between input vector and center vector. The center
vector is initialized randomly and updates following

ui (n+ 1) = ui (n)+ η ‖x (n)− ui (n)‖ (6)

where η is learning rate, normally 0.01.
Random selection algorithm is selecting center vector ran-

domly.
The drawbacks of the existing center vector approaches

include: a). priori information of the sampled signals is not
used; b). the estimation is a biased estimate. For these rea-
sons, K-means and random selection are not recommended
in modulation format identification when AAHs is applied.

C. CENTER VECTOR SELECTION OF WITH EXPECTATION
MAXIMIZATION (EM)
The AAH is a statistical methods in which each bin is a
statistical value with unknown means and variances. The
center vector selection problem comes down to finding a
vector which’s distribution parameters match the PDF of
AAH bins for different modulation formats, as shown in
Fig.5. This problem can be tackled by applying Expectation
Maximization method which is elaborated in this section.

We assume the distribution of each bin in AAH as Gaus-
sian mixture model (GMM). The mixed probability density
function (PDF) can be represented as

p (xi) =
K∑
k=1

p (k) p (xi | k)

=

K∑
k=1

πkN
(
xi | uk ,

∑
k

)
, (i = 1, 2, . . . , 80) (7)
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where p(xi) is PDF of ith bin of AAH, p (xi | k) =

N
(
xi | uk ,

∑
k
)
is PDF of k th Gaussian model, also can be

explained as probability of model generating xi after k th

model is selected, p (k) = πk is weight of k th Gaussian
model, also called prior probability of selecting k th model,
we have

∑K
k=1 πk = 1, uk and

∑
k are mean and covariance

matrix of k th model, respectively.
Based on the model, the center vector selection prob-

lem can be expressed as: estimating parameter group
π1, . . . ,πk ;u1, . . . ,uk ;

∑
1 , . . . ,

∑
k of GMM PDF with

given sample data x = {x1, x2, . . . ,xN and order of GMM
model m (determined by number of hidden layer neurons).
Under this circumstance, Expectation Maximization (EM) is
implemented to estimate PDF parameter group.

Firstly, we introduce an latent variable γ which is a k
dimension binary random variable. In its k dimension, only
one specific element has a value of 1, while the other elements
have a value of 0. In fact, latent variables describe the proba-
bility of choosing the k th Gauss model for each sampling. So,
we have:

p (γk = 1) = πk (8)

Given a specific value of γ (i.e. knowing the Gaussian model
which data is sampled from), it can be concluded that the con-
ditional distribution of the sample y is a Gaussian distribution,
which following:

p (y|γk = 1) = N (y|uk ,
∑

k
) (9)

In fact, it is impossible to know the Gaussian model which
the data is sampled from. So the probability of sample y is:

p (y) =
∑

γ
p (γ ) p (y | γ ) =

∑K

k=1
πkN

(
y | uk ,

∑
k

)
(10)

The joint probability of sample set Y (n sample points) is:

L(u,
∑

, π) = L(y1, y2 . . . yN ; u,
∑

, π)

=

∏N

n=1
p(yn; u,

∑
, π)

=

∏N

n=1

∑K

k=1
πkN

(
yn | uk ,

∑
k

)
(11)

The logarithmic likelihood function is expressed as:

ln L(u,
∑

, π) =
∑N

n=1
ln
∑K

k=1
πkN

(
yn | uk ,

∑
k

)
(12)

We can get the parameters π1, . . . ,πk ;u1, . . . ,uk ;
∑

1 , . . . ,∑
k of the model by deriving and letting the derivative be

0. Then, u1, . . . ,uk are used as the center vector in the
RBF-ANN.

The selection of standard deviation of center vector σ , also
called the width of basis function, follows the function:

σ 2
i =

1
Ni

Ni∑
j=1

(
x ji − ui

)2
, (i = 1, 2, . . . , k) (13)

FIGURE 6. Simulation setup for MFI based on RBF-ANN trained with
AAHs.

where σ 2
i is the width of ith bin of AAH, Ni is the number of

data of ith bin of AAH, ui is the center vector generated from
the EM method.

III. SIMULATION SETUP
To demonstrate the validity of the proposed MFI technique
based on EM improved RBF-ANN trained with AAHs,
numerical simulations are implemented using the software
OptiSystem. Simulation is setup as shown in Fig.6.

Before simulation is set up, three modulation formats are
chosen to test the proposed technology. Among all possible
modulation formats, BPSK is widely recognized to have the
best sensitivity, for which it is chosen as a reference [22].
In contrast, QPSK can be seen as two parallel BPSK. Thus,
the sensitivity for QPSK is the same as that for BPSK. More-
over, with the development of coherent receiver, 16-QAM is
applied for long-haul transmission at a line rate over 10Gbaud
and high spectral efficiencies beyond 4 b/s/Hz [23]. These
modulation formats are commonly used in optical trans-
mission network, especially for long distance communica-
tion. On-Off Keying (OOK) is not within the consideration
because it is relatively easy to recognize OOK signal in the
time domain for its return to zero feature.

The simulation setup is shown in Fig.6. In Tx
module, 40Gbps NRZ-16QAM,40Gbps NRZ-DPSK and
40Gbps NRZ-QPSK were generated using Mach–Zehnder
modulators to modulate the symbols (generated by sequence
generator and pulse generator ) onto optical carrier. The
center wavelength of optical carrier, generated by continuous
wave (CW) laser, was 1550nm and its linewidth was 100kHz.
The single polarization signals then transmitted through the
optical channel. The optical signals were transmitted over a
fiber recirculating loop comprising of an 80km span of stan-
dard single-mode fiber (SSMF), a variable optical attenuator
(VOA), a EDFA and a 5nm bandwidth optical band-pass filter
(OBPF) for equalizing channel power. The VOA was utilized
to alter OSNRs of 16-QAM, DPSK and QPSK signals in the
range of 10-40dB in approximately (initially 40dB). At the
loop output, the CD/PMD emulator was applied to alter CD
of the signal from 0 to 2,000ps/nm and Differential Group
Delay (DGD) from 0ps to 10ps. The optical signals at the
output of emulator unit were filtered by a 0.4 nm bandwidth
OBPF to remove the redundant noise present in the signals.
Then, the signal was detected by a photodetector (PD).

By asynchronous sampling, the training data and testing
data were generated in form of AAHs. The training set swiped
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TABLE 1. Estimation accuracies of the proposed MFI technique using the
setup shown in Fig.7.

though OSNR values from 10 to 40 dB in steps of 5 dB,
CD from 0 to 2000ps/nm in steps of 200ps/nm and DGD from
0 to 10ps in steps of 1ps. The testing data covered OSNR
values from 10 to 40 dB in steps of 10 dB, CD from 0 to
2000ps/nm in steps of 500ps/nm and DGD from 0 to 10ps
in steps of 2ps. The different OSNR, CD and DGD values
in the training and testing sets ensure the robustness of the
MFI. The number of training data was three times of the
number of testing data. To be specific, 3000 training data
and 1000 testing data under certain condition were generated
for the simulation. After the data was sampled, expectation
maximization was utilized to find center vectors from the
training sets. These center vectors are used by RBF-ANN to
identify different modulation formats.

IV. RESULTS AND DISCUSSION
In this chapter, result of the simulation is detailed. Fig. 7
depicts the output vectors y of the RBF-ANN trained with
AAHs in response to 1000 input vectors x generated from
the testing data set with OSNR = 30dB, CD = 100ps/nm,
DGD = 5ps, number of hidden layer = 8. As we can see,
three commonly-used modulation formats can be classified
clearly as the output vectors show apparently differences.
In detail, for Fig.7 (a), output vector is [0.54 0.25 0.21]
in approximately. The first element (blue points) is over
0.5 which means the modulation format is estimated to be
16QAM to a great extent. In contrast, the output vectors
when identifying DPSK and QPSK are about [0.05 0.58
0.37] and [0.10 0.34 0.56] (Fig.7 (b) and (c)), which means
the technique perform well in identifying PSK, because the
maximum elements in both vectors (red points and green
points, respectively) are about 0.58 and 0.56. Table 1 sum-
marizes MFI results for 1,000 test cases in testing data set.
It is obvious from the table that the identification accuracy
of three considered modulation formats is over 99%. Though
the overall identification accuracy is acceptable, there are still
some faults occurring as labeled by back circles in Fig.7.
These faults occur in the overlap areas in the scatter plot.

To evaluate the effects of OSNR, CD and PMD on estima-
tion accuracy for RBF-ANN trained with AAH, Fig.8 illus-
trates the identification accuracy changing in response to
different OSNR, CD and DGD. For Fig.8 (a), it is evident that
the identification accuracy goes down gradually for all three
modulation formats with the drop down of OSNR. But over-
all accuracy is over 99% except for 16QAM (98.5% while

FIGURE 7. Elements of RBF-ANN output vectors y for
(a)NRZ-16QAM,(b)NRZ-DPSK, and (c)NRZ-QPSK modulation formats in
response to 1000 bin-count vectors x in the testing data set.

OSNR is 10dB), which means the RBF-ANN performs well
under different OSNR. It is noteworthy that the curve of
16QAM falls down faster than its counterparts, which means
the model is more robust while identifying PSK signal. For
Fig.8 (b), before CD reach 1,000ps/nm, the identification
accuracy reduces steadily with the increasing of CD. How-
ever, when CD grows to 1,500 and above, the identification
accuracy for 16QAM drops down sharply under 80%. The
identification accuracy for 16QAM dips to 42% when CD =
2,000ps/nm. These results prove that the tolerance for CD of
proposed approach is 1,000ps/nm. In Fig.8(c), the accuracy
drops down slowly with the increase of DGD. When DGD=
10ps, the accuracy is still over 99.5% for all three modulation
formats. The result reveals that the estimation accuracy is
slightly affected by DGD which means the PMD tolerance
of proposed approach is good.

To optimize the parameters of the kernel function and
improve the classification accuracy, simulation with different
hidden layer neurons is setup. The number of hidden layer
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FIGURE 8. Effect of OSNR, CD and DGD on identification accuracy for
proposed technique.

FIGURE 9. Identification accuracy of proposed technique with different
number of hidden layer neurons (from 4 to 10) when OSNR = 20dB,
CD = 100ps/nm and DGD = 5ps.

neurons is setup between 4-10 and optimized by applying
simulations when OSNR = 20dB, CD = 100ps/nm and
DGD = 5ps. Fig.9 show the identification accuracy when

FIGURE 10. Effect of different center vector selection schemes on
identification accuracy for 16QAM, DPSK and QPSK. The Fig.10 (a), (b) and
(c) show identification accuracy for all methods applying for 16QAM,
DPSK and QPSK respectively.

changing the number of hidden layer neurons. It is clear that
the identification accuracy sharply grows up to about 99%
with hidden layer increasing from 4 to 8. Then a slightly drop
down occurs for DPSK and QPSK from 99% to about 95%.
Likely, the accuracy for 16QAM signal fluctuates around
97%. Overall, when number of hidden layer neurons is 8, the
model performance best for all three modulation formats.

To prove the effectiveness of the newly proposed center
vector selection approach, we compared the identification
accuracy of RBF-ANN with three different center vector
selection methods. We assume the optimal number of hidden
layer neurons is 8 for these schemes. As we can see in table 2,
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TABLE 2. Estimation accuracies of three center vector selection schemes
with different OSNR (CD = 100ps/nm, DGD = 5ps, Number of hidden
layer neurons = 8).

accuracy rate of all approaches can reach 100% when OSNR
is 40dB and go down with the decline of OSNR for all three
modulation formats. When OSNR is 10dB, the identification
accuracy ofK-means andRandom selection basedRBF-ANN
see significant deterioration. In contrast, the EM methods
can still successfully identify different modulation formats
especially for DPSK and QPSK (99.1% and 99.2%). To clar-
ify the result, Fig.10 depicts effect of different center vector
selection schemes on identification accuracy for 16QAM,
DPSK and QPSK.

To compare different center vector selection approaches’
performance on each modulation formats, Fig.10 is made
from Table 2. For Fig.10 (a), the identification rates
of 16QAMgo downwith the deterioration of OSNR. Random
selection method is significantly affected by OSNR with an
average decreasing step of 1% and reach the lowest accuracy
96% among all panels. As for K-means, the drop step is about
0.6%which is moderate. In contrast, EM see slightly decrease
with the average step 0.4%. It is clear that identification
accuracy of EM is always the highest among three approaches
when OSNR is the same. When OSNR is 10dB, the EM
method improve the identification accuracy by 2% to 4%.
The circumstances for the other modulation formats is almost
the same. In summary, EM performs best among compared
approaches and usable with the OSNR between 40dB-10dB.

The reasons of EM method outperforms other approaches
can be conducted as the usage of priori information and its
unbiasedness which has been illustrated in section II.

V. CONCLUSION
In this paper, we proposed a MFI technique for hetero-
geneous optical networks using EM improved RBF-ANN
trained with AAH. The RBF-ANN is improved by optimizing
the center vector selection scheme with Expectation Maxi-
mization. The principle of this approach was also presented
and verified in the simulation. Numerical simulation results
demonstrate that identification accuracy is about 99% for
three commonly-used modulation formats within the OSNR
between 40∼10dB. And the tolerance for CD is 1000ps/nm.
In comparison, former center vector selection approaches
including K-means and random selection were implemented.
The result shows that the EM method improve the identifi-
cation accuracy by 2% to 4% when OSNR is 10dB. To con-
clude, the new method can successfully recognize different
modulation formats and promote the identification accuracy

than the approaches compared. It is ideal for MFI in future
heterogeneous optical networks.
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