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ABSTRACT Specific Emitter Identification (SEI) detects the individual emitter according its varied signal
characteristics. The method operates in the physical layer of the internet and can effectively improve the
security of the Internet of Things (IoT). Generally, SEI identifies the uniqueness of the transmitting platform
by using the unintentional modulation information of the emitter such as radar, which has ‘‘fingerprint’’
characteristics. Existing SEI methods are based on hand-crafted features to distinguish different emitters.
In this paper, traditional feature extraction methods are studied and a new recognition method is proposed.
To determine the effectiveness of the method, the output signals of eight amplifiers are collected as the
research object. The power spectrum characteristics and adjacent channel power ratio (ACPR) of the signal
are then extracted and eight amplifiers are distinguished. Finally, the quadrature-phase signals are converted
into pictures, and convolutional neural networks are used to automatically extract features for classification
and recognition. The results show that the recognition rate of converting signals into pictures can reach 95%,
when SNR is 20dB.

INDEX TERMS Specific emitter identification, IoT, power amplifier.

I. INTRODUCTION
Specific emitter identification(SEI) technology measures the
characteristics of received electromagnetic signals to deter-
mine the individual emitter of the signal according to prior
information. This information is then associated with the
individual emitter and its platform and weapon system. The
SEI designates the individual emitter by discriminating it
from all other emitters [1]–[4]. uch features are extracted
from the received signal and termed as radio frequency fin-
gerprints. In the military, SEI is used for communications,
radar systems, interference source determination, military
spectrum management process [5], cognitive radio [6], self-
organized networks [7], [8]. The specific emitter identifi-
cation device used in military electronic reconnaissance is
illustrated in Fig. 1.

In the civil field, due to the broadcast nature of radio propa-
gation, the wireless air interface is open and accessible to both
authorized and illegitimate users. Compared to wired com-
munication, the open communication environment makes
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FIGURE 1. Specific emitter identification device for military applications.

wireless transmissions more vulnerable to attacks including
passive eavesdropping for data interception and active jam-
ming for disrupting legitimate transmissions. With the rapid
increase of wireless devices, SEI is of great significance for
improving wireless network security, including for the (IoT).

The advance in communication technology has resulted
in a gradual increase in communication frequency, which
can also speed up communication. However, according to
the characteristics of electromagnetic wave propagation, with
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FIGURE 2. The SEI technique is a way to improve the wireless network
security of Internet of Things.

higher frequency, the wavelength is shorter, and the closer
the propagation path is to a straight line. This means that
the diffraction ability of the electromagnetic wave is weak-
ened. Due to this condition, the 5G network requires a larger
number of base stations than 4G to cover the same area,
dramatically increasing the number of wireless networks. It
is estimated that approximately 20 billion devices will be
connected to the IoT in 5G networks. Due to the openness
of the transmission channel, the wireless network is more
vulnerable to large-scale malicious attacks compared with
the traditional wired network [9]. Traditional methods for
securing wireless networks are often based on bit-level secu-
rity protocols. However, vulnerabilities are often present in
such methods [10]. Radio frequency fingerprinting (RFF)
is an inherent feature of wireless devices which is difficult
to tamper with, and has thus been studied extensively in
recent years. The RF fingerprint refers to the difference of
transmitters caused by production, processing, and debug-
ging. The signal received from the transmitters can be used
to extract this difference in order to individually identify
wireless devices. The process of extracting the difference is
called RF fingerprint extraction [11] or RFF [12]. In specific
devices, the method is also called specific emitter identi-
fication (SEI), which aims at distinguishing the authorized
transmitters of various users based on the unique features of
radio frequency signals at the physical layer. Only authorized
users are allowed to intervene in the network, which improves
network security to a certain extent. The SEI technique has
been used in numerous systems including intrusion detection,
radar, satellite communication, IoT, and network security
systems in 4G and 5G networks.

According to the signal type, the SEI technology is based
on transient or steady state signal. It is difficult to collect the
transient signal because the existence time is ephemeral and
has high requirements for the receivers [13]–[15]. Therefore,
SEI based on steady state signals is investigated in this paper.

The steady state signal is easy to collect, however, the features
of the transmitter are hidden in the sent data stream, which
increases the difficulty of feature extraction [12], [16], [17].
Efficient methods are thus required to extract transmitter
features from the transmitted data.

The concept of artificial intelligence (AI) was first intro-
duced in 1956. With the continuous development of AI
technology, machine learning and deep learning have been
extended to occupy numerous aspects of people’s lives. The
development of AI in the field of communications has also
been rapid, with numerous studies presented on the sub-
ject [18]. This paper explores the use of AI algorithms to
solve specific radiation source identification problems. The
SEI procedure generally includes four primary steps: signal
acquisition and processing, extraction of features from the
obtained signals, matching the features with reference fin-
gerprint dataset, and assigning the best matching aggregate
to these features. In the last step, if there is no suitable
class, the signals under testing will be determined as mali-
cious signals of unauthorized transmitters and forbidden from
accessing the network.

In this paper, traditional signal processing algorithms are
compared with image-based methods. The experiments are
initially carried out using collected quadrature-phase (IQ)
data from power amplifiers. Power spectral density and adja-
cent channel power ratio (ACPR) are utilized as finger-
print features, principal component analysis (PCA) is used
to reduce the dimension of features, and finally, K-nearest
neighbor (KNN) is employed to classify them. In addition,
IQ signals are converted into pictures and then classified
using neural networks.

In this paper, we studied the Specific Emitter Identification
technology using the measured data. The main contribution
are summarized as follows:

• We have established Specific Emitter Identification
measured data sets.

• Exploring spectral features and ACPR feature for Spe-
cific Emitter Identification.

• Contour Stella Image is used to convert IQ sig-
nals into pictures. Compared with traditional feature
extraction methods, Graph-based method has better
performance.

II. RELATED WORK
Existing methods for radiation source identification include
statistical feature extraction based on signal parameters,
signal transform domain, nonlinear characteristics of the
transmitter, or image processing methods. The identification
method based on statistical features of the signal works by
locating a linear or nonlinear transformation to reflect the
intrinsic structure of the preprocessed signal. The original
signal is then projected into the distinguishable feature space,
which can reduce the dimension of the original signal as well
as classify over-fitting problems. Common signal parameters
include time domain, frequency domain, high-order moment,
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and high-order spectral parameters. In literature [19], [20],
authors identified the amplitude of transient signals using
Bluetooth and IEEE 802.11 transceiver devices. The average
detection rate was found to reach 95%, but with relatively
high time complexity. In literature [21], authors used the IQ
imbalance of the modulation domain as an RF fingerprint.
The method was based on the verification of the two param-
eter hypothesis test and likelihood ratio test, and simulations
were used to illustrate its. In 2015, the author of literatur [22]
extracted the phase information of the baseband signal by
filtering the signal of the same model from the same man-
ufacturer, and used it as the radio frequency fingerprint. The
experimental results show that the phase information can be
used to classify different devices, but the classification per-
formance will change due to the channel distance difference.
The average accuracy of classification in short range distance
was 99.6%, but this decreased to 81.9% as the channel dis-
tance became longer. Entropy embodies the degree of internal
chaos in a system. The more chaos, the higher the entropy.
Entropy characteristics are commonly used as features in RF
fingerprinting. For example, a new fingerprint recognition
method based on multi-dimensional permutation entropy was
proposed in [23] and demonstrated to be efficient. In the
experiment, the distance of the transceiver was set to 10 m,
so that the signal could propagate in the short-wave line of
sight (LOS) channel.

For weak differences between similar devices, transmitter
hardware nonlinearities and internal noise can produce spuri-
ous components at the receiving signal. Most of these signal
components are non-stationary and non-Gaussian, so statisti-
cal analysis methods for time domain and frequency domain
parameters may no longer be suitable. As a result, schol-
ars have gradually begun to use signal processing meth-
ods to analyze signals, converting them to certain transform
domains, then processing and analyzing the signals. Such
methods include wavelet analysis, time frequency analysis,
fractal features, empirical mode decomposition (EMD) trans-
formations, and intrinsic time decomposition (ITD) transfor-
mations. In 1998, Huang et al. [24] proposed a data analysis
method based on EMD which can generate a set of intrin-
sic mode functions (IMF). The Hilbert transform can then
be used to derive local energy and instantaneous frequency
from the IMF to obtain a complete energy-frequency-time
distribution. However, in [25], the authors pointed out the
shortcomings of the EMD method. For example, the process
of obtaining an IMF in EMD is inefficient and serious bound-
ary effects exist. More importantly, the EMD process pro-
duces new components that do not exist in the original signal.
In 2012, Klein et al. [26] used a dual-tree complex wavelet
transform (DT-CWT) feature extracted from a non-transient
preamble response of an orthogonal frequency-division mul-
tiplexing (OFDM)-based 802.11a signal to identify four
Cisco devices of the same model with different serial
numbers. The classification accuracy was demonstrated to
reach 80% when the signal-to-noise ratio (SNR) was lower
than 20 dB.

Nonlinear characteristics of the transmitter consist of non-
linear model parameters and nonlinear systems. Methods
based on nonlinear model parameters model the components
of the transmitter. For example, Polak et al. [3] used the
Brownian Bridge stochastic process to model a digital-to-
analog converter (DAC) and perform nonlinear behavior on
the transmitter DAC device. All nonlinear components of the
transmitter can also be observed as a nonlinear system and
the nonlinearity of the whole system is easy to evaluate. For
example, in 2016, Huang et al. [27] extracted the normalized
permutation entropy (NPE) of the transmitter system output
signal, obtaining an individual recognition rate of different
stations of over 95%.

Another method for radiation source identification besides
signal processing is to convert the signal into images. The
advantage of this method is that image processing methods
can be used to extract features. A typical example is modu-
lation constellation. In literature [28], a new radio frequency
fingerprint identification method based on constellation error
was proposed which analyzed the error between the received
signal constellation and the ideal constellation.

III. METHOD OVERVIEW
A. POWER SPECTRUM ESTIMATION
The power spectral function represents the frequency func-
tion of the unit bandwidth power with the spectrum com-
ponent of the finite average power signals. The important
characteristics of the random signal are studied and analyzed.
Power spectrum estimation is one of the main contents of
signal processing. It mainly studies the characteristics of
signal in frequency domain [29]. In this paper, the power
spectrum estimation of the amplifier output signals based on
Welch method is used.

Periodogrammethod assumes that xi(n)(i = 0, 1, · · ·K−1)
is the uncorrelated implementation of stochastic process x(n).
The length of every xi(n) is M . The periodogram of xi(n) is:

P(i)per (e
iω) =

1
M

∣∣∣∣∣
M−1∑
n=0

xi(n)e−jωn
∣∣∣∣∣
2

i = 1, 2, . . .K (1)

Then, computing the average of these independent peri-
odogram and the result is the estimation of power spectrum
as shown below.

P(av)per (e
jω) =

1
K
P(i)per (e

jω) (2)

In application, it is seldom to get repeatedly implemen-
tations of a random signal. Accordingly, Bartlett proposed
dividing a random signal with length N into K segments on
average. Further, define every sub signal as xi(n) = x(n +
iM )(n = 0, 1, · · ·M − 1; i = 0, 1, · · ·K − 1) And, comput-
ing the periodogram of every sub signal and computing the
average. Final,the expression of average periodogram is:

P(BT )per (ejω) =
1
M

K−1∑
i=0

∣∣∣∣∣
M−1∑
n=0

x(n+ iM )e−jωn
∣∣∣∣∣
2

(3)
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Welch’s method has two modifications to the average peri-
odogram method.

• The Welch’s method improves segmentation scheme of
x(n). The method allows a certain degree of overlap
between the data of each segment and its adjacent data
segment. For example, when the data of each segment
coincides with half of the segment, the number of seg-
ment turn into K = N − (M

/
2)
/
M
/
2.

• Data windowing for each segment may not be a rectan-
gular window. Such as Hanning window and Hamming
window. This can improve the distortion caused by the
larger side lobe of rectangular window.

The expression of power spectrum estimation based on
Welch’s method is:

P(i)w (ejω) =
1
MU

∣∣∣∣∣
M−1∑
n=0

xi(n)ω(n)e−jωn
∣∣∣∣∣
2

(4)

where ω(n) is a window function, xi(n) represents the
i-segment data sequence.

B. ACPR
For modern digital communication systems, the nonlinearity
of power amplifiers results in a spread of the output signal
power spectrum, which affects the signals of adjacent chan-
nels. In this case, the traditional multitone and single tone
test cannot meet the requirements of system performance
analysis. Therefore, the adjacent channel distortion caused
by nonlinearity is often used to measure the nonlinearity of
power amplifiers. The most commonly used indicator is the
adjacent channel power ratio (ACPR), which refers to the
ratio of the average power of adjacent channel signals to the
average power of the main channel [30]. The characteristic
curve is shown in Fig. 3.

Assuming a specified center frequency is fc and its offset
bandwidth is B1. The offset bandwidth of adjacent frequency
f0 is B0. The powers of the B1 and B0 are PB1 and PB0
respectively. The calculation of ACPR is as follows:

ACPR =
PB1
PB2

(5)

FIGURE 3. The characteristic curve of ACPR.

ACPR is mainly used to measure the nonlinearity of power
amplifiers relative to the interference of adjacent channels. If
the ACPR is large, it means that the power of the main power
leakage to the adjacent channel’s intermodulation component
is large, which will cause interference to the communica-
tion system. In practical engineering applications, In general,
the APCR of power amplifier can be improved by predistor-
tion method.

C. CONTOUR STELLA IMAGE
In the field of digital communication, the digital signal is
always shown in complex plane for the presentation signal.
This image is called the constellation diagram. In the con-
stellation diagram, although each sampling point is disturbed
by noise, it will produce random disturbance [31]–[33]. How-
ever, if each signal sample is large, a large number of random
samples will reflect the statistical characteristics of radio
frequency signals on the constellation diagram. Therefore,
constellation diagram is used to extract the fine features of
the digital signal in this work, including characteristics of
amplitude imbalance, orthogonal error, correlation interfer-
ence, phase and amplitude noise, and phase error and modu-
lation error caused by equipment difference. However, using a
traditional constellation diagram for extracting fine features
has drawbacks. For example, in the actual data acquisition
process, internal device noise can seriously contaminate radio
frequency signals and likely assign the constellations of dif-
ferent radio frequency signals with the same graphics.

A Contour Stella Image can be obtained based on constel-
lation diagram by using density rectangular window function
to calculate the point density in the constellation diagram.
When the density window function slides on the image, it will
count the number of points in different area windows and then
divide it by the number of sampling points of the entire con-
stellation to obtain the normalized point density value. The
overall calculation process can be expressed by the following
formula:

ρ(i, j) =

x2∑
i=x1

y2∑
j=y1

dots(i, j)

W1∑
x1=W0

H1∑
y1=H0

x2∑
i=x1

y2∑
j=y1

dots(i, j)

(6)

where W0 and H0 are the top left corner coordinates of the
constellation diagram, W1 and H1 are the lower right corner
coordinates, x1 and y1 are the top left corner coordinates of the
density window function, x2 and y2 are the lower right corner
coordinates of the density window function. In this paper,
different colors are used to mark different density areas.
Yellow denotes the relatively high density area of sampling
points, green denotes the relatively medium density area of
sampling points, and blue denotes the low density area of
sampling points. Figure 4 show the color of different point
density.

Contour Stella Image works to convert the communication
signal into a picture to assist in analysis. The problem of
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FIGURE 4. The color of different point density.

specific emitter identification can then be solved by methods
of image classification in computer vision.

D. CONVOLUTIONAL NEURAL NETWORK
Convolutional neural networks have been used for a long
time. In the 1990s, LeCun used convolutional neural networks
for handwriting recognition in the MNIST [34] database and
achieved 99% accuracy. The whole network was comprised
of five layers consisting of two convolutional layers, two
pooling layers, and one fully connected layer. The input of
the network was a 28*28 digital image and the output was
the recognition result of the handwritten digits by the neural
network. In a later ImageNet competition, a sample of the
image was expanded on a large scale, and the categories were
added to thousands of other groupings in which countless
people engaged in the image research.

1) AlexNet
The AlexNet network structure contains 60 million param-
eters and 65,000 neurons, five layers of convolution, three
layers of fully connected networks, and the final output layer
is 1000 channels of softmax. AlexNet uses two GPUs for cal-
culations, which significantly improves the efficiency of the
operation [35]. The network structure is illustrated in Fig. 5.

FIGURE 5. The network structure of AlexNet.

2) SQUEEZE-NET
In the field of deep learning, scholars generally focus on
how to improve the accuracy of neural networks. Therefore,
the neural network is increasingly deep, with a growing
number of parameters. Neural networks require an increasing
amount of hardware, however, this is difficult to fulfil in
embedded hardware such as mobile phones and autonomous
computing platforms. Thus, a focus on methods to streamline
and optimize the networkmodel so that it can run smoothly on
embedded devices with limited hardware is important. In this
work, SqueezeNet is utilized as a simplified and lightweight
convolutional neural network structure [36].

The network model SqueezeNet was proposed by Landola
to reduce model parameters rather than to improve classifi-
cation accuracy. SqueezeNet is not only concerned with the
accuracy of model classification, but also with the speed of
calculation and the size of the model. In general, the deeper
the number of layers of a convolutional neural network,
the stronger its expression ability. Improved parameters and
structures can always be obtained to solve problems such
as image classification and target positioning. SqueezeNet
can achieve the accuracy of the AlexNet network, but the
parameter size is reduced by more than 50 times. FireModule
is the core component of SqueezeNet. As shown in Fig. 6,
the concept is very simple, and works to respectively change
the original simple layer of convolution into the squeeze layer
and expand layer, with the activation layer of ReLU. In the
squeeze layer, all convolution kernels of 1 × 1 are present
and the number is denoted as S11. In the expand layer, kernel
convolution of 1×1 and 3×3 exist, and the number is respec-
tively denoted as E11 and E33. In this process, S11 must be
greater than the input map number. After the expand layer,
the convolving output feature maps of 1 × 1 and 3 × 3 are
spliced together in channel dimension. As illustrated in Fig. 6,
the Fire Module contains convolution kernels of 1 × 1 and
3×3, but their number is a super parameter whichmust be set.
Fire Module is divided into two parts, squeeze and expand.
The squeeze component is comprised of 1 × 1 convolution
kernel, while expand is composed of the convolution kernel
of 1 × 1 and 3 × 3. As we can see, the Fire Module has
convolution kernels of 1 × 1 and 3 × 3, but the number of
them is super parameter, which needs to be set. Fire Module
is divided into two parts, squeeze and expand. The squeeze
part is fully composed of 1 × 1 convolution kernel, which
reflects the design idea (1) above. Expand is composed of the
convolution kernel of 1× 1 and 3× 3.

FIGURE 6. Organization of convolution filters in the fire model.

3) ResNet
The residual learning framework was proposed in 2016 by
Kaiming. As it contains more layers in deep model but with
lower complexity, it can simplify the training of networks.
ResNet is a phase of the recent convolutional neural network,
which learns the residual between the feature map and the
true value [37]. Residual learning is much easier than the
learning of overall features. In this way, the designer can
extend the entire neural network, so that the convolutional
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neural network can be designed to thousands of layers. As the
network deepens, the granularity of image feature extraction
becomes more detailed, providing superior image processing
effects.

Theoretically, with more layers of convolutional neural
network, richer features can be extracted from the layers, and
so the accuracy will be higher. However, under the premise
that deeper networks start to converge, when more layers are
added, accuracy is saturated and can degrade rapidly. The
residual learning frameworkworks to resolve this degradation
problem by setting the added layers behind the deep network
as identitymapping by learning the identifymapping function
so that the framework is transformed into a shallow net-
work. More layers will therefore not create more parameters
and complexity, but improve the accuracy. The experimental
result shows that residual networks are easier to optimize, and
that accuracy can be easily improved by an increase of depth.
The framework of ResNet network is as shown in Fig. 7.
In this paper, ResNet18 was trained to identify the test set
samples.

FIGURE 7. ResNet convolutional neural network model.

IV. EXPERIMENTAL ANALYSIS
A. EXPERIMENTAL SETUP AND SCENARIOS
The power amplifier is a vital component of a transmitter.
Due to the inherent non-linear characteristics of the emit-
ter power amplifier, fingerprints can provide distinguishable
characteristics for emitter identification. Therefore, the power
amplifier is extracted from the whole transmitter system in
the proposed method. The overall setup for signal generation
and reception is provided in Fig. 8 in which signals from
a PC were generated by MATLAB and exported in fixed
signal format to the signal generator as a baseband signal. The
signal generator was then used to set up a carrier frequency
conversion to transmit the signal and set the carrier frequency
and input power of the input signal. MATLAB can produce
a variety of modulation signal styles. The maximum power
output from the signal generator to the power amplifier was
10 dBm in this experiment. During the acquisition process,
the signal generator was used to change the input power,
modulation mode, and center frequency of the input signal of
the power amplifier. The signal generator was programmed
to transmit random data on 433 MHz using 16 Quadrature
Amplitude Modulation (QAM).

The modulated signal was transmitted through the radio
frequency connection line to the power amplifier with an

FIGURE 8. Signal generation and data collection setup.

input signal power of 0 dBm. In order to distinguish similar
transmitters, eight BLT53A power amplifiers were used. The
power amplifier was the principal research object in this
study. The output signals were then collected, illustrating the
individual differences produced by the inherent dynamic non-
linearity of the amplifier. Figure 9 shows the power amplifiers
under test in this paper. For the receiver, signal acquisition
equipment was used to collect the IQ signal data of the power
amplifier with sample rate of 5 MHz and a sample point
of 20,000. The bandwidth of the signal was 500 KHz, and
100 samples were obtained from each power amplifier.

FIGURE 9. Power amplifiers.

B. RECOGNITION RESULT
1) RECOGNITION RESULT BASED ON POWER SPECTRUM
After the signal passes through the power amplifier, individ-
ual differences are produced due to the amplifier’s non-linear
distortion and spectrum regeneration. Using these charac-
teristics, individual amplifiers can be distinguished. Fig-
ure 10 shows the power spectrum of signals passing through
different amplifiers.

As illustrated in Fig. 10, the non-linear effect of the input
signal is varied due to the individual conditions of the ampli-
fier. The same type of amplifier of the same batch will
have a different output when the same signal is input. This
nonlinearity is directly reflected in the power spectrum of
the output signal. By calculating the power spectrum of each
amplifier’s output signal as a feature, eight individuals can be
distinguished.

The cable direct connection method was used to collect
data in which the SNR was approximately 30 dB, which is a
high ratio. However, it is difficult to obtain such a high recog-
nition rate in practical application, thus the power spectrum
of signals under different SNRwere analyzed. The number of
fast Fourier transform (FFT) points will affect the spectrum
characteristics of the signal and Fig. 11 shows the recognition
effect based on different FFT points.
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FIGURE 10. The power spectrum of signals passing through different
amplifiers. The sample rate is 5MHz. The FFT point is 1024.

FIGURE 11. The recognition rate with different FFT point. The sample rate
is 5MHz. The FFT point is 1024.

FIGURE 12. The recognition rate with ACPR.

2) RECOGNITION RESULT BASED ON ACPR
The index ACPR is commonly used for describing the nonlin-
earity of amplifiers as it can extract the nonlinearity of signals
from the power spectrum of signals more thoroughly. The
recognition result using ACPR is illustrated in Fig. 12. From
figure 12 we can see that the recognition rate increases as the
SNR increases, and it can achieve more than 90% when the
SNR is higher than 20 dB. The result proves the effectiveness
of the ACPR method.

FIGURE 13. The recognition rate using CNN.

FIGURE 14. The comparative analysis results of the power
spectrum-based feature extraction method and graph-based recognition
method.

3) RECOGNITION RESULT BASED ON CNN
The recognition results using three convolutional neural net-
works (CNNs) in varied SNR are illustrated in Fig. 13. The
methods are AlexNet, SqueezeNet, and ResNet-18. It can be
observed that the identification rate increases with the rise in
SNR for all methods, reaching over 90%. This identification
rate is achieved when SNR is 5 dB for AlexNet and 10 dB for
ResNet-18.

4) COMPARATIVE ANALYSIS OF RECOGNITION METHODS
Figure 14 depicts the comparative analysis results of
the power spectrum-based feature extraction method and
graph-based recognition method. As illustrated by the recog-
nition rate curve with SNR ratio change, the graph based
method is superior to the traditional feature extraction
method.

The traditional method mainly diagnoses according to the
information carried by the radio frequency signal such as
working frequency, modulation mode, and pulse repetition
frequency. However, it struggles to operate when the infor-
mation carried by the radio frequency signal is the same.
In this paper, a new radio frequency signal feature extrac-
tion method is adopted in which graph-based recognition is
used to perform deep feature mining on the radio frequency
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signal and the mined features are classified and identified by
convolutional neural network. This new method can provide
superior recognition effect.

Convolutional neural networks have achieved significant
results in picture recognition tasks. However, the amount of
computation required by the neural network is over 100 mil-
lion, meaning it cannot be widely used in practical tasks. Tra-
ditional feature extraction algorithms have less computational
complexity.

V. CONCLUSION
Specific emitter identification based on power amplifiers was
studied in this paper. Novel RF fingerprint features were
integrated in the proposedmethod, and extensive experiments
were carried out to evaluate performance. Firstly, a power
amplifier with wide application was selected as the research
object and measured data sets for individual identification
studies were collected. The power spectrum and ACPR char-
acteristics of the signal were then extracted. Finally, IQ sig-
nals were converted into pictures using Contour Stella Image,
and then classified using convolutional neural networks. The
results show that the proposed method obtains higher average
recognition rate under different SNR and does not require
manual feature extraction. Future work will be focused on
increasing the network architecture robustness to allow an
extension of the proposed approach to include data captured
from a large set of devices.
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