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ABSTRACT To facilitate accurate tracking in unknown/uncertain environments, this paper proposes a simple
learning (SL) strategy for feedback linearization control (FLC) of aerial robots subject to uncertainties. The
SL strategyminimizes a cost function defined based on the closed-loop error dynamics of the nominal system
via the gradient descent technique to find the adaptation rules for feedback controller gains and disturbance
estimate in the feedback control law. In addition to the derivation of the SL adaptation rules, the closed-
loop stability for a second-order uncertain nonlinear system is proven in this paper. Moreover, it is shown
that the SL strategy can find the global optimum point, while the controller gains and disturbance estimate
converge to a finite value which implies a bounded control action in the steady-state. Furthermore, utilizing
a simulation study, it is shown that the simple learning-based FLC (SL-FLC) framework can ensure desired
closed-loop error dynamics in the presence of disturbances and modeling uncertainties. Finally, to validate
the SL-FLC framework in real-time, the trajectory tracking problem of a tilt-rotor tricopter unmanned
aerial vehicle under uncertain conditions is studied via three case scenarios, wherein the disturbances in
the form of mass variation, ground effect, and wind gust, are induced. The real-time results illustrate that
the SL-FLC framework facilitates a better tracking performance than that of the traditional FLC method
while maintaining the nominal control performance in the absence of modeling uncertainties and external
disturbances, and exhibiting robust control performance in the presence of modeling uncertainties and
external disturbances.

INDEX TERMS Feedback linearization control, nonlinear system, uncertain systems, learning control,
unmanned aerial vehicle.

I. INTRODUCTION
Owing to the recent advances in automation, computation
power, sensors and actuation technology, unmanned aerial
vehicles (UAVs) have been explored for a wide variety of
applications ranging from search and rescue [1], [2], package
delivery [3], [4], traffic monitoring [5], collaboration con-
trol [6], and exploration tasks in an unknown environment [7].
Howbeit, for their safe operation in urban environments,
a precise path tracking is of extreme importance. Unfor-
tunately, UAVs are strongly coupled, inherently nonlinear

The associate editor coordinating the review of this manuscript and

approving it for publication was Yuan Yuan .

systems that are open-loop unstable, which render their con-
trol a challenging problem. Besides these difficulties, there
are operation and/or environment-specific challenges such
as varying operational conditions that induce internal and
external uncertainties in the system. All the aforementioned
issues imply strong reasons to incorporate either sophisti-
cated model-based controllers or simpler yet learning-based
controllers that can learn the system dynamics throughout the
operation.

Another issue with the nonlinear systems is the difficulty
that lies in their mathematical modeling. Precise modeling
requires a number of experimental trials of the system which
is arduous as well as time-consuming, and in the end, the
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FIGURE 1. The closed-loop control diagram of the SL-FLC framework
where the controller gains and disturbance estimate are updated to
obtain precise path tracking performance for aerial robots in the
presence of uncertainties.

possibility of obtaining the accurate model is limited [8], [9].
Moreover, there are certain applications of UAVs that result
in time-varying model parameters, which imply deteriorated
performance by model-based controllers. This is mainly due
to their dependence on the quality of the available model.
Therefore, there is a need for computationally efficient con-
trollers that are accurate, reliable, and adaptive to unpre-
dictable operating conditions.

A. RELATED WORK
The aim of this study is to devise a simple learning (SL)
strategy for feedback linearization control (FLC), making
the system adaptive to the changing working conditions.
In that vein, this section discusses control techniques that
have been widely utilized for uncertain nonlinear systems in
the literature. In addition, it provides a brief background on
the FLC method and learning algorithms that are commonly
incorporated within the FLC scheme.

To deal with the challenges of the uncertain nonlinear
systems, numerous robust control approaches have been
proposed for both unmanned aerial and ground vehicles
[10]–[16]. Although the aforementionedmethodologies show
impressive results in the presence of uncertainties and dis-
turbances, they sacrifice nominal performance, i.e., track-
ing accuracy, in their absence. Another popular control
approach for uncertain systems is the use of inherently robust
controllers, e.g., sliding mode controller (SMC) [17]–[20].
According to the SMC theory, selection of high controller
gains will result in achieving robust performance against
uncertainties. However, this high gain selection might cause
undesirable effects, including the common chattering effect,
on the system response [21]. The use of learning controllers
such as learning-based nonlinear model predictive control,
is shown to be yet another alternative approach to deal
with uncertainties in the system. Recently, this approach has
gained enough popularity and has been demonstrated for
the control of aerial robots in [4], [22], [23], a field robot
in [24], a tractor-trailer system in [25]. Neural networks
(NNs)-based learning is another common learning control
approach for which various implementations include NN-
based online learning for feedback control in [26], adap-
tive NN-based stabilization control in [27], and adaptive
NN-based backstepping dynamic surface control in [28]. A
well-known concern in such applications involvingNN-based

learning is the difficulty in realizing the analytical proof for
the system stability.

To address the stability proof issue, an artifice is to incor-
porate the feedback linearization technique that transforms
the nonlinear system into its linear equivalent; wherein the
advanced linear control approaches can be freely utilized.
However, the performance of the traditional FLC method
is sensitive to uncertainties and disturbances in the system
dynamics such that the closed-loop error dynamics of the sys-
tem cannot converge to zero [29], [30]. For instance, within
the trajectory tracking application demonstrated in this study,
the induced disturbances vary over time. Hence, the tradi-
tional FLC method cannot provide precise path tracking per-
formance. Additionally, FLC with an integral action (FLC-I)
has been proposed in the literature to ensure robust control
performance. While it can only handle time-invariant uncer-
tainties, it deteriorates nominal control performance in their
absence [29]. Unlike FLC and FLC-I methods, the proposed
SL strategy does not deteriorate nominal control performance
in the absence of disturbances and uncertainties. Moreover,
it ensures robust control performance in the presence of time-
varying disturbances and uncertainties as distinct from the
FLC-I technique.

To overcome the limitations of the traditional FLC, several
learning approaches have been utilized within the feedback
linearization framework. In [31], artificial NN with a nonlin-
ear autoregressive-moving averagemodel has been developed
to learn the feedback linearized inputs for a nonlinear plant.
In [32], the Gaussian process method has been used to iden-
tify amodel for the FLC schemewith limited prior knowledge
of the system. Also, a dynamic linearization method has been
developed for discrete-time nonlinear systems in the litera-
ture [33]–[37]. To summarize, this method builds a linearized
model, which is equivalent to the real nonlinear system at
every operation point of the closed-loop system dynamics.
Since robots usually encounter varying working conditions,
the aforementioned techniques may not be good candidates.
This is because these techniques utilize the data which is
generated in advance, which may no longer fully represent
the system during operation. For instance, the total mass of
an aerial robot can vary so that the system model changes
overtime.Moreover, unlike the aforementioned learning tech-
niques, the proposed simple learning strategy does not require
any training data, and it learns the system behavior online.

Another nonlinear control approach using dynamic NN-
based input-output feedback linearization has been proposed
in [38]. In this approach, the controller generates a control
signal that can eliminate the system’s nonlinearities utilizing
the trained dynamic NN. The controller gains and the weights
of the dynamic NN are selected by using particle swarm opti-
mization (PSO) algorithm. Whereas PSO requires powerful
computing platforms to obtain the optimal controller gains in
real-time operation, the proposed simple learning strategy can
obtain the optimal controller gains in less than a millisecond
on an inexpensive computing platform. This aspect is crucial
for fast robotic applications, wherein there is a tendency to
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use cost-effective processors in which computationally effi-
cient algorithms are needed.

B. CONTRIBUTIONS
Motivated by the limitations of the aforementioned method-
ologies, we develop and implement a simple learning
strategy-based feedback linearization control (SL-FLC) algo-
rithm in this study. Within the SL-FLC framework, the con-
troller coefficients and disturbance estimate are updated in the
feedback control law by minimizing a cost function which is
defined based on the closed-loop error dynamics of the nom-
inal system. Consequently, the SL-FLC framework helps in
maintaining the nominal control performance in the absence
of uncertainties and disturbances, while exhibits robust con-
trol performance in their presence. Additionally, the SL-FLC
framework ensures the desired closed-loop error dynamics in
the presence of uncertainties and disturbances. The stability
of the proposed approach is proven for the considered second-
order uncertain nonlinear system. It is also illustrated that
the SL strategy can find the global optimum point, and the
controller gains and disturbance estimate converge to a finite
value. Thus, controller gains and disturbance term will not
be modified anymore, which eventually results in a bounded
control signal at the steady-state. Along with the theoretical
aspects, the proposed algorithm is tested in simulation for
the tracking problem of a second-order nonlinear system
in the presence of uncertainties and disturbances; wherein
the performance of the SL-FLC framework is compared
with (nominal) traditional FLC method – without uncertain-
ties and disturbances –, traditional FLC method, and FLC-
I method. Furthermore, a real-time performance evaluation
of the SL-FLC framework is performed in contrast to the
traditional FLCmethod for the path tracking problem of a tilt-
rotor tricopter UAV in the presence of internal and external
uncertainties. This paper is a major extension of the authors’
previous work in [39]. Significant additions to the previous
work include:

1) Global minimum analysis to illustrate the optimality of
the obtained gains and disturbance estimate.

2) Simulation study to demonstrate the desired closed-
loop error dynamics ensuring capability of the pro-
posed framework in the presence of uncertainties.

3) Extensive experimental evaluation of the proposed
framework for three different disturbance scenarios.

C. ORGANIZATION
The organization of this paper is as follows: Section II
describes the feedback linearization control problem for-
mulation. Thereafter, the utilized simple learning technique
along with the stability proof for a second-order uncertain
nonlinear system and the proof of the existence of global
minimum are shown in Section III. Then, in Section IV,
the proposed SL-FLC framework is validated via a simulation
study, followed by an experimental evaluation on a tilt-rotor
tricopter UAV for three different case scenarios in Section V.
Finally, concluding remarks are given in Section VI.

NOMENCLATURE
x = state vector
u = control input
1(·) = modeling uncertainties
w = external disturbance
y = system output
ub = feedback control action
uf = feedforward control action
k = control gain vector
e = error vector
r = reference vector
d = actual disturbance
d̂ = estimated disturbance
c(·, ·) = desired closed-loop error dynamics
C = cost function
αi = learning rate for the ith controller gain
αd̂ = learning rate for disturbance estimate

II. PROBLEM FORMULATION
Consider a second-order uncertain nonlinear system defined
as:

ẋ1 = x2, (1a)

ẋ2 = f (x,u)+1(x)+ w(t), (1b)

where x = [x1, x2]T ∈ R2 is the state vector, u ∈ R
is the control input, and w(t) is the time-varying exter-
nal disturbance. Also, f (x,u) ∈ R and 1(x) ∈ R are
smooth, continuous differentiable and nonlinear functions,
wherein, 1(x) ∈ R represents the modeling uncertainties.
The objective is to find a control input u such that the system
tracks the reference trajectory r(t) = [r1(t), r2(t)]T , where
r2 = ṙ1, with an acceptable accuracy while all the states and
the control remain bounded.

A. TRADITIONAL FLC
To facilitate the tracking of the given reference trajectory,
we define the tracking error vector e(t) = [e1(t), e2(t)]T ,
where e1 = r1− x1 and e2 = r2− x2. Consider the following
traditional FLC law:

u = β(x,uFLCb ,uf ), (2)

where uFLCb and uf are the feedback and feedforward control
actions, respectively, which are expressed as follows:

uFLCb = ke = k1e1 + k2e2, (3)

uf = ṙ2, (4)

where k = [k1, k2], ki > 0 (i = 1, 2), is a control gain vector.
The feedback function β(x,uFLCb ,uf ) is chosen such that

f (x, β(x,uFLCb ,uf )) = uFLCb + uf , (5)

and consequently, the closed-loop error dynamics take the
following form:

ė2 + k2e2 + k1e1 = −d(t). (6)
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Here, the term d(t) represents a lumped disturbance param-
eter which comprises of modeling uncertainties and exter-
nal disturbance in the closed-loop error dynamics, which is
expressed as:

d(t) = 1(x)+ w(t). (7)

Assumption 1: The lumped disturbance parameter in (6) is
bounded such that d∗ = sup

t>0
|d(t)| exists.

Since ki > 0 (i = 1, 2), the closed-loop error dynamics for
d(t) = 0 are globally exponentially stable at e1 = e2 = 0.
Remark 1: It is to be noted that the current paper assumes

that the disturbances consist of a constant and vanishing
perturbation terms. The cases where the disturbance includes
non-vanishing perturbation terms are left as future work.
Remark 2: Equation (6) demonstrates that it is not possible

to drive the error dynamics to the desired equilibrium point
utilizing the FLC law proposed in (2). The reason being is the
nonzero right-hand side in (6) which is due to the presence of
modeling uncertainties in the system model and/or external
disturbances. This explains why the traditional FLC method
is sensitive to disturbances.

B. FLC WITH INTEGRAL ACTION
Now, to make the FLC method robust against modeling
uncertainties as well as disturbances, an integral action can
be added to the control law of traditional FLC scheme. That
is, the control law for FLC-I method is formulated in a
similar manner to the traditional FLC method in (2). While
the expression for the feedforward control action is the same
as specified in (4), the feedback control expression, on the
other hand, is modified to include the effect of the integral
action:

uFLC-Ib = ke = k1e1 + k2e2 + kint

∫ t

0
e1dt, (8)

where k = [k1, k2, kint ] is the updated positive control gain
vector and e is the error vector as defined previously. Addi-
tionally, it is assumed that all the assumptions utilized in the
traditional FLC method’s case are valid.

Applying the control law for the FLC-I method to the
uncertain nonlinear system in (1), the closed-loop error
dynamics can be obtained as follows:

ë2 + k2ė2 + k1ė1 + kinte1 = −ḋ(t), (9)

where the term d(t) is the same as defined in (7). The above
equation implies that if the modeling uncertainties and exter-
nal disturbances have a steady-state value, i.e., ḋ(t) = 0, then
the state can be driven to the desired equilibrium point.
Remark 3: Equation (9) shows that if the modeling uncer-

tainties and external disturbances have a steady-state value,
i.e, they are time-invariant, then the FLC-I method is robust
against them and the steady-state error in the system is elimi-
nated. However, it is to be noted that adding an integral action
may result in a degraded performance in comparison to the

nominal performance of the traditional FLC method in the
absence of uncertainties [29].

III. SIMPLE LEARNING STRATEGY
The SL strategy for the feedback linearization method is
designed according to the desired closed-loop error dynamics
of the nonlinear system. In order to make the FLC method
adaptive, the SL strategy updates the controller gains and
disturbance term within the FLC formulation by minimizing
a cost function which is defined as the square of the closed-
loop error dynamics. The new feedback control law is written
as follows:

uSL-FLCb = ke− d̂ = k1e1 + k2e2 − d̂, (10)

where d̂ represents the estimated disturbance term. The
closed-loop error dynamics can be written as:

ė1 = e2, (11a)

ė2 = −k1e1 − k2e2 − d + d̂ . (11b)

A. UPDATE RULES
The requirement to realize robust control performance by the
FLC method is that the desired closed-loop error dynamics,
defined as:

c(e, kdes) = ė2 + kdes2 e2 + kdes1 e1, (12)

should converge to zero. Since ė2 = −k1e1 − k2e2 − d +
d̂ , c(e, kdes) depends on k1, k2, d̂, e1, e2, and d , i.e., the
controller gains, disturbance estimate, error variables and
the disturbance. This forms the working principle within the
SL-FLC framework i.e., to minimize a cost function defined
based on the closed-loop error dynamics such that the system
error and disturbance estimation error can instantaneously
converge to zero. In that vein, the cost function which is
minimized to obtain the robust control performance is consid-
ered as the square of the desired closed-loop error dynamics
defined in (12). That is, the closed-loop error function (or cost
function) is written as follows:

C = 1
2

(
c(e, kdes)

)2
. (13)

The above equation implies that if the closed-loop error func-
tion C converges to zero, then the robust control performance
condition, i.e., c = 0, is satisfied such that the error will
converge to zero.

In this study, a first-order iterative optimization algorithm,
i.e., gradient descent is favored to minimize the closed-loop
error function C . The reason behind this selection is the
requirement of lower computational power to compute the
optimal solution. In the gradient descent approach, steps are
taken proportional to the negative of the gradient of the
closed-loop error function, i.e., 1C , to find the minimum.
Since the expression for the proposed closed-loop error func-
tion C comprises of the errors, controller gains, and dis-
turbance estimates, its partial derivative has to be taken to
obtain the gradient. Therefore, the following rule is utilized
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for updating the controller gains of the feedback linearization
controller:

k̇i = −αi
∂C
∂ki
, (14)

where αi > 0 is the learning rate for the ith controller gain.
Next, utilizing the chain rule in (14), the expression can be
rewritten as follows:

k̇i = −αic(e, kdes)
∂c(e, kdes)

∂ki
. (15)

It is implicit from the system definition in (1) that the
control input gains appear only with ė2 within the expression
for the desired closed-loop error dynamics c(e, kdes). Thus,
(15) can be rewritten as:

k̇i = −αic(e, kdes)
∂ ė2
∂ki

, (16)

which eventually reduces to the following form,
utilizing (11b):

k̇i = αic(e, kdes)ei. (17)

Similarly, the formulation of the update rule for the dis-
turbance estimate is obtained. That is, like (14), the update
rule for the disturbance estimate is written incorporating the
gradient descent rule as:

˙̂d = −αd̂
∂C

∂ d̂
, (18)

where αd̂ > 0 is the learning rate for the disturbance esti-
mate d̂ . Again, after using the chain rule and subsequently
performing some algebraic manipulations, we can compute
the final expression for the update rule (18) as:

˙̂d = −αd̂c(e, k
des). (19)

Wewould like to emphasize that within (17) and (19), the con-
troller gains and disturbance estimate are updated until the
condition c(e, kdes) = 0 is fulfilled.
Remark 4: It is possible to design a nonlinear disturbance

observer to estimate the lumped disturbance d(t) following
the methodology in [40]. The disturbance estimator design in
this paper is based on a gradient descent rule while, in gen-
eral, nonlinear disturbance observers are designed based on
Lyapunov techniques. In essence, both approaches follow
the same control design strategy: (1) design a controller to
achieve stability and other performance specifications (e.g.,
asymptotic tracking) assuming that the disturbance is mea-
surable and available for feedback, (2) design a disturbance
estimator, and (3) use the disturbance estimate in place of the
disturbance in the control law. Furthermore, unlike any (non-
linear) disturbance observer-based control paradigm, the pro-
posed control framework updates the controller gains of the
underlying FLCmethod which further exhibits robust control
performance in the presence of disturbances.

B. STABILITY PROOF
In this study, a Routh-Hurwitz criterion-based stability anal-
ysis is utilized to prove the closed-loop system stability with
the SL algorithm. In that vein, the closed-loop dynamics can
be rewritten utilizing (11a) and (11b) as follows:

ë1 + k2ė1 + k1e1 − d̂ + d = 0. (20)

Time differentiating the above equation and using the fact that
ḋ = 01, we obtain,

...
e 1 + k2ë1 + k1ė1 + k̇2ė1 + k̇1e1 −

˙̂d = 0. (21)

utilizing (12), (17), and (19), the expressions for k̇i and
˙̂d can

be derived as:

k̇i = αi(ë1 + kdes2 ė1 + kdes1 e1)ei, (22)
˙̂d = −αd̂ (ë1 + k

des
2 ė1 + kdes1 e1). (23)

Let η = [e1 ė1 ë1]T denote the state. Plugging the
above expressions into the closed-loop dynamics yields the
following:

...
e 1 + b1(η)ë1 + b2(η)ė1 + b3(η)e1 = 0, (24)

where,

b1(η) = k2 + αd̂ + β(η), b2(η) = k1 + kdes2 (αd̂ + β(η)),

(25)

b3(η) = kdes1 (αd̂ + β(η)), β(η) = α1e
2
1 + α2ė

2
1. (26)

The closed-loop dynamics (21) can now be expressed in a
pseudo-linear form [41] as:

η̇ = A(η)η, (27)

where,

A(η) =

 0 1 0
0 0 1

−b3(η) −b2(η) −b1(η)

 . (28)

Clearly, bi(η) > 0, i = 1, 2, 3, ∀η. By applying
Routh-Hurwitz criterion, it can be shown that the eigenvalues
of A(0) are in the open left-half plane (i.e., the closed-loop
system is asymptotically stable) if b1(0)b2(0) > b3(0), where,

b1(0) = k2 + αd̂ , b2(0) = k1 + kdes2 αd̂ , b3(0) = kdes1 αd̂ ,

(29)

or equivalently if:

kdes2 α2
d̂
+ (k1 + k2kdes2 − k

des
1 )αd̂ + k1k2 > 0. (30)

In what follows, we choose ki, kdesi , and αd̂ such that this
stability condition is satisfied.

1In this work, we assume that the average rate of change of the induced
disturbances is much lower than the states e1 and e2.
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C. GLOBAL MINIMUM
The most important concern in the simple learning strategy
is that the closed-loop error dynamics may reach some local
minima and stay in that location. Hence, this subsection
provides an analytical proof to show that there exists no local
minima for the formulation of the simple learning strategy.
In particular, it is shown that the second derivatives of the
cost function with respect to the variables ki and d̂ have the
same sign, thus the cost function does not have a change in the
curvature sign through the variables. This implies that the cost
function does not have local minima through these variables.

Utilizing the method in the previous subsection, the second
derivative of the cost function C with respect to ki is obtained
as follows:

∂2C

∂k2i
= −ei

∂(c(e, kdes)
∂ki︸ ︷︷ ︸
−ei

,

= (ei)2. (31)

Similarly, the second derivative of the cost function with
respect to the disturbance estimate d̂ is computed as follows:

∂2C

∂ d̂2
=
∂(c(e, kdes)

∂ d̂︸ ︷︷ ︸
1

,

= 1. (32)

Equations (31) and (32) show that the sign of the curvature of
the cost function for the controller gains and the disturbance
estimate is always positive; thus, there exist no local minima
such that the closed-loop error dynamics reach to the global
minimum. After reaching the global minimum, since αi and
αd are constant and positive, the controller gains update
law in (17) and the disturbance estimate update law in (19)
converge to a finite value. Furthermore, a finite value for
the coefficients in steady-state results in a bounded control
action.

IV. SIMULATION STUDY
This section illustrates the implementation of the pro-
posed SL-FLC framework together with traditional FLC and
FLC-I methods on a simulation example. The main purpose
of this simulation study is to demonstrate that the SL-FLC
can ensure the desired closed-loop error dynamics of the
system in the presence of model uncertainties and external
disturbances.

For the simulation study, a second-order dynamical system
is considered which is of the following form:

ẋ1 = x2, (33a)

ẋ2 = x32 + u+1(x)+ w(t), (33b)

The entire simulation runs for a total of 5s with a sam-
pling time of 0.01s. The initial conditions on the states
are x = [5, 0]T . In addition, the reference signal r is set
to zero throughout the simulation time, i.e., r = [0, 0]T .

The controller gains for the desired closed-loop error dynam-
ics (c = ë1 + kdes2 ė1 + kdes1 e1) are selected as kdes =
[kdes1 , kdes2 ]T = [25, 10]T . Moreover, the initial conditions for
the controller gains are selected as k(0) = [9, 3]T , while
the initial condition for the disturbance estimate is taken as
d̂(0) = 0. Furthermore, the learning rates αi and αd are set to
0.75 and 3, respectively.

To show the desired closed-loop error dynamics ensuring-
capability of the SL-FLC framework, i.e., realizing the nom-
inal control performance (NCP) which describes the control
performance of the system controlled by the traditional FLC
method in the absence of model uncertainties and external
disturbance, the SL-FLC framework controls the aforemen-
tioned system in the presence of model uncertainties and
external disturbance. In addition, its control performance is
compared with traditional FLC and FLC-I methodologies.
According to (7), the lumped disturbance formulation is equal
to the summation of the model uncertainties and external
disturbance, i.e., d(t) = 1(x) + w(t). An external force
is imposed on the system, i.e., w(t) = 5, as the exter-
nal disturbance while there exist the modeling uncertainties
1(x) = (x1)2 on the system. Thus, the disturbance imposed
on the system is equal to 5, i.e., d(t) = 5 after the states
converge to zero.

The control performances of all the control algorithms are
shown in Figs. 2a and 2b.While NCP shows the nominal con-
trol performance of the system in the absence of model uncer-
tainties and external disturbance, the other control algorithms
reflect their respective performance in the presence of model
uncertainties and external disturbance. As observed, the
SL-FLC framework ensures the nominal control performance
(i.e., the desired closed-loop error dynamics) in the presence
of disturbances while the FLC and FLC-I methodologies
cannot ensure the nominal control performance. Moreover,
the FLC method is not robust to disturbances as stated in
Remark 2 while the FLC-I method provides robust con-
trol performance against disturbance. However, the FLC-I
method causes undesired effects such as overshoots and large
settling time as stated in Remark 3.

The absolute values of the errors and error rates are shown
in Fig. 23. The SL-FLC framework realizes a similar per-
formance as that of the NCP which validates that it ensures
the nominal control performance in the presence of model
uncertainties and external disturbance. Moreover, the error of
the system controlled by the FLC method cannot converge
to zero, whereas the error of the system controlled by the
FLC-I method can converge to zero with a large settling
time. In addition, the phase portraits for all the controllers are
shown in Fig. 2d. It is visualized that the phase portrait for the
SL-FLC framework converges to the nominal phase portrait
(i.e., NCP) in the presence disturbances. This again implies
that the SL-FLC framework is capable of ensuring the desired
closed-loop error dynamics of the system in the presence of
modeling uncertainties and external disturbance.

Next, the time updates of the controller gains and dis-
turbance estimate for the SL-FLC framework are presented
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FIGURE 2. Nominal control performance along with the traditional FLC method, FLC-I method, and SL-FLC framework for a second-order dynamical
system in the presence of modeling uncertainties and external disturbance. From the results, it is evident that even in the presence of disturbance,
the SL-FLC framework can match the nominal control performance.

in Fig. 2e. As observed, the controller gains converge to
some values in steady-state response from their selected ini-
tial values (k(0) = [9, 3]T ). Also, the disturbance estimate
becomes equal to the summation of the modeling uncertain-
ties and external disturbance, i.e., d(t) = 1(x) + w(t) = 5.
Furthermore, the control inputs for all algorithms are shown
in Fig. 2f. Note that, in steady-state response, the control
signal for the NCP is equal to zero since there exists no distur-
bance, whereas for the others the control signals are nonzero
due to the external disturbance imposed on the system.

V. EXPERIMENTAL VALIDATION
After the implementation in simulation, next, the experimen-
tal validation of the proposed SL-FLC framework on an aerial
robot is exhibited. Since its dynamics is non-trivial, first a
brief discussion about the considered aerial system alongwith
its mathematical model is provided. Thereafter, the design of
the SL-FLC framework as a high-level controller for the aerial
robot is illustrated. Finally, the comparison results of the
SL-FLC and the traditional FLCmethod for three disturbance
scenarios are presented.

A. AERIAL ROBOT
To test the efficacy of the proposed algorithm, an aerial pack-
age delivery problem is considered in this work. The motiva-
tion to analyze this problem is the accompanying disturbances
that the UAV has to tackle while executing the delivery tasks.

That includes mass variation while dropping the packages,
ground effect disturbance while descending to precisely place
the package on the ground, and wind gust disturbance due to
outdoor flights.

The aerial robot incorporated for this study is shown
in Fig. 3. It is the same 3D-printed tilt-rotor tricopter that
is utilized in our previous work [39]. To summarize, it is
a custom-designed experimental platform, wherein all the
required electronics are integrated into the frame design to
obtain a compact and lightweight system. Also, to mimic the
package delivery application, it can sequentially drop weight
blocks with the help of a payload dropping mechanism which
is mounted at the base of the UAV. In addition, the UAV
houses a Pixhawk flight controller for low-level stabilization
along with an on-board embedded processor (Raspberry Pi
3) which executes all the control codes as well as controls
the servomotor of the dropping mechanism. For more details
regarding the UAV setup, one may refer to [39].

1) SYSTEM MODELING
For the system modeling, the aerial robot shown in Fig. 3 is
considered to be a rigid-body having two stationary rotors in
the front and one non-stationary (or tilting) rotor at the back.
Amongst the front rotors, the right rotates clockwise and the
left rotor rotates counter-clockwise, whereas the back rotor
rotates counter-clockwise.
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FIGURE 3. The 3D-printed tilt-rotor tricopter UAV, wherein, the body
frame is represented by FB and the Earth-fixed frame is represented by
FE . Notation: [�1,�2,�3] - rotational RPM of three rotors; µ - tilting
angle of the back rotor; [F1, F2, F3] - forces generated by three rotors;
[τ1, τ2, τ3] - moments generated by three rotors; [τx , τy , τz ] - external
moments acting on the tricopter body.

The translational kinematic equations are given as: ẋẏ
ż

 =
 u
v
w

 , (34)

where x, y, z represent the translational positions in the frame
FB, while u, v,w represent the translational velocities defined
in the frame FB. On the other hand, the rigid-body dynamic
equations for a tilt-rotor tricopter UAV in the body coordi-
nate system (FB) are formulated based on the Newton-Euler
methodology [42]. Within these equations, the tricopter is
assumed to be a point mass, wherein all the forces act at the
CG:

u̇ = rv− qw+ g sin(θ )+
1
m
Fx , (35a)

v̇ = pw− ru− g sin(φ) cos(θ)+
1
m
Fy, (35b)

ẇ = qu− pv− g cos(φ) cos(θ)+
1
m
Fz, (35c)

where φ, θ represent the rotational attitude in frame FE ,
and p, q, r are the rotational velocities that are defined in
frame FB. In addition, the terms Fx , Fy, Fz represent the total
external forces that act on the UAV in frame FB. Moreover,
some constant intrinsic parameters for the utilized custom-
designedUAVare listed in Table 1. Formore details regarding
the system modeling and UAV, one is referred to [39]. It is to
be noted that the takeoff mass of the UAV inclusive of all
payload is about m = 1.875 kg.
Finally, the continuous-time nonlinear model of the con-

sidered UAV can be represented as:

ẋ(t) = f
(
x(t),u(t)

)
, (36)

where the state vector x ∈ R6 and control vector u ∈ R3 are:

x = [x, y, z, u, v,w]T , (37)

u = [φ, θ,Fz]T , (38)

and f(·, ·):R6
× R3

−→ R6.

TABLE 1. Intrinsic parameters for the 3D-printed tilt-rotor tricopter.

2) SL-FLC FOR HIGH-LEVEL CONTROL
Three SL-FLCs frameworks are independently employed to
achieve a precise tracking performance by the UAV. In princi-
ple, they simultaneously perform position as well as velocity
control along the three x-, y-, and z-axes. The overall control
framework is illustrated in Fig. 1. Once the position refer-
ence (xposdes) is given to the controller, the desired velocities
(xveldes = [udes, vdes,wdes]T ) are computed utilizing the rate
of change of the position setpoints information, i.e., xveldes =

ẋ
pos
des

2. Subsequently, these velocity references (xveldes) along
with the position reference (xposdes) are utilized in computing
the final attitude angles and throttle commands (uSL-FLC =
[φdes, θdes,Fzdes ]

T ) that are given to the low-level controller.
Moreover, the following update rules are utilized within the
three feedback linearization controllers [39]:

θdes = sin−1[ 1g {qw− rv+ u̇des + ku(udes − u)

+kx(xdes − x)− d̂u}], (39)

φdes = sin−1[ 1
gcos(θdes)

{pw− ru− v̇des − kv(vdes − v)

−ky(ydes − y)+ d̂v}], (40)

Fzdes = m[pv− qu+ gcos(φdes)cos(θdes)+ ẇdes

+kw(wdes − w)+ kz(zdes − z)− d̂w], (41)

where kx , ky, kz and ku, kv, kw are the controller gains for
position and velocity, respectively. In addition, the terms d̂u,
d̂v, d̂w are the disturbance estimates which are previously
defined in (7).

As mentioned before, the proposed SL strategy makes
the FLC adaptive to the changing operational conditions.
It updates the controller gains and the disturbance estimates
according to the expressions in (17) and (19), respectively,
while utilizing the position error, and the velocity errors along
with their first derivatives. For our application, the expres-
sions for the desired closed-loop error dynamics along the
three axes reduce to:

cx(e, kdes) = ëx + kdesu ėx + kdesx ex , (42)

cy(e, kdes) = ëy + kdesv ėy + kdesy ey, (43)

cz(e, kdes) = ëz + kdesw ėz + kdesz ez, (44)

where ex , ey, ez are the translational position error, ėx , ėy,
ėz are the translational velocity error, and ëx , ëy, ëz are the
translational acceleration error. Also, the terms kdesx , kdesy , kdesz

2It is to be noted that the position derivatives are filtered to ensure smooth
velocity references.
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FIGURE 4. Real-time implementation: block diagram of the overall implementation, wherein the block naming ‘Raspberry Pi 3’ represents
the on-board computer which executes the proposed SL-FLC framework. It is to be noted that the low-level attitude controller in Pixhawk
comprises of three proportional-integral-derivative (PID) controllers, which are designed separately for the three axes (roll, pitch, yaw).
Also, the overall output vector of the low-level controller is: uPID = [�1,�2,�3, µ]T . Notation: xpos = [x, y, z]T ; xvel = [u, v,w ]T ;
xatt = [φ, θ,ψ]T ; xrate = [p,q, r ]T ; xposdes = [xdes, ydes, xdes]T ; yFLC = [x, y, z,u, v,w,p,q, r ]T ; ySL = [x, y, z,u, v,w ]T ;

KSL = [kx ,ky ,kz ,ku,kv ,kw ]T ; DSL = [d̂u, d̂v , d̂w ]T .

and kdesu , kdesv , kdesw are the desired FLC gains for position and
velocity, respectively.
Remark 5: To obtain the above update rules (39)-(41),

the external forces Fx and Fy are taken to be zero within the
system model (35).
Remark 6: Due to a time-varying trajectory, a nonzero

tracking error always occurs. Therefore, to avoid the con-
tinuous update (or rise) of the controller gain values for
insignificant errors, a dead-zone (or saturation zone) is imple-
mented. That is, below the threshold for tracking error (and its
derivatives), they are taken to be zero within the cost function,
and hence, the controller gains do not get updated. In practice,
the threshold must be selected to be less than the desired
accuracy but more than the noise on the measurements.

B. EXPERIMENTAL RESULTS
This section illustrates the real-time experimental results of
the proposed SL-FLC framework which is utilized for the
high-level position tracking control of the considered aerial
robot. In addition to the tracking performance, its robust-
ness to varying UAV dynamics is also analyzed, wherein,
the uncertainties are explicitly induced in the form of: (i) mass
variation, (ii) ground effect, and (iii) wind gust. In order to
appreciate the importance of learning, all the experiments are
performed with two types of controllers namely, traditional
FLC (without learning) and FLC incorporating the SL algo-
rithm (i.e. SL-FLC framework).

In terms of the real-time implementation, all the con-
trol codes are written in C++ for their efficient execution
on-board the Raspberry Pi 3 flight computer in a ROS

(robot-operating-system) environment. The average sam-
pling frequency achieved for the controllers throughout each
experiment is about 100-Hz. Additionally, an indoor motion
capture system from OptiTrack, consisting of eight 240 FPS
(frames per second) cameras, is utilized for localization dur-
ing the experiments, which is depicted in the indoor exper-
imental setup shown in Fig. 5. The motion capture system
provides the position and attitude feedback of the UAV over a
local network. Utilizing this information, the high-level FLC
algorithm computes the desired attitude angles and throttle
setpoints for the low-level controller which are sent via serial
communication. Finally, the actuator commands computed by
the low-level controller are given to the rotors and tilting servo
of the UAV. Moreover, the overall real-time implementation
can be visualized from the block diagram in Fig. 4.
In terms of the controller tuning, the following gains for

the desired closed-loop error dynamics are obtained via the
trial-and-error procedure and are directly used within the
traditional FLC method:

kdesx = 4.5, kdesy = 4.7, kdesz = 8.0, (45)

kdesu = 4.0, kdesv = 4.1, kdesw = 3.8. (46)

On the other hand, the controller gains and learning rates
utilized for initializing the SL-FLC framework are as follows:

kx(0) = 4.3, ky(0) = 4.5, kz(0) = 7.7, (47)

ku(0) = 3.8, kv(0) = 3.9, kw(0) = 3.6, (48)

αx = 0.02, αy = 0.02, αz = 0.03, (49)

αu = 0.02, αv = 0.02, αw = 0.03. (50)
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FIGURE 5. Experimental setup: 3D-printed tilt-rotor tricopter UAV in the
motion capture system lab along with two industrial fans.

FIGURE 6. Package delivery problem in case scenario I.

The above control gains and learning rates are also obtained
via the trial-and-error procedure such that a stable UAV
response is obtained.

In the subsequent part, each of the three experiments is dis-
cussed in detail. It is emphasized that different trajectories are
utilized for all experiments in order to exhibit the robustness
of the control framework towards various trajectories.

1) CASE SCENARIO I - MASS VARIATION
In the first experiment, a package delivery problem is ana-
lyzed where a UAV carrying payload tracks a reference tra-
jectory in 3D while dropping each package to its time-based
designated location, as depicted in Fig. 6. The empty weight
of the considered tilt-rotor tricopter UAV is 1.418 kg while
the total weight after the addition of full payload is 1.875 kg.
Therefore, the total payload drop of 457 g, which is more than
32% of the empty mass of the UAV, results in a significant
variation in the UAV dynamics that favors the use of learning
for this application.

For this payload dropping experiment, a time-based
8-shaped trajectory of length 2.6m along x-direction and
1.3m along y-direction is incorporated, while the initial state
of the UAV is x(0) = [0, 0, 1.5, 0, 0, 0]T . For both tradi-
tional FLC method and SL-FLC framework, first a complete
8-shaped trajectory is tracked by the UAVwith a full payload,
followed by the dropping of each payload block once per lap

at fixed time intervals in the increasing order of their mass:
86 g → 114 g → 114 g → 143 g. Besides the controller
tuning, which is done incorporating the control gains and
learning rates specified in (45) - (50), the disturbance vector
is initialized as:

d̂u(0) = 0.15, d̂v(0) = −0.02, d̂u(0) = −0.3, (51)

wherein, the above disturbance values are ones that resulted
in an offset-free hover tracking of the UAV by the traditional
FLC method. Additionally, the disturbance estimation learn-
ing rates for SL-FLC framework are chosen to be:

αd̂u
= 0.2, αd̂v

= 0.2, αd̂w
= 0.25. (52)

Position tracking performance for the traditional FLC
method and the SL-FLC framework is shown together
in Figs. 7a and 7b. As visualized, the tracking performance
along the z-direction for the SL-FLC framework is com-
paratively much precise as compared to the traditional FLC
method. This effect is in accordance with our anticipa-
tion as the SL algorithm appropriately modifies the control
and disturbance parameters within the feedback linearization
method to help compensate for the disturbance which is
induced due to the sequential payload drops. On account of
this modification, the plant-model uncertainties that arise at
the dropping instant diminish with time which eventually
results in a precise trajectory tracking by the SL-FLC frame-
work. Apart from the qualitative comparison, the Euclidean
error and the absolute error along z-direction (zerror) are
selected as the quantitative comparison measures, which are
depicted in Fig. 7c for both the controllers. It is evident from
the figure that the zerror (also Euclidean error) accumulates
with each payload drop for the FLCmethod without learning,
whereas for the SL-FLC framework although the error rises at
the dropping instant, the learning brings it back to its initial
value. Furthermore, the traditional FLC method resulted in
the mean values for Euclidean error and zerror of 0.1573m
and 0.1103m, respectively, and the mean Euclidean error and
zerror for the SL-FLC framework are 0.0923m and 0.0220m,
respectively. This implies that the SL algorithm helped FLC
scheme to reduce the Euclidean error by 6.5 cm and zerror by
8.83 cm, over the traditional FLC method.

The velocity tracking performance for both are presented
in Fig. 7d. From the figure, it is seen that both the controllers
resulted in a similar performance. Mostly, the responses are
overlapping but a slight more oscillatory behavior is obtained
with the SL-FLC framework. This comparatively more oscil-
latory response for the SL-FLC framework can be explained
due to the transition (or leaning) phase. In addition, the con-
trol outputs for both the controllers are presented in Figs. 7e
and 7f. These figures also illustrate a similar performance as
achieved by both the controllers. Another point to take note
in Figs. 7e and 7f is that the low-level controller of Pixhawk
is well-tuned such that it is able to accurately follow the
references from high-level FLC. Finally, the variation of the
control gains for position and velocity within the SL-FLC
framework are plotted in Figs. 7g and 7h, respectively.
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FIGURE 7. Case Scenario I: trajectory tracking control performance of the tilt-rotor tricopter UAV with varying mass for the 8-shaped reference, where
the vertical magenta lines represent the instants of payload drop.

While there is no substantial change for position gains (except
an abrupt change in the beginning), there is a significant
increase in the velocity gains, especially kw, with each pay-
load drop. Similarly, the disturbance estimates presented
in Fig. 7i, get accurately estimated throughout the experiment
such that the SL-FLC framework results in a precise trajec-
tory tracking of the UAV.
Remark 7: It is to be noted that the effect of mass distur-

bance is not visible in controller gains for the position. The
reason for this behavior is that the induced force disturbance
is only acting along the dynamic force equations (given in
(35)), which govern the velocity response of the system.

In order to illustrate the viability of the proposed SL-FLC
framework is not only limited to small weight variations,
additional statistical experiments are performed, wherein four

different levels of weight drop – with each drop larger than
the previous drop – are executed while the UAV is hovering
at a stationary point (xposdes = [0, 0, 1.5]T ). For each level of
weight drop, the experiments are repeated ten times while
the mean Euclidean error values for both the controllers
are recorded. Thereafter, a box plot is prepared which is
presented in Fig. 8. It is evident that the mean Euclidean
error for the traditional FLC method increases with the rising
weight drop level, whereas the mean Euclidean error rise for
the SL-FLC remains comparably negligible. This again is in
accordance with our expectation as the learning helps FLC
scheme to adapt according to the changing environment even
when the magnitude of the change is abruptly varying.
Remark 8: In Fig. 8, one may expect to see a constant

mean Euclidean error with SL-FLC framework for all levels

VOLUME 8, 2020 1663



M. Mehndiratta et al.: Robust Tracking Control of Aerial Robots via a SL Strategy-Based Feedback Linearization

FIGURE 8. Mean Euclidean error for four levels of abrupt weight drops,
where ten tests for each weight level are performed.

FIGURE 9. Steady-state mean Euclidean error for four levels of abrupt
weight drops, where ten tests for each weight level are performed.

of weight drop. However, it is to be noted that rising mean
Euclidean error for the SL-FLC framework is mainly due
to the error that arises at the dropping instant. That is, for
heavier weight drops, the instantaneous error at the dropping
instant gets higher which subsequently diminishes over time.
Therefore, the overall mean Euclidean error increases by a
small amount with the increasing weight drop level. This
argument is further validated with the help of the box plot for
steady-state mean Euclidean error values presented in Fig. 9.

2) CASE SCENARIO II - GROUND EFFECT
In the second experiment, another disturbance type,
the ground effect, is analyzed that is commonly encountered
during takeoff, landing and ground proximity flying. Within
this case scenario, the UAV (without any payload) tracks a
circular trajectory of 1m radius along x- and y-directions that
incorporates two different height (along z-direction) levels
namely, 0.8m and 0.125m. The overall reference trajectory
can be visualized from Fig. 10a. In the beginning, UAV starts
to follow the circular trajectory at z = 0.8m (state vector
x(0) = [0, 0, 0.8, 0, 0, 0]T ) with a negligible influence of the
ground effect. Subsequently, while following the reference,

it gradually descends to z = 0.125m where the ground
effect gets dominating. After completing about half-a-circle,
it climbs back to z = 0.8m and maintains the height until the
end of the circular path, and thereafter, repeats the process for
another time.

In this scenario, both the controllers are tuned utilizing the
same control gains as specified in (45) - (48), and the SL-FLC
framework is designed with the controller learning rates that
are given in (49) - (50). Additionally, for the SL-FLC frame-
work, the initial value for disturbance vector is taken to be:

d̂u(0) = 0.15, d̂v(0) = −0.02, d̂u(0) = −0.3, (53)

while the following learning rates are selected for the distur-
bance estimation:

αd̂u
= 0.2, αd̂v

= 0.2, αd̂w
= 0.5. (54)

Remark 9: In order to increase the ground clearance for
the UAV, the foam attached to its landing skid is removed
which further reduced its empty weight to m = 1.410 kg.
This is the reason why a new disturbance vector is obtained
above.
Remark 10: In terms of the disturbance learning rates,

a higher value for αd̂w is utilized as the disturbance due to
ground effect is expected to vary at a higher rate in compari-
son to the previous case scenario.

The position tracking performance for both, tradi-
tional FLC method and SL-FLC framework, are presented
in Figs. 10a and 10b. As anticipated, when the UAV is not
exposed to ground effect both the controllers result in similar
tracking performance, whereas the SL-FLC framework dom-
inates the traditional FLC method under the ground effect
influence, primarily in terms of z-directional tracking. The
superiority of the former is best visualized from the Euclidean
error and zerror plots presented in Fig. 10c. Particularly in the
zerror plot, it is seen that the error for traditional FLC method
is always more in comparison to the SL-FLC framework.
Although there are instances (mainly during descending and
climbing) when the errors for both the controllers get almost
the same, these instances are mostly associated with the tran-
sition response of the SL-FLC framework. That is, during that
phase, the learning is in progress for the SL-FLC framework
due to which the tracking performance degrades a bit. More-
over, in the experiments with ground effect, the mean val-
ues for Euclidean error and zerror in traditional FLC method
are 0.0803m and 0.0369m, respectively, while for SL-FLC
framework the mean error values are 0.0783m and 0.0213m,
respectively. Hence, the SL algorithm resulted in an improve-
ment of 0.2 cm in terms of Euclidean error and 1.56 cm in
terms of zerror. At the first look, these numbers may appear
less. However, if one may look closely again at Fig. 10c,
it is evident that within the ground effect zone (represented
by areas II and IV), the maximum zerror for traditional FLC
method reaches until 7 cm, whereas for the SL-FLC frame-
work the zerror always stays below 2.5 cm. This difference
could be very crucial in certain situations, for instance, search
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FIGURE 10. Case Scenario II: trajectory tracking control performance of the tilt-rotor tricopter UAV in presence of ground effect for a circular reference.
It is to be noted that in Figs. (b) and (c) the vertical magenta lines represent the transition points, wherein, the areas I, III, and V are the regions without
ground effect influence while areas II and IV are with the influence of ground effect.

and rescue, where a precise path tracking is required from the
UAV while staying very close to the ground.

Even in this case scenario, the velocity tracking results
for both the controllers, presented in Fig. 10d, are similar.
Their plots are mostly overlapping but with a bit more oscil-
latory response from the SL-FLC framework. In terms of the
control outputs, again a similar performance is observed by
both, as also visualized from Figs. 10e and 10f. Furthermore,
the variation of the position and velocity control gains are
presented in Figs. 10g and 10h. Although the position con-
trol gains do not change much during the trajectory (same
reason as Remark 7), the velocity control gains get updated
whenever a disturbance is induced. It is to be noted that
even though there is no explicit induction of the disturbance
along x- and y-directions, the velocity control gains are also

updated to achieve a precise tracking performance. Finally,
the disturbance estimates from the SL algorithm are presented
in Fig. 10i. They vary with the induced disturbance to result
in an offset-free tracking. Moreover, from the plot of d̂w,
it is deduced that whenever the UAV enters the ground effect
zone, the magnitude of d̂w increases and decreases for vice-
versa. This is also per our intuition as the UAV is expected to
experience a positive force along z-direction under the ground
effect influence.

3) CASE SCENARIO III - WIND GUST
In the third experiment, another commonly experienced
disturbance while flying outdoors, i.e, the wind gust, is exam-
ined. To mimic the outdoor wind in the motion capture labo-
ratory, the wind gust disturbance is artificially induced with

VOLUME 8, 2020 1665



M. Mehndiratta et al.: Robust Tracking Control of Aerial Robots via a SL Strategy-Based Feedback Linearization

FIGURE 11. Case Scenario III: trajectory tracking control performance of the tilt-rotor tricopter UAV in presence of wind gust disturbance for a hover
with varying z-position reference.

the help of two industrial fans that are placed perpendicular
to each other at a distance of 2.2 m from the origin, as can be
seen in Fig. 5. For this experiment, they produce wind with
speeds in the range of 4.2-4.8 m/s (each fan) along −x- and
+y-directions. To test the efficacy of the SL-FLC framework
in compensating the wind gust disturbance, trajectory track-
ing performance of the UAV is analyzed for a hover with
varying height (changing z-position) reference. At the start,
the state of the UAV is x(0) = [0, 0, 1.3, 0, 0, 0]T , and then,
the z-position reference varies sinusoidally with magnitude
±0.5m. It is to be noted that in this experiment, wind gust
disturbance is induced from the very beginning for both the
controllers.
Remark 11: It is worth to mention that due to a chang-

ing z-position reference, the overall magnitude of the wind
disturbance acting on the UAV varies with time. However,

we would like to emphasize that the average change in the
wind disturbance is much slower than the states e1 and e2.
Consequently, our assumption ḋ = 0 is still valid.

For this case scenario also, both the controllers are tuned
with the gains specified in (45) - (48), and the SL-FLC
framework is designed with the controller learning rates that
are given in (49) - (50). In addition, for the SL-FLC frame-
work, the initial value for the disturbance vector is taken
to be:

d̂u(0) = 0.15, d̂v(0) = −0.02, d̂u(0) = −0.3, (55)

while the following learning rates are selected for the distur-
bance estimation:

αd̂u
= 0.4, αd̂v

= 0.4, αd̂w
= 0.4, (56)

which are obtained by utilizing the trial-and-error procedure.
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Remark 12: During the tuning phase for SL-FLC frame-
work, it is observed that for low values (less than 0.2)
of disturbance learning rates, the disturbance estimation is
unable to follow the variation within the induced wind gust
disturbance due to which the overall control performance
is poor. On the other hand, for the too high values (more
than 0.5) of the disturbance learning rates, the disturbance
estimation follows the trend of the variation of wind gust
disturbance but with high-frequency oscillations. Hence,
the values in between these extreme limits are utilized in the
experiment.

The position tracking results of a hover with changing
z-position reference for both, traditional FLC method and
SL-FLC framework, with wind gust disturbance are pre-
sented in Figs. 11a and 11b. As anticipated, the SL algorithm
helps FLC scheme (within SL-FLC framework) to predict
and compensate for the acting wind gust disturbance. As a
result, the UAV can closely follow the commanded trajec-
tory. On the other hand, there lies a constant offset (along
−x- and+y-directions) in tracking performance by the tradi-
tional FLC method, which is mainly because of the induced
plant-model uncertainties. Additionally, superior tracking by
the SL-FLC framework is even more explicit in Fig. 11c,
where the Euclidean errors for both the controllers are plot-
ted. As can be seen from the figure, the Euclidean error by
SL-FLC framework stays substantially below the Euclidean
error by traditional FLC method throughout the experi-
ment. Moreover, the mean Euclidean error values for tra-
ditional FLC method and SL-FLC framework are 0.1713m
and 0.0725m, respectively, which eventually illustrates an
improvement of 9.88 cm due to the SL algorithm for this case
scenario.
Remark 13: In Fig. 11c, one may notice two instances

(marked by two black ellipses) when the error for both the
controllers become almost the same. It is emphasized here
that at these instants the UAV is at the maximum height,
which is outside the fans’ influence, as can also be seen
in Fig. 11a.

The velocity tracking performance for both the controllers
is presented in Fig. 11d. Yet again, nothing much is deducted
from the figure as both the plots are almost overlapping
throughout the trajectory. Next, the control outputs for tra-
ditional FLC method and SL-FLC framework are presented
in Figs. 11e and 11f, respectively. In terms of controller gains
for the SL-FLC framework, the position control gains are
presented in Fig. 11g while the velocity control gains are
shown in Fig. 11h. Although there is no change in the position
control gains (same reason as Remark 7), the velocity control
gains get updated throughout to realize an accurate tracking
performance. In addition, the disturbance estimation perfor-
mance by the SL algorithm, which is depicted in Fig. 11i,
further facilitates a minimum-error trajectory tracking by the
SL-FLC framework.
Remark 14: Although the wind disturbance is introduced

along −x- and +y-directions, some of its influence is
also experienced along z-direction (due to a non-stationary

FIGURE 12. Mean Euclidean error for three wind speed levels, wherein
ten tests for each speed level are performed.

trajectory). As a result, a non-zero disturbance value is esti-
mated along z-direction in Fig. 11i.

Finally, in order to validate the claim that the SL algorithm
helps to improve tracking performance in the presence of
wind gust disturbance which is primarily stochastic, some
statistical results are also obtained. That is, the tracking per-
formance of each controller is tested for three different levels
of fan speeds, whereby, each experiment is repeated ten times.
From every single test, the mean Euclidean error values for
both the controllers are recorded and later accumulated to
obtain a box plot which is shown in Fig. 12. As visualized
from the figure, the mean Euclidean error values for both the
controllers increase with the rising fan speed level. However,
the error rise for the SL-FLC framework is negligibly small in
comparison to the traditional FLCmethod. This behavior is in
accordance with our expectation, as the SL algorithm within
the SL-FLC framework helps to compensate for the induced
disturbance, irrespective of its magnitude.
Remark 15: One may note that the control gains

in Fig. 11h get updated continuously even without much
change in the disturbance value. The reason for this con-
tinuous update is a low-value selection for the dead-zone
threshold (Remark 6), which is kept the same for all the exper-
iments. Nevertheless, while the increase is less in comparison
to the overall magnitude of the control gains, this continuous
update can itself be avoided by selecting a higher value for
the dead-zone threshold.

VI. CONCLUSION
In this paper, a simple learning strategy for uncertain nonlin-
ear systems has been proposed. The efficacy of the proposed
SL-FLC framework is first validated via a simulation study
where the control problem of a second-order dynamical sys-
tem is considered. It is shown that the SL-FLC framework can
ensure the desired closed-loop error dynamics in the presence
of modeling uncertainties and external disturbance. In addi-
tion to simulation, the performance of the SL-FLC framework
is also experimentally validated for the position tracking of a
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3D-printed tilt-rotor tricopter UAV. The tracking performance
of both the controllers, traditional FLC method and SL-FLC
framework, are analyzed for three different case scenarios,
wherein the disturbances in the form of mass variation,
ground effect, and wind gust are explicitly induced. Thanks to
the SL algorithm, SL-FLC framework resulted in z-direction
tracking improvements of 80.05% and 42.27% for the case
scenarios I and II, respectively. In addition, on account of
learning, the tracking improvement of 57.68% in terms of the
Euclidean error is achieved for the case scenario III. More-
over, the additional statistical results presented for the case
scenarios I and III illustrated consistent tracking improve-
ments even with the increasing magnitude of disturbances.
Overall, the presented simulation and experimental results
demonstrated a substantially superior tracking performance
by the SL-FLC framework over the traditional FLC method.
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