
Received December 1, 2019, accepted December 22, 2019, date of publication December 27, 2019, date of current version January 6, 2020.

Digital Object Identifier 10.1109/ACCESS.2019.2962702

Nonlinear Channel Estimation for OFDM System
by Wavelet Transform Based Weighted TSVR
LIDONG WANG , CHUANG GAO , XIN DENG , YANG CUI , AND XUEBO CHEN
School of Electronic and Information Engineering, University of Science and Technology Liaoning, Anshan 114051, China

Corresponding author: Xuebo Chen (xuebochen@126.com)

This work was supported in part by the Fund of the Scientific Research Project of Liaoning Provincial Department of Education under
Grant 2019LNJC02, in part by the Funds of the National Natural Science Foundation of China under Grant 71571091, Grant 71771112,
Grant 51674140, and Grant 61903169, and in part by the Fund of the University of Science and Technology Liaoning Talent Project under
Grant 601011507-03.

ABSTRACT An efficient nonlinear channel estimationmethod for pilot-aided orthogonal frequency division
multiplexing system is proposed in this work. The considered channel is selective in time and frequency
domain, that is doubly selective channel. Wavelet transform based weighted twin support vector regression
is used for channel frequency response estimation, which is suitable for the regression of nonlinear system.
Different from traditional support vector regression algorithm, the proposed algorithm gives samples
different weights according to their variance calculated based on wavelet transform. The weights are added
into both first and quadratic terms of the objective functions to reduce the impact of outliers, which is likely
to appear in the received pilot signal polluted by noise. The proposed channel estimation algorithm has good
generalization ability and can reduce the influence of overfitting problem. The results of computational tests
show that the proposed algorithm is with better estimating performance compared to the classical pilot-aided
channel estimation methods.

INDEX TERMS Channel estimation, orthogonal frequency division multiplexing, twin support vector
regression, wavelet transform.

I. INTRODUCTION
Orthogonal frequency division multiplexing (OFDM) is a
multicarrier modulation technology, which has high spectral
efficiency and simple single tap equalizer structure. It is
an attractive multicarrier modulation technology, because it
divides the whole bandwidth into several overlapping nar-
row band channels with low bit rate. Furthermore, the inter
symbol interference (ISI) is a common problem in physical
channels. It can be eliminated by inserting cyclic prefix (CP)
in front of OFDM block at the transmitter. OFDM is robust in
high delay spread environments and can eliminate the need to
equalize the effect of the delay spread. This feature enables
the system to allow higher transmitting rates, so OFDM is
selected as the standard of digital audio broadcast, digital
video broadcast, some wireless local area networks and the
5-th generation cellular systems. It has been proposed to
be adopted in high speed train broadband communication
system [1]. Performance of the OFDM systems is affected
by channel estimation, timing synchronization and mobility.
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Due to the expansion of symbol length, OFDM systems are
very sensitive to inter carrier interference (ICI) [2]. In mobile
communication, ICI is introduced into OFDM symbol as the
channel impulse response changes with time, which further
reduces the performance. With the increase of mobile speed
and carrier frequency, this will become more serious [3].
Meanwhile OFDM can be demodulated by coherent or non-
coherent technology. Generally, coherent detection technol-
ogy uses channel state information, so coherent detection
method can get better signal-to-noise ratio (SNR) gain than
noncoherent method. This implies, channel state information
should be obtained using channel estimation for coherent
detection method. In order to achieve high reception quality
in applications with large delay and severe Doppler spread,
good design of channel estimator is essential.

Many methods have been adopted to estimate the selective
channels. Least square (LS), linear minimum mean square
error (LMMSE) [4]–[6] and discrete Fourier transform (DFT)
based methods [7]– [10] are conventional algorithms to
be used. In doubly selective scenarios, basis expansion
model (BEM) [11]– [13] and finite state Markov model
(FSM) [14] have been proposed to model the channel and the
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corresponding channel estimation algorithms were proposed.
Zhang et al. [15] developed an adaptive weighted averaging
estimator for OFDM systems.

In selective multipath fading channel, the channel response
presents complicated nonlinearities caused by some reasons,
such as the saturation of components and the dispersion
of optical fiber [16]– [18], which may lower the estima-
tion precision if using linear methods [19]. So it is nec-
essary to use the nonlinear method for channel estimation.
Yang et al. [20] proposed a channel estimator for doubly
selective channels by deep learning method, in which large
scale samples should be provided to training the estimation
system. While support vector regression (SVR) developed
from support vector machine (SVM) is suitable for regres-
sion of nonlinear systems and only small scale samples are
needed [21]–[22]. SVM is a statistical learning method based
on Vapnik-Chervonenkis (VC) dimension theory, which is
widely used in classification and regression [23]. The SVM
can be extended to the nonlinear situation by adopting of the
kernel trick. It has become one of the most effective tools for
pattern recognition and system regression [24]. So far, some
SVR algorithms have been used for wireless channel estima-
tion. Matilde et al. [25] developed a multiple-input multiple-
output channel estimation method based on SVR, but the
channel was assumed to be non-selective. Djouama et al. [26]
and Charrada and Samet [19] proposed OFDM channel esti-
mators using SVR for different application scenarios. How-
ever, the methods mentioned above are based on the basic
SVR, there are still shortcomings in computational complex-
ity and performance. In 2010, the twin SVR (TSVR) was
proposed by Peng [27]. It is with high computational speed
because it only solves two small-scale quadratic program-
ming problems (QPPs). Later, the concept of ε-tube was
introduced into ν-support vector regression (ν-SVR) [28]. In
the objective function, some data samples are forced to be in
ε -tube by introducing a parameter ν, which can improve the
performance of standard SVR. Enlightened by the idea of ν-
SVR and pinball loss [29], Yitian Xu proposed an asymmetric
ν-twin SVR regressionmethod for data regressionwith asym-
metric noise [24]. It can be observed that these algorithms
only consider the minimization of empirical risk but not that
of structural risk. To solve this problem, Shao et al. [30]
and Rastogi et al. [31] introduced different solutions. The
common feature of these algorithms is the introduction of
regularization terms into the objective functions of TSVR.
However, in the most of the proposed algorithms [32]–[35],
all of the training data share the same penalties, which may
increase the effect of noise and degrade the performance.

In this paper, a novel nonlinear fading channel estimation
in OFDM systems is proposed, which is based on wavelet
transform based weighted TSVR (WTWTSVR). The contri-
butions of this paper are summarized as follows.

1. The improved TSVR channel estimation method is pro-
posed for the first time to estimate wireless channel param-
eters in OFDM system, performance of which is better than
traditional estimation algorithm such as LMMSE, DFT-based

and BEM-based algorithms. Compared with SVR channel
estimation method, TSVR has less computational complexity
and faster computational speed [27].

2. Wavelet transform is introduced to calculate weights
for training data. Due to the time-frequency characteristics
of wavelet transform, the proposed algorithm is suitable for
the processing of time sequence samples such as channel
parameter estimation. The weights are added into both first
and quadratic terms of the objective functions to reduce the
impact of outliers, which is likely to appear in the received
pilot signal polluted by noise. In essence, the WTWTSVR
can utilize the prior information of samples and reduce the
influence of signal with big noise on regression performance.

The rest of this paper is organized as follows: Section II
briefly describes OFDM system. Section III proposes wavelet
transform based weighted TSVR channel estimation. Simu-
lation results are described in Section IV to show the per-
formance of the proposed method, and Section V gives the
conclusions.

II. SYSTEM MODEL
Figure 1 shows the baseband equivalent model of OFDM
system. The sequence X (k) obtained from QPSK or QAM
constellation is parsed into blocks of N symbols and then
transformed into a time-domain sequence using an N -point
inverse discrete Fourier transform (IDFT). To avoid ISI,
a cyclic prefix (CP) of length M equal to or larger than the
channel order L (channel consists L + 1 discrete paths) is
inserted at the head of each block. The time-domain signal
x(n) can be serially transmitted over the fading channel.
x(n) can be expressed as

x(n) =
1
√
N

N−1∑
k=0

X (k)ej2πnk/N (1)

where n = −M , . . . ,N − 1, k = 0, 1, . . . ,N − 1. After CP
is removed at the receiver, the received signal in time domain
y(n) can be expressed as

y(n) =
L∑
l=0

h(n, l)x(n− l)+ v(n) (2)

where v(n) is additive white Gaussian noise (AWGN) with
zero-mean, variance σ 2

n and independent with each other, i.e.
E(v(n)v(m)) = 0, ∀n 6= m. h(n, l) is the baseband-equivalent
doubly selective channel impulse response of the lth path
(l = 0, 1, . . . ,L) at time n, which includes the physical chan-
nel as well as filters at the transmitter and receiver.

The matrix form of (2) can be expressed as

y = hF−1X+ v = hx+ v (3)

where X = [X (0),X (1), . . . ,X (N − 1)]T, x =

[x(0), x(1), . . . , x(N − 1)]T, y = [y(0), y(1), . . . y(N − 1)]T,
v = [v(0), v(1), . . . , v(N − 1)] T, (·)T denotes the transpose
operation; X, x, y, v ∈ CN represent vectors of transmit-
ted signal in frequency domain, transmitted signal in time
domain, received signal in time domain and white gaussian
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FIGURE 1. Baseband equivalent model of OFDM system.

noise in time domain respectively. h ∈ CN×N is the channel
matrix, the element of which can be expressed as

h(n,p) =

{
h(n, (n− p)N ), (n− p)N ≤ L
0, others

(4)

where n, p = 0, 1, . . . ,N − 1. (·)N represents module-
N . F−1 is an N -point IDFT matrix, the entry of which
[F−1]n,k=(1/

√
N )exp(j2πnk/N ). By the way, define dis-

crete Fourier transform (DFT) matrix F, the entry of which
[F]n,k=(1/

√
N )exp(−j2πnk/N ).

Perform Fourier transform on both sides of (3) and obtain
the following equation,

Fy = FhF−1X+ Fv

Y = HX+ V (5)

where Y = Fy = [Y (0),Y (1), . . . ,Y (N − 1)]T ∈ CN and
V = Fv =[V (0),V (1), . . . ,V (N − 1)]T ∈ CN are received
signal vector and AWGN vector in frequency domain respec-
tively. H = FhF−1 ∈ CN×N is a frequency domain channel
matrix with ICI induced by time variations of the channel,
the elements of which can be described as

H(m, p) =
1
N

L∑
l=0

e−j2πml/N
N−1∑
n=0

h(n, l)e−j2π (m−p)n/N (6)

where m, p = 0, 1, . . . ,N − 1. The off-diagonal elements
of H is the ICI response. H can be divided into two parts,
one part Hd ∈ CN×N is to retain only the principal diagonal
elements, the other one Hn ∈ CN×N is to retain only the
off-diagonal elements. Then (5) can be expressed as

Y = HdX+HnX+ V

= HdX+ U+ V

= diag(X)H
′

d + U+ V (7)

where U = HnX is the ICI component, diag(·) denotes
the diagonal operators and H

′

d ∈ CN is a column vector,
the element of which is taken from the principal diagonal
element of Hd.

III. NONLINEAR CHANNEL PARAMETERS ESTIMATION
FOR OFDM SYSTEMS
Time-varying fading channels have nonlinear characteristics,
while typical channel estimation methods mostly use linear
interpolation. TSVR is suitable for regression of nonlinear
systems because of its kernel mapping technique, so we

adopt this method for channel estimation. The TSVR is an
extension of the classification tool support vector machine
to regression applications, the goal of regression is to get
the input-output relationship through the training of sample
data. On the basis of Peng’s work, many improved algorithms
were proposed [29]–[36]. In this section, an improved TSVR-
wavelet transform based weighted TSVR is adopted for deep
fading channel estimation utilizing the advantages of TSVR
regression for nonlinear systems.

Given a training set Tr = {(t1, z1), (t2, z2), . . . , (tm, zm)},
where tk ∈ R and zk ∈ R, k = 1, 2, . . . ,m. The output can be
expressed asZ = (z1, z2, . . . , zm)T ∈ Rm and the input vector
as T = (t1, t2, . . . , tm)T ∈ Rm. Let e and I be a vector with
all elements being one and an identity matrix, respectively.

In high mobility wireless environments, channels undergo
selectivity in both time and frequency domains and the dou-
bly selective channels present very complicated nonlinearity
especially in fast and deep fading situation. So linear channel
estimation methods cannot obtain high performance. Now
we adopt a nonlinear WTWTSVR to satisfy the estimation
requirements of nonlinear channels since TSVR is superior
in solving nonlinear, small training samples and high dimen-
sional pattern recognition. The same as the classical TSVR
model [27], theWTWTSVR is constituted by two nonparallel
hyperplane. The down-bound is f1(t), and up-bound f2(t).
Note that each hyperplane is an ε-insensitive bound, and the
resultant regressor is f (t) = 1

2 (f1(t)+ f2(t)).

A. CHANNEL ESTIMATION ALGORITHM-WAVELET
TRANSFORM BASED WEIGHTED TSVR
Initially, SVR was adopted to deal with the linear regres-
sion problem, and the relationship between input and out-
put can be regressed by training samples using hyperplane.
However, the hyperplane method is only suitable for linear
problems. Based on the theory of Vapnik [23], the algorithm
can be extended to nonlinear cases through kernel mapping.
The kernel function is used to map the input vector into
a higher-dimensional space. The kernel-mapping functions
are included: down-bound f1(t) = K (t,TT )w1 + b1 and
up-bound f2(t) = K (t,TT )w2 +b2, where K is a selected
kernel function, w1,w2 ∈ Rm and b1, b2 ∈ R are parameters
to be regressed. Therefore, the end regressor is the average
of f1(t) and f2(t), i.e. f (t) = 1

2 , (f1(t) + f2(t)). The opti-
mization problems can be described as (8) and (9) where
v1, v2, c1, c2, c3, c4 > 0 are pre-selected parameters, ε1 and
ε2 are insensitive parameters. ξ1 and ξ2 are slack vectors [27],
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and m is the number of training samples. d ∈ Rm and
D ∈ Rm×m are weighting vector and weighting matrix,
respectively, calculated based on wavelet transform theory,
which will be discussed in details later.

The first term of (8) is the sum of weighted squared dis-
tances from down-bound function to the training samples.
The second term is regularization term, which can make f1(t)
smooth enough. The function of the third term is to make
the ‘ε tube’ as narrow as possible. The combination of the
three terms of the objective function in (8) can reflect the idea
of structural risk minimization, which can improve the gen-
eralization ability of the proposed algorithm and reduce the
influence of overfitting problem [27]. The choice of c1, c2, v1
in the objective function of (8) can determine the ratio of three
penalty terms. For function (9), we have similar illustrations.

The functions (8) and (9) can be changed into the dual
problems by using Lagrangian multipliers, which can be eas-
ily solved by the optimization method. Define the Lagrangian
function for the quadratic programming problem (QPP) prob-
lem (8) as (10), shown at the bottom of the next page, where
α = (α1, α2, . . . , αm)T , β = (β1, β2, . . . , βm)T , and γ are
nonnegative Lagrangian multipliers. By applying Karush–
Kuhn–Tucker (KKT) optimization conditions, the dual prob-
lem can be described as (11), shown at the bottom of the next
page, where

H = [K (T,TT ) e ] (12)

Then calculating the dual QPP problem (11), we have

u1 = [wT
1 b1 ]T = (HTDH+ c1I)−1HT (DZ− α). (13)

Similarly, the dual problem of (9) is obtained as (14), and we
can have

u2 = [wT
2 b2 ]T = (HTDH+ c3I)−1HT (DZ+ λ). (15)

B. ACQUISITION OF TRAINING SAMPLES
SVR is a supervised machine learning method, which
requires input and output of training samples for parameter
training. In an OFDM symbol, the transmitting pilot subcar-
rier positions are expressed as [m1f ], m = 0, 1, . . . ,Np− 1,
where 1f is the pilot interval in frequency domain and Np is
the number of pilots in anOFDMsymbol. Let the transmitting
pilot matrix be XP = X(m1f ) ∈ CNP . Estimate the channel
frequency response at pilot subcarriers according to (7) as

ĤP = (diag(XP))−1YP (16)

where YP = Y(m1f ) ∈ CNP is the received pilot vector and
ĤP = Ĥ(m1f ) ∈ CNP is the estimated frequency response at
pilot positions m1f . Algorithm described in (16) is the well
known least square algorithm. Thus, the input (T = [m1f ])
and the output (ĤP) of training samples for TSVR can be
obtained.

Then by interpolation, the frequency response of data posi-
tion can be calculated and the predicted frequency response
of all subcarriers in an OFDM symbol can be expressed as

H̃ = f (ĤP) (17)

C. WAVELET TRANSFORM BASED WEIGHTING
PARAMETERS CALCULATION
The parameters mentioned above, d ∈ Rm and D = diag(d),
where D ∈ Rm×m are the weighting vector and matrix,
respectively, and these two parameters can be determined
offline according to the variance of training samples. In the
classical SVR algorithms, such as functions of TSVR, all
of the samples have the same weights, which means that
the same penalties are given to training samples. The points
with too much noise, such as outliers, will degrade the per-
formance of the regressors. Instinctively, one should give
different weights to different training samples, bigger weights

min
w1,b1,ξ1,ε1

1
2
(Z− (K (T,TT )w1 + eb1))TD(Z− (K (T,TT )w1 + eb1))+

1
2
c1(wT

1w1 + b21)+ c2(v1ε1 +
1
m
dT ξ1)

s.t. Z− (K (T,TT )w1 + eb1) > −ε1e− ξ1 ξ1 > 0e ε1 > 0, (8)

min
w2,b2,ξ2,ε2

1
2
(Z− (K (T,TT )w2 + eb2))TD(Z− (K (T,TT )w2 + eb2))+

1
2
c3(wT

2w2 + b22)+ c4(v2ε2 +
1
m
dT ξ2)

s.t. (K (T,TT )w2 + eb2)− Z > −ε2e− ξ2 ξ2 > 0e ε2 > 0. (9)

L (w1, b1, ξ1, ε1, α, β, γ )

=
1
2
(Z− (K (T,TT )w1 + eb1))TD(Z− (K (T,TT )w1 + eb1))

+
1
2
c1(wT

1w1 + b21)+ c2(v1ε1 +
1
m
dT ξ1)

−αT (Z− (K (T,TT )w1 + eb1)+ ε1e+ ξ1)− βT ξ1 − γ ε1, (10)

min
1
2
αTH(HTDH+ c1I)−1HTα − ZTDH(HTDH+ c1I)−1HTα + ZTα

s.t. 0e 6 α 6
c2
m
d,

eTα 6 c2v1. (11)
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should be assigned the smaller variance samples. Motivated
by the above idea, the Gaussian function is adopted and the
weighting vector d

(
= [d1, d2, . . . , dm]T

)
is determined as:

d = Ae
(−
∣∣∣Z−Ẑ∣∣∣2/σ 2)

, (18)

where A is the amplitude and σ is the standard deviation,
Ẑ represents the estimated vector of output vector Z. In the
proposed algorithm, we will calculate Ẑ by three steps based
on the wavelet transform method.

Firstly, use wavelet transform to decompose time series.
Because the sample sequence is discrete, discrete wavelet
transforms (DWT) is adopted. Denote xal (n) as a signal in the
l-th decomposition step. The DWT of xal (n) can be calculated
by low-pass and high-pass filter banks. The output of the
low-pass filter with impulse response φ(t) is the low-pass
parameter xal+1, meanwhile for a high-pass filter with impulse
response ψ(t), we can obtain the high-pass parameter xdl+1.

xal+1(n) =
∑
k

φ(k − 2n)xal (k) (19)

xdl+1(n) =
∑
k

ψ(k − 2n)xal (k) (20)

The low-pass parameter xal+1 can be further decomposed into
xal+2 and x

d
l+2.

Secondly, the decomposed coefficients (xd1 , x
d
2 , . . . , x

d
l ,x

a
l )

are processed by some chosen methods to reduce noise. In the
proposed algorithm, we set the high frequency component of
the decomposed signal to zero for noise reduction and obtain
the denoised sequence (xd ′1 , x

d ′
2 , . . . , x

d ′
l , x

a′
l ).

Thirdly, the estimation output signal ŷ is recon-
structed by the obtained sequence in the second step
(xd ′1 , x

d ′
2 , . . . , x

d ′
l , x

a′
l ).

xa′l−1(n) =
∑
k

φ(n− 2k)xa′l (k)+
∑
k

ψ(n− 2k)xd ′l (k),

(21)

and the reconstruction can be carried on further, and after l
steps, the estimation value Ẑ can be obtained, i.e., Ẑ = xa′0 .
Then Ẑ can be substituted into (18), and get weighting vector
d and weighting matrix D.

D. SUMMARY OF THE ALGORITHM AND
COMPUTATIONAL COMPLEXITY ANALYSIS
The channel estimation algorithm can be summarized as:

Input: Pilot series matrix at the transmitterXP and its posi-
tion vector T =[m1f ], m = 0, 1, . . . ,Np − 1; the received
pilot vector YP; the appropriate parameters c1, c2, c3, c4, ν1

and ν2, in (8) and ( 9); Gaussian function parameters E , σ 2

in (18).
Output: The predicted frequency response of all subcarri-

ers H̃.
Process:
1. Estimate channel response at the pilot carries ĤP by (16).
2. Let Z = real(ĤP), where real(·) means taking real part,

and preprocess Z by the wavelet transform method described
in subsection (III-C) and get Ẑ. The parameter d can be
calculated by (18).

3. In (11) and (14),H = [K (T,TT ) e ], where T =[m1f ],
m = 0, 1, . . . ,Np − 1. By Solving the QPP problems in
equation (11) and (14), α and λ can be obtained respectively.
4. Calculate u1 and u2 by (13) and (15), respectively.
5. Compute hreal(t) = 1

2K (t,TT )(w1+w2)T + 1
2 (b1+b2),

t = 0, 1, . . . ,N − 1.
6. Let Z = imag(ĤP), where imag(·) means taking imagi-

nary part, repeat 2-5, himag(t) can be obtained .
7. Frequency response of all subcarriers in an OFDM

symbol can be expressed as (H̃)t=hreal(t)+ himag(t)j, where
(H̃)t means the t-th element of H̃.
The computational complexity of the proposed method

needs to be estimated. Since the calculation amount of
QPP and inverse matrices is dominant, the computational
complexity is mainly determined by them. Let the number
of pilots is Np, then the calculation of dual QPPs in the
WTWTSVR isO(2N 3

p ) meanwhile that of the traditional SVR
is O(8N 3

p ). It can be seen that the calculation burden of SVR
is about three times more than that of the proposed algorithm.
The matrices inversion in QPPs need computational cost
O(N 3

p ). The wavelet transform based signal processing also
needs some calculation. If Db-3 wavelet with a filter length
of 6 is adopted, the computational cost of the wavelet trans-
form is no more than 12Np, which can be ignored comparing
with that of the QPPs and the matrices inversion. Considering
the real part and imaginary part data should be calculated
separately, the computational complexity need to be doubled.
In summary, the amount of computational complexity of the
algorithm is O(6N 3

p ).

IV. EXPERIMENTAL RESULTS
In this section, some simulation results of the proposed chan-
nel estimation algorithm based on the novel WTWTSVRwill
be shown. SVR is effective for channel estimation, and its
regression performance has been verified [19], [25], so we
compare performance of the proposed algorithm with LS
estimation with linear interpolation, TSVR [27] and per-
fect estimation. Consider an OFDM system with doubly

min
1
2
λTH(HTDH+ c3I)−1HTλ+ ZTDH(HTDH+ c3I)−1HTλ− ZTλ

s.t. 0e 6 λ 6
c4
m
d,

eTλ 6 c4v2. (14)
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TABLE 1. Default channel parameters.

FIGURE 2. Channel frequency response under multipath number being 2.

selective channel. The multipath number L + 1=51, and
assume that the channel taps are independent and identi-
cally distributed (i.i.d.) and correlate in time. The correlation
function according to Jakes’ model [37] can be described
as E[h(n1, l1)h∗(n2, l2)]=σ 2

h J0(2π fmaxTs(n1− n2))δ(l1− l2),
where E(·) means expected value, (·)∗ denotes conjugate, nk
is time index, lk is channel path index, J0 is the first kind
zeroth-order Bessel function, Ts is the sampling interval in
time domain, and σ 2

h is the variance of the channel. The
parameters of the selective channel in the OFDM system
follow the default setting as in Table 1.

In order to demonstrate the effects of multipath andmoving
speed on channel frequency response, two scenarios simula-
tions are performed. Figure 2 shows the channel frequency
response at subcarriers in an OFDM symbol under multipath
number being 2 for mobile speed equal to 0 and 350 km/h
respectively. Figure 3 shows that of multipath number being
50. From Figures 2 and 3 we can see that multipath can
cause frequency-domain fading and the more the number of
multipaths, the deeper the fading. At the same time, mobile
can cause ICI, the faster the movement, the bigger the ICI.
According to (7) we know that the ICI is influenced by the
product of channel responseHn and data to be transmitted X.
So, if data to be transmitted is random, the ICI is like noise,
which can be reflected in the simulations.

In the simulation, pilots are inserted in frequency domain
with insertion interval1f = 2. The software Matlab R2014a
is adopted as the tool of computer simulations The Gaussian
nonlinear kernel is used for the proposed WTWTSVR and
TSVR [27], that is

K (aT ,bT ) = exp(−
‖a− b‖2

e
), (22)

FIGURE 3. Channel frequency response under multipath number being 50.

TABLE 2. WTWTSVR parameters.

where e is the variance of the Gaussian function, which can be
used to adjust the width of Gaussian function. The selection
of parameters is very important for the analysis of system
performance. The performance of algorithms is sensitive to
some parameters, which need to be carefully selected. In this
simulation, parameters are chosen by grid searching method
from the set of {10k |k = −4,−3, . . . , 5}. Considering the
complexity of calculation, the search dimension of param-
eters are reduced and let c1 = c3, c2 = c4, and ν1 = ν2
in the proposed WTWTSVR. The parameters selected in the
WTWTSVR are shown in Table 2.

Figure 4 illustrates the regression of WTWTSVR. In this
simulation, SNR=10dB andmobile speed v=120km/h. Other
parameters have been given before. We can see that our
WTWTSVR fits the channel frequency response well, which
can confirm the generalization ability of the proposed algo-
rithm. Additionally, the outliers (pilot samples with too much
noise) are ignored and there is no overfitting phenomenon
in the regression curve, which shows the robustness of the
proposed algorithm.

FIGURE 4. Performance of WTWTSVR estimation method.
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TABLE 3. SSE values of channel frequency response by three estimation methods.

FIGURE 5. BER versus SNR for mobile speed v=120km/h.

The performance of the proposed WTWTSVR and the
comparison methods are evaluated by selected criteria. The
number of testing samples is denoted as l, yi is the real value
of a testing sample point and ŷi denotes the predicted value
of testing sample point. The criteria are specified as follows.

SNR: Signal-to-noise ratio, defined as SNR =

10log(σ 2
x /σ

2
v ), where the signal power σ

2
x = E(|x(k)|2), σ 2

v
is variance of AWGN.

SSE: Sum squared error of testing samples, that is
SSE=

∑l
i=1

∣∣yi − ŷi∣∣2.
BER: bit error rate, defined as BER=Ne/N , where Ne and

N are the number of error signals and all signals in binary
respectively.

SSE shows the fitting precision. The SSE value is not
the smaller the better, too small value may be caused by
overfitting.

Figure 5 shows the BER performance of the proposed
algorithm, TSVR-based, linear interpolation, LMMSE, DFT-
based, BEM-based methods and perfect estimation in the
presence of additive Gaussian noise for mobile speed at
120km/h, and Figure 6 shows that of 350km/h. Table 3
shows the SSE performance of channel frequency response

FIGURE 6. BER versus SNR for mobile speed v=350km/h.

for various algorithms. The results are obtained from the
average of 100 tests.

It can be observed from Figures 5 and 6 that the BER
performance of all methods is improved as SNR increases,
while the performance deteriorates with the increase of mov-
ing speed due to the influence of ICI, where we can detect
the influence of ICI and noise on system performance. In the
same channel environment, theWTWTSVR and TSVR chan-
nel estimation algorithms get better performance than others,
which means that SVR is suitable for the regression problems
based on training samples especially in the nonlinear cases.
While the WTWTSVR improved from TSVR outperforms
the TSVR, which shows the advantage of the proposed algo-
rithm and demonstrates the effectiveness of utilizing prior
information. Although the performance of WTWTSVR is
better than that of other methods, the performance improve-
ment in the case of low SNR is not as obvious as that in
the case of high SNR, which shows that the larger noise
has a greater impact on WTWTSVR, and the wavelet trans-
form preprocessing has limited effect on the improvement
of system performance in the case of low SNR. The SSE
performance of all algorithms listed in Table 3 presents the
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similar results as the BER performance. These simulation
results demonstrate the good regression performance and
effectiveness of the proposed method.

V. CONCLUSION
A novel WTWTSVR based channel estimator is proposed in
this paper. The channel estimation is performed in the fre-
quency domain using the inserted pilots. Firstly, the channel
frequency response is calculated at the pilot positions and the
training samples for the WTWTSVR can be obtained. Then
channel frequency response at data positions can be estimated
by the proposed algorithm. Unlike the case in TSVR, the pro-
posed algorithm gives samples in different positions differ-
ent weights according to their variance calculated based on
wavelet transform. Compared with the existing methods, the
effectiveness of this method is confirmed by computational
tests, especially in the case of nonlinearity. In addition, as one
of the theoretical basis of this method is wavelet theory, which
is suitable for dealing with time series signal denoising, so it
is adopted to estimate the channel impulse response, which
is time series. Furthermore, due to the influence of computa-
tional complexity, SVR method is suitable for data sets with
small number of samples, but it will bring huge computational
burden for the case with large number of training samples.
One can also notice that the proposed channel estimation is
performed in frequency domain and the proportion of pilots
is large. Therefore, for future work, it is necessary to study
the small-scale pilot insertion scheme in the time-domain and
frequency-domain.
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