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ABSTRACT Due to the interactions among adjacent roads in urban road networks, traffic congestion grad-
ually propagates to neigboring roads, resulting in regional congestion. To develop advanced regional traffic
control strategies, it is necessary to clearly understand the characteristics of regional congestion evolution.
To this end, this paper proposes a data-driven approach to mine the spatiotemporal associations of regional
traffic congestion. By introducing both time and space attributes, the intra-transaction spatiotemporal Apriori
(IntraT-ST-Apriori) algorithm is developed to address the static features of regional traffic congestion;
while the inter-transaction spatiotemporal Apriori (InterT-ST-Apriori) algorithm is developed to capture the
dynamic characteristics of regional traffic congestion. Case studies are carried out for the urban road network
in Tianjin, China, based on empirical data. The results indicate that the Intra-ST-Apriori algorithm can
excavate the underlying associations of regional traffic congestion. Furthermore, the congestion propagation
trajectories can be clearly revealed based on the InterT-ST-Apriori algorithm. It is expected that the proposed
approach can support the regional traffic management and control, significantly relieving traffic congestion.

INDEX TERMS Traffic congestion, association rule, congestion propagation, apriori algorithm.

I. INTRODUCTION
As the increasing number of vehicles, traffic congestion,
particularly in rush hours, becomes one of the most essential
issues in most large cities all over the world. For an urban
traffic system, the roads connect with each other, forming
a complex road network. Traffic flows of adjacent roads
interact with each other. Traffic congestion on a road can
gradually spread to adjacent roads, leading to regional traffic
congestion. To this end, it is very necessary to explore the
underlying characteristics of traffic congestion association
and propagation, which are the basis for regional traffic man-
agement and control.

Due to the lack of empirical data, primitive studies were
conducted based on traffic simulations in terms of var-
ious traffic flow models, such as the link transmission
model [1], [2], the grid transmission model [3], [4], cellu-
lar automaton models [5], [6], and so on. On the basis,
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the occurrence, propagation and dissipation of traffic con-
gestion were extensively investigated on urban road netwo-
rks [7], [8]. Although the characteristics and mechanism
of network traffic congestion can be easily obtained based
on simulation models, there are some drawbacks for these
approaches. For instance, most of the models are not cali-
brated and validated based on empirical traffic data; Simula-
tionmodels cannot take into account some detail and essential
factors in real traffic, such as traffic interaction of vehicles
at intersections and dynamic origin-destination; In particular,
most simulation models cannot be applied on large urban net-
works due to the requirement of huge amount of computation.

With the rapid development of new technologies, such as
sensoring, information communication, and computer, large
amounts of traffic data can be collected in terms of var-
ious detectors and mobile equipment, which provide new
approaches to investigate network traffic flow based on
empirical traffic data.

Based on network traffic data, early works employed statis-
tical methods to investigate associations of traffic congestion
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in terms of adjacent road sections [9]–[12]. However, most
of the statistical indicators requires specific distributions of
empirical traffic data, such as linear or normal distribution.
Unfortunately, urban traffic flow data are generally noisy,
unstable and non-linear, resulting in lower reliability of the
methods.

Recently emerging machine learning approaches provide
us with an alternative opportunity to deeply understand var-
ious traffic phenomena. In recent years, machine learning
approaches have attracted much attention, which has been
extensively applied in traffic flow modeling and prediction
due to the capability to address high dimension big data [13].
Based on various data sources, i.e., floating car data, fixed
sensor data, camera data, some studies were conducted to
mine the characteristics of urban traffic congestion by apply-
ing such mechanism learning methods as causality trees [14],
associate rule learning [15], deep learning network [16], [17],
and so on. However, most of these studies addressed urban
traffic congestion with the consideration of neither spatial nor
temporal associations. Few works were conducted for spa-
tiotemporal congestion associations of urban road networks.

Since traffic congestion may propagate along road net-
works, there exist associations among different congested
regions. To this end, many studies have been dedicated to this
topic, attempting to uncover the underlying mechanism of
congestion association and propagation. Nevertheless, there
are still some open questions closely related to this study:
(1) How to recognize traffic state based on large amount
of empirical traffic data? (2) What are the underlying char-
acteristics of spatiotemporal associations for regional traffic
congestion? (3) How to reveal the spatiotemporal trajectory
of regional congestion propagation?

To address the abovementioned problems, this study devel-
ops a data-driven approach based on the Apriori algorithm,
and case studies are carried out based on empirical data of
Tianjin, China. The results indicate that the proposed algo-
rithm can well capture the spatiotemporal characteristics of
regional congestion, which expected the proposed approach
would be helpful for the regional traffic management and
control, and significantly relieve traffic congestion. Themoti-
vations and contributions of this study are as follows.
• An alternative clustering algorithm is developed to rec-
ognize regional traffic state by integrating the classical
k-means++ and FCM algorithms. In detail, the cluster-
ing result of the k-means++ algorithm is set to be the ini-
tial clustering centers of the FCM algorithm. Therefore,
the proposed algorithm can overcome the drawbacks of
the FCM algorithm, i.e., large computational amount,
low efficiency, and local convergence.

• By introducing both time and space attributes, the intra-
transaction spatiotemporal Apriori (IntraT-ST-Apriori)
algorithm is developed to address the static associa-
tion features of regional traffic congestion within a
specific period. The inter-transaction spatiotemporal
association (InterT-ST-Apriori) algorithm is developed
to capture the trajectories of regional traffic congestion

propagations based on empirical data. Namely,
the InterT-ST-Apriori algorithm takes into account both
spatial and temporal associations of regional congestion,
which has not been deeply studied in existing literature.

• Both IntraT-ST-Apriori and InterT-ST-Apriori are data-
driven algorithms based on machine learning, which
have the capability to excavate underlying characteris-
tics of regional congestion based on large amount of
empirical data. In particular, the success of machine
learning is one of the motivations. That is, whether
machine learning approaches could improve the under-
stand of regional congestion associations?

• Based on large amount of empirical data from Tianjin,
China, case studies are carried out. The results validate
the capability of the proposed approaches.

The rest of the paper is organized as follows: In Section II,
the literature review is presented. In Section III, the
IntraT-ST-Apriori and InterT-ST-Apriori Algorithms are
developed to address the association and propagation of
regional traffic congestion. In Section IV, the empirical data
used in this study is introduced, and the approach for traffic
state recognization is proposed. In Section VI, case studies
are carried out to validate the proposed approaches. Finally,
conclusions are made in Section VII.

II. LITERATURE REVIEW
Since network traffic congestion is a representative and essen-
tial issue in real traffic, many studies have been made on this
topic with various approaches, including simulation based
approaches, statistical methods, machine learning methods,
and so on. In the following part of this section, brief review
on network traffic congestion will be conducted.

A. MODELING CONGESTION PROPAGATIONS
BASED ON SIMULATIONS
Traffic simulation is a classical approach to investigate
traffic-related phenomena. So far, various traffic flow models
have been developed for urban network traffic flow [1]–[4],
[6], and some of them have been conducted to capture the
dynamic characteristics of network traffic congestion.

Macroscopically, the cell transmissionmodel (CTM) is one
of the most prevalent models to address network traffic flow
dynamics. Based on the CTM, various models have been
proposed to investigate traffic congestion propagation and the
underlying mechanisms. Reference [7] employed the CTM
to model both link and node traffic flow, and proposed a
method to estimate average journey velocity. On the basis,
network traffic flow can be simulated to identify network
congestion bottlenecks. Reference [8] applied the CTM to
simulate the formation and dissipation of congestion in a
two-way rectangular grid network. Reference [18] developed
a traffic state estimation method by combining the CTM
and extended Kalman filter (EKF) recursive algorithm. The
CTM is used to predict traffic density, and the EKF recursive
algorithm is used to deal with empirical traffic data from
sensors.
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As a typical microscopic traffic flow model, cellular
automaton (CA) model takes advantages in computational
efficiency and extendibility. As a consequence, CA has been
extensively applied in network traffic flow modeling to dis-
cover characteristics of network traffic dynamics. Refer-
ence [6] developed the primary two-dimension CA model to
simulate traffic flow on a grid network. Reference [19] pro-
posed a two-dimension CA model by combining the NaSch
model [5] and the BML model, attempting to investigate
traffic state transition from free flow to completely jam on
a grid network. Likewise, several two-dimension CA models
have been proposed to investigate traffic state evolution with
the consideration of various impacting factors, such as origin-
destination trips [20], traffic lights [21], network operation
reliability [22], and so on.

B. STATISTICAL METHODS FOR
CONGESTION ASSOCIATION
Based on empirical traffic data, earlyworks employed statisti-
cal methods to investigate congestion association among dif-
ferent road segments. Reference [11] introduced the entropy
plot to measure the correlation, and further proposed a statis-
tical model to capture the spatiotemporal correlation of traffic
states. Reference [9] developed a Bayesian based methodol-
ogy to model the correlation of travel times between links
along a corridor. Reference [10] proposed a statistical model
to study link speed correlation based on empirical data. The
model is simple and efficiency. However, normal distributed
data is assumed. Reference [12] utilized the Pearson correla-
tion coefficient to measure the speed correlation of different
roads in time and space, respectively. In summary, most
of the statistical methods requires specific distributions of
empirical traffic data, such as linear or normal distribution,
which limits the application and reliability of these methods.
Reference [23] proposed a method to analyze spatiotemporal
correlations of road traffic states in terms of both Pearson and
Entropy based methods. The results demonstrated Entropy
can be applied in more general cases of distribution of data,
while Pearson correlation can only address linear distribution
of data.

Based on statistical methods, the correlation of congestion
among different roads can be clearly illustrated. However,
these methods cannot address the dynamic evolution of con-
gestion on urban network. Moreover, most of the statistical
indicators requires linear or normal distribution of empir-
ical traffic data, while empirical traffic data is generally
noisy, unstable and non-linear and thus cannot satisfy the
requirements.

C. MACHINE LEARNING APPROACHES FOR
TRAFFIC CONGESTION
In recent years, various algorithms have been conducted
to investigate spatiotemporal correlations among different
datasets based on machine learning, such as the fuzzy
method [24], the rule-mining algorithms [25], [26], the topic-
based temporal mining approach [27], various clustering

methods [28], [29], and so on. Since the machine learning
performs well in big data mining, it is regarded to be helpful
to promote traffic-related studies.

Taking the advantages of machine learning and suffi-
cient amount of empirical traffic data, various data-driven
approaches have been developed to mine the underlying
characteristics of network congestion. To validate the pre-
dictability of urban traffic patterns, Reference [30] proposed
a method in terms of taxi trajectory data by mapping the road
congestion degree into a time series of symbols and mea-
suring its entropy. Reference [16] employed deep Restricted
Boltzmann Machine and Recurrent Neural Network archi-
tecture to model traffic congestion propagation based on
Global Positioning System (GPS) data of taxis. The proposed
method could well reveal the spatial distribution of conges-
tion on urban road networks. However, the spatiotemporal
association of congestion cannot be obtained. Reference [31]
proposed a data-driven approach based on dictionary-based
compression theory to identify spatial and temporal patterns
of road networks. However, the method has some limitations.
For instance, it cannot work better with small dataset; and
it is very sensitive to the outliers. Reference [32] introduced
the method of voting and ranking to address the uncertaint
performance of the road link based on speed dataset, which
can be applied to identify the dynamic characteristics of bot-
tlenecks. Reference [33] used Fuzzy C-means clustering to
conduct congestion patterns of road segments, and employed
spatial autoregressive moving average (SARMA) model to
discover the relationship between built environment and con-
gestion pattern. Nevertheless, the spatiotemporal evolution of
congestion cannot be well revealed. Reference [34] proposed
a method to predict congestion propagation based on greedy
algorithm. The method utilizes large amount of camera data
to mine congestion association among adjacent road links.
Reference [35] developed a method to model congestion
propagation in terms of a space-temporal congestion sub-
graph, and validated the proposed method based on taxicab
data in Shanghai.

Clustering is a typical data mining method which has been
conducted in exploring the characteristics of traffic conges-
tion. Reference [36] developed a method by clustering spa-
tiotemporally overlapping episodes to detect non-recurrent
congestion events. However, there are some limitations of
the method. For instance, it may induce a prediction do not
truly have a physical significance, because it employed only
the congestion factor to identify congestion levels. Refer-
ence [37] developed a dynamic clustering methodology to
describe the evolution process of congestion formation and
dissolution on urban road networks. However, this method
requires a prior knowledge on the number of clusters for
partitioning the network; and this method cannot well capture
congestion dynamics because it considers vehicles only on
links and neglects the impact of other factors such as signal-
ized intersections.

To further improve the understand of spatiotemporal asso-
ciation and dynamics of urban traffic congestion, several
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multi-step methods have been developed. Reference [14]
developed a method to detect spatiotemporal congestion
of roads and to mine the causal relationships in terms of
empirical datasets. The proposed method comprises of three
components: Causal congestion trees construction; Frequent
congestion subtree discovery; and Dynamic Bayesian Net-
work based traffic congestion propagation model. Neverthe-
less, the method requires detailed road traffic information
which cannot easily be obtained and the dataset may be
not sufficiently accuracy. Reference [38] developed a three-
phase framework to explore congestion correlation among
road links based on both taxi trajectory data and point of
interest (POI) data. Reference [39] proposed an integrated
stepwise method to recognize evolution patterns of recurrent
regional traffic congestion based on taxi GPS trajectory data.
However, the method cannot provide the associations among
traffic states in different regions. In addition, the accuracy
of the method cannot be guaranteed because they considered
only taxi data which is very small part of sampling of the
whole traffic data.

Association rule is a typical machine learning algorithm
which has been extensively applied in many areas such as,
traffic accidence analysis, traffic congestion prediction, exca-
vation of stock exchange rules, patent excavation clinical
excavation, and so on. Regarding to urban traffic congestion
associations, several rule based approaches have been devel-
oped. Reference [40] proposed amethod of comparative asso-
ciation rules mining based on genetic network programming
(GNP) to uncover association rules among different empirical
traffic data. Reference [41] proposed a Apriori based algo-
rithm in terms of social media data to mine spatiotemporal
correlation of congestion among road segments.

D. REGIONAL CONGESTION ASSOCIATION
In recent years, it has been validated the existing of well-
defined fundamental diagram (MFD) for urban road networks
from both theoretical analysis and experimental stud-
ies [42], [43]. Then, regional based traffic flow mod-
els attracted much attention, which provide an alternative
approach to investigate network traffic congestion. Refer-
ence [44] proposed causality trees based algorithms to detect
spatiotemporal traffic state dynamics of sub-regions of a road
network. The proposed algorithm was validated based on taxi
trajectory data of Beijing, indicating that it could identify
anomalous traffic states as well the corresponding spatiotem-
poral dynamics. Reference [45] partitioned a city into grid
grids, and employed the likelihood ratio test statistic approach
to depict traffic patterns based on GPS data from taxis.
However, the method cannot be extensively applied in prac-
tice since it needs appropriately sized datasets. Reference [46]
proposed a dynamic method to identify traffic congestion of
heterogeneous urban road networks. The method is mainly
composed of two steps. First, it generates a directed weighted
network in terms of network connectivity and traffic load of
the network; Then, it performs a detection algorithm con-
sisting of three sub-steps: generation of congestion regions,

expansion and regression of congested regions, and merging
adjacent congestion regions.

III. METHODOLOGY FOR REGIONAL CONGESTION
ASSOCIATION AND PROPAGATION
In this paper, the data-driven approach is applied to extract
the underlying spatiotemporal characteristics of regional con-
gestion. In brief, the proposed methodological framework
consists of the following components:

• Regionalism and regional traffic state recognition. First,
the urban area is divided into grids. Then, traffic vari-
ables (i.e., traffic flux, speed) are averaged for all the
roads within each grid. Accordingly, traffic state for each
grid can be recognized.

• Association of regional traffic congestion. The
IntraT-ST-Apriori algorithm is developed to uncover
the correlations of traffic states among different grids.
In this case, the association algorithm is static. Namely,
the IntraT-ST-Apriori algorithm is developed for a spe-
cific time interval. Therefore, the correlations between
congestion grids can be excavated at each time interval.

• regional traffic congestion propagation. To further
understand the dynamic evolution of regional traffic
congestion, the InterT-ST-Apriori algorithm is devel-
oped by introducing both spatio and temporal attributes.
To this end, congestion propagations can be excavated,
which is regarded to be the basis for development of
regional traffic control strategies.

The spatiotemporal state of event (traffic congestion) is
closely related to the length of time interval. A too small time
interval may results in large amounts of detail rules which
would not be necessary; while a too large time interval may
neglect some of the important association rules. Therefore,
it is necessary to choose an appropriate time interval to bal-
ance the accuracy and efficiency of mining process. In terms
of the characteristics of urban traffic congestion, the time
interval is set to be 15 minutes in the following case studies.

In this study, the approach is developed based on the clas-
sical Apriori algorithm. Therefore, the fundamental concepts
will be briefly introduced.

A. BASIC CONCEPTS
Apriori algorithm, primally developed by [25], is a classical
approach to investigate association rules.
Definition 1 (Item and Itemset): Itemset I = (I1, I2, . . . ,

Im) is a set of items consisting of m items. An item Ij(j =
1, 2, . . . ,m) denotes one of the items in itemset I . Ik is a
subset of itemset I consisting of k items, which is named as
k − itemset .
In this study, an item is regarded as the congestion state of

a grid at a time interval. Totally, the number of items can be
calculated as NG × Ntstep. Here, NG denotes the number of
grids; and Ntstep is the number of time intervals.
Definition 2 (Transaction): Each transaction Ti(i = 1, 2,

. . . , n) (Ti ⊆ I ) is comprized of a set of items, relating
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to an unique identifier TID. The transaction set D =

{T1,T2, . . . ,Tn} is a set of transactions.
Specifically, a transaction is comprised of congestion items

of some grids. A transaction is a subset of itemset I .
Definition 3 (Support): For itemsets X and Y belonging

to transaction set D, support sup(X ⇒ Y ) indicates the
frequency of the association rule in the transaction set D, and
it is expressed as,

sup(X ⇒ Y ) =
frq(X ∪ Y )

N
(1)

where frq(X ∪ Y ) represents the number of transactions
containing both X and Y ; N denotes the total number of
transactions in transaction set D.
In applications, the association rules should be larger

than the user-specified value, namely the minimum sup-
port minsup. In general, the larger the minimum support is,
the fewer the association rules are.
Definition 4 (Confidence): Assume that transaction set D

contain X (X ⊆ D) and Y (Y ⊆ D). Confidence is the condi-
tional probability of Y appearing in a transaction containing
X , which is formulated as,

conf (X ,Y ) =
sup(X ∪ Y )
sup(X )

(2)

where X ⊆ I ,Y ⊆ I , and X ∪ Y = 8. The minimum
confidence minconf should be satisfied for an association
rule.
Definition 5 (Lift): Lift indicates the relationship between

X and Y . It reads,

Lift(X ,Y ) =
sup(X ,Y )

sup(Y )∗ sup(X )
(3)

When the lift is larger than 1, the rule X ⇒ Y is strong
association rule, and the two itemsets X and Y are strongly
dependent with each other; while if the lift is less than 1,
the existence of item X has a reverse inhibition effect on
Y . In particular, if the lift equals 1, the itemsets X and Y
are independent with each other. Mathematically, lift can be
expressed as follows:

Lift(X ,Y ) =
P(Y |X )
P(Y )

(4)

For instance, the rule {Rail− station,Congestion} ⇒ {Bus−
station,Congestion}with lift 1.1 indicates that the congestion
of rail station may result in the occurance of congestion of the
bus station.
Definition 6 (Frequent Itemset): A frequent itemset is a

non-empty subset of itemset I whose support value is equal
to or larger than the minimum support minsup. In general,
a frequent itemset with item number ofm is called as frequent
m− itemset , and it is denoted as Lm.
Definition 7 (Strong Association Rule): A strong associa-

tion rule X ⇒ Y indicates the association rule to be mined,
which satisfies both the following criterions:

sup(X ⇒ Y ) ≥ minsup (5)

and

conf (X ⇒ Y ) ≥ minconf (6)

Definition 8 (Itemset Property): Any infrequent (k − 1)−
itemset cannot be a subset of the frequent k − itemset .
On the basis, association rule mining can be concluded as

follows: excavate the strong association rules (for example,
X ⇒ Y ) in the transaction set D. Here, X and Y are itemsets
belonging to transaction setD, which are named as antecedent
and consequent, respectively. In general, it is difficult to
directly excavate strong association rules from the transaction
set D due to the large amount of possible rules. For instance,
for a transaction set with d transactions, the number of pos-
sible rules is AR = 3d − 2d+1 + 1, which increases rapidly
as d increases. To address this issue, the Apriori algorithm
has been developed [25], which divides the problem into two
sub-processes:
• Searching for frequent itemsets whose supports are
equal to or larger than the user-specified minimum sup-
port.

• If the confidences of frequent itemsets are equal
to or larger than the minimum confidence, the asso-
ciation rules are generated by disassembling frequent
itemsets.

B. INTRA-TRANSACTION SPATIOTEMPORAL
APRIORI ALGORITHM
Different from the basic issues addressed by most asso-
ciation rule approaches, traffic congestion may propagate
upstream or downstreamwith time. That is, traffic congestion
is closely related to time and space, which should be added
as attributes to transactions. To this end, the intra-transaction
spatiotemporal (IntraT-ST) association rule is defined; See
Definition 9. According to the definition, both spatio and
temporal attributes are embedded into the transactions. As
well, the support and confidence should be re-defined; See
Definitions 10 and 11, respectively.
Definition 9 (IntraT-ST Association Rule):

P1 ∩ P2 ∩ . . .Pm, time

⇒ Q1 ∩ Q2 ∩ . . .Qn, time, (minsup,minconf ) (7)

where Pi and Qi denote the locations of congestion grids;
time denotes the time interval. Equation 7 indicates that the
correlations between X = [P1 ∩ P2 ∩ . . .Pm, time] and Y =
[Q1 ∩ Q2 ∩ . . .Qn, time] under the constraints of minimum
support and confidence.
Definition 10 (IntraT-ST-Support): IntraT-ST-Support indi-

cates the frequency of association rules appearing in the trans-
action set with all transactions taking spatio and temporal
attributes. It is expressed as,

sup (I (oi, t)) =
frq (I (oi, t))

N [t]
(8)

where frq(I (oi, t)) is the number of transactions containing
itemset I (oi, t); oi denotes the grid location; and t denotes the
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TABLE 1. Transaction set.

time interval. N [t] represents the total number of transactions
at t .
Definition 11 (IntraT-ST-Confidence): Based on the Defi-

nition 10, IntraT-ST-Confidence is defined as follows,

conf
(
I (oi, t) , I

(
oj, t

))
=
sup

(
I (oi, t) , I

(
oj, t

))
sup (I (oi, t))

(9)

where oi 6= oj.
Lift, as in Definition 5, is an extensively used index for

association rules. Nevertheless, lift may be not confident due
to the impact of zero-sum transactions (i.e., the transactions
with non items), and the performance is asymmetric near
the critical value 1. As a consequence, Kulc and IR will be
employed together as the performance index of association
rules; See Equations 10 and 11 for details.
Definition 12 (Association Index): For itemsets X and Y

belonging to transaction set D, Kulc and IR can, respectively,
be formulated as follows:

Kulc = 0.5× (conf (X ,Y )+ conf (Y ,X )) (10)

IR =
|sup(X )− sup(Y )|

sup(X )+ sup(Y )− sup(X ∩ Y )
(11)

In terms of Equation 10, X and Y are positively correlated
as Kulc is close to 1, indicating that the occurrence of X
may lead to the occurrence of Y . According to Equation 11,
the equilibrium state can be obtained as IR is close to 0, which
indicates that X and Y may impact on each other.
To investigate the spatio and temporal characteristics of

traffic congestion, the spatiotemporal congestion itemsets
should be designed. Since the association rules approach
to discrete problems, the characteristic values have to
be discretized, resulting in discrete transaction itemset
D = {Time Interval (TF), Characteristic Value, Location},
as shown in Table 1. All the time intervals have the same
time length. The characteristic value vi, (i = 1, 2, . . . ,NI )
represents the traffic state in grid i, where NI denotes the
number of possible traffic states.

Based on the above definitions, the IntraT-ST-Apriori algo-
rithm can be presented, which is mainly consist of two com-
ponents, i.e., generation of frequent intmsets and generation
of association rules; See Algorithm 1 for details.
In Algorithm 1, Step 4 illustrates the generation of frequent

itemsets, which contains twomajor steps, namely the join and
prune of the itemsets. In detail, the generation of frequent
itemsets are conducted as follows:
• Join step of Intra-T-ST-Apriori Algorithm: Join step is
applied to generate frequent k− itemsets, denoted as Lk .
The input of join step is (k − 1) − itemsets Lk−1. Let li

Algorithm 1 IntraT-ST-Apriori Algorithm
Step 1: Divide the urban road network into grids, and
generate the transaction set based on grid traffic states.
Step 2: Add temporal attribute into congestion transaction
set, resulting in spatiotemporal congestion transaction set.
Step 3: Let k = 1. Calculate the lift of candidate k −
itemset , and generate the frequent k−itemset for each time
interval in terms of the user-specified minimum support.
Then, let k = k + 1.
Step 4: For frequent (k−1)−itemsets in each time interval,
generate k − itemsets based on join step. Then, perform
the prune step based on the Apriori algorithm. Scan the
transaction set again to obtain the support of candidate
k − itemsets for each time interval. Generate frequent k −
itemsets in terms of the user-specified minimum support.
Step 5: Repeat Step 4 until new frequent candidate sets
cannot be generated or the generated candidate sets do not
satisfy the specified minimum support. Then, the genera-
tion of spatiotemporal frequent k − itemsets is completed.
Step 6: Calculate the confidence of each frequent k −
itemset for each time interval. Obtain the strong association
rules, whose confidences are equal to or larger than the
minimum confidence.
Step 7: Calculate the association index based on Equa-
tions 10 and 11 to present the correlation between the
antecedents and consequents of the association rules.

(i = 1, 2, . . . , k−1) represents the ith item in Lk−1. Join
any two li and lj (i 6= j) of Lk−1 to generate candidate
k − itemsets Ck .

• Prune step of Intra-T-ST-Apriori Algorithm: Ck is a
superset of Lk . That is, Ck contains all frequent k −
itemsets, and additional k − itemsets which are not
frequent itemsets. Obviously, Lk can be obtained by
calculating the support of each k − itemset in Ck and
discarding the ones whose supports are smaller than the
user-specifiedminimum support. Nevertheless, the large
size of Ck may result in huge amount of calculation.
Therefore, Definition 8 is applied to compress the size
of Ck . That is, if the (k − 1) − itemset of a candidate
k−itemset is not in Lk−1, the candidate k−itemset is not
frequent, which should be removed from Ck . Generally,
this process is regarded as prune.

Finally, the generation of association rules in Step 6 of
Algorithm 1, which is the major purpose of the IntraT-ST-
Apriori algorithm, can be detailed as,

• Find all the non-empty subsets Ii (i = 1, 2, . . . , k) of Lk ,
and divide them into two subsets Ii(ti, oi) and Ij(tj, oj)
(i 6= j) with a total of k − 1 cases. For Ii(ti, oi) and
Ij(tj, oj), calculate the confidence based on Equation 9.
The strong association rule can thus be obtained if the
confidence is equal to or larger than the specified mini-
mum confidence.
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C. INTER-TRANSACTION SPATIOTEMPORAL
APRIORI ALGORITHM
The dynamic evolution of congestion is a typical character-
istic of network traffic flow, which may seriously impact
on the efficiency of road networks. To this end, the Inter-
transaction spatiotemporal Apriori (InterT-ST-Apriori) algo-
rithm is developed to capture the propagation trajectories of
regional traffic congestion.
Definition 13 (Time-Series Congestion Set): Let S =

{s1, s2, . . . , sn} denotes the time-series set; Ti = {s1(i), s2(i),
. . . , sn(i)} represents the set of observations to S at time
interval i. Multiple time-series congestion set can be defined
as D = {T1,T2, . . .Tn}, where each set of observations in D
is regarded as a transaction set, with an identifier of TID
Definition 14 (InterT-ST Association Rule): Let

∑
=

{e1(0), e1(1), . . . , e1(ω−1), e2(0), e2(1), . . . , e2(ω−1), . . . ,
eu(0), . . . , eu(ω − 1)} denote the congestion transaction set,
with each element representing the attribute of observations
in time series transaction setD. ω is the length of sliding time
window of D. Let s(1 ≤ s ≤ n− ω + 1) represent the initial
reference time of D. If congestion transaction ei takes place
at time s + x (0 ≤ x ≤ ω − 1), denote ei(x) ∈ Ts, and set
an unique identifier TID to it. Then, the InterT-ST association
rule can be expressed as X ⇒ Y , which satisfy the following
criterions:

(1) X ∈
∑

, and Y ∈
∑

;
(2) ∃ei(0) ∈ X , 1 ≤ i ≤ u;
(3) ∃ej(q) ∈ X , 1 ≤ j ≤ u, ((i 6= j) ∧ (1 ≤ q ≤ ω − 1));
(4) ∃ei(p) ∈ Y , 1 ≤ i ≤ u, max(q) < p ≤ ω − 1;
(5) X ∩ Y = ∅;
(6) X = [ti, oi, v1], Y =

[
tj, oj, v1

]
; X and Y satisfy with

Definition 16.
To mine the association rules, it is necessary to con-

struct transaction sets to be mined. Based on transac-
tion set of IntraT-ST association rules and the specified
time window, a number of sliding time window transac-
tion sets with different starting time are formed in terms of
Definition 15.
Definition 15 (Sliding Time-Window Transaction Set):

Arrange the transaction sets in chronological order, and
the sliding time-window transaction sets are composed of
itemsets of consecutive ω time intervals.

In this study, the time series is t = [7 : 00, 7 : 15, 7 :
30, . . . , 22 : 00]. The time series set S contains m elements
as well as the time series t . Then, based on Definitions 13
and 14,

∑
can be obtained and the sliding time-window

transaction sets can be generated with various initial time.
In applications, an appropriate time-window should be

determined. A too large time-window may lead to lower
computational efficiency, while a too small time-window
may neglect the temporal impact on the concerned issues.
In general, the time-window sizeω can be selected in terms of
research purpose and the size of transaction sets. Intuitively,
one can see Figure 1 for the sketch of sliding time-window
transaction set with initial time of i.

FIGURE 1. Sliding time-window transaction set with initial time of i .
Here, Ti represents the congestion grids at time i ; m is the number of
time series; ω denotes the length of sliding time-window; and TID is the
identifier.

The support and confidence of InterT-ST association rules
are similar to those of IntraT-ST association rules. Neverthe-
less, each transaction should have attributes of time ti and
location oi. Therefore, for the calculation of these parameters,
the items can be regarded to be the same only when they have
the same spatio and temporal attributes.

Traffic congestion in a grid may propagate upstream or
downstream, and thus impacts on traffic state of surrounding
grids. Therefore, when mining strong spatiotemporal associ-
ation rules of congestion grids, the antecedents and conse-
quents of rules need to satisfy both the temporal continuity
and spatial connectivity. According to the characteristics of
congestion evolution, the temporal constraint, the spatio con-
straint and attribute constraint are proposed, as described in
Definitions 16, 17 and 18, respectively.
Definition 16 (Temporal Constraint):

1t = tdi − t
k
j =


(i− j)× λ, (d = k, i > j)
(j− i)× λ, (d = k, i < j)
∞, d 6= k

(12)

where 1t denotes difference of the time interval; tdi (tkj )
denotes the time interval i (j) in day d (k); and λ is the size of
time interval, representing the continuity of time.
Definition 17 (Spatio Constraint): Spatio associations

mainly include topology, distance and orientation, which can
be depicted by spatio predicates. Spatio topological associ-
ations are adjacent, connected and overlapping relationships
among grids. Distance describes grids with predicates such as
‘‘far away’’ and ‘‘adjacent’’. Orientation represents grids with
predicates such as upper and lower, left and right, front and
back, east, west, South and north. The congestion in a grid
can only spread to the surrounding grids, i.e., spatio adjacent
grids, as shown in Figure 2.
Definition 18: Attribute constraint

(oi, ti, 0)⇒ (oi, ti+1, 1) (13)

where oi (i = 1, 2, . . . , n) denotes the grid location; 0
represents non-congestion, while 1 represents congestion.
Equation 13 indicates that traffic state of grid oi turns to
congestion from ti to ti+1;

Based on the aforementioned definitions, the InterT-ST-
Apriori algorithm can be developed with three components:
(1) Generate sliding time-window transaction set based on
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FIGURE 2. Spatio relationships.

Algorithm 2 InterT-ST-Apriori Algorithm
Step 1: Input congestion transaction set; Set the minimum
support, the minimum confidence, the length of time inter-
val λ, and the size of sliding time-window ω.
Step 2: Generate the sliding time-window transaction set
according to Definition 15, as shown in Figure 1. Applied
InterT-ST association rules to the generated sliding time-
window transaction set.
Step 3: Calculate the support of each itemset of the trans-
action set, and obtain the frequent 1− itemsets in terms of
the specified minimum support.
Step 4: Apply the join and prune steps to frequent 1 −
itemsets. Thus, frequent 2 − itemsets can be obtained to
explore the interaction among transactions along the time.
Step 5: Calculate the confidence of each frequent itemset,
and generate the strong association rules whose confi-
dences are equal to or larger than the minimum confidence.
Integrate the strong association rules within ω time inter-
vals. Namely, combine the strong association rules if the
consequent of a rule at time t is the same as the antecedent
of a rule at time t + 1. Then, the multi-item association
rules can be obtained.

datasets; (2) Mine the association rules; and (3) Select the
valuable association rules with the consideration of real traf-
fic. Among them, components (1) and (2) are the most impor-
tant ones, which are detailed in Algorithm 2.

In Algorithm 2, Step 4 illustrates the generation of frequent
itemsets, which contains twomajor steps, namely the join and
prune of the itemsets. The prune process is similar to that of
Algorithm 1. The join step is detailed as follows:
• Join step of Inter-T-ST-Apriori algorithm: Let Lk denote
the frequent k − itemsets which are joined by item-
sets in Lk−1. For the join step based on the frequent
(k − 1) − itemsets Lk−1, it is necessary to take into
account the spatiotemporal constraints, as in Figure 2
and Equation 12. In addition, such attribute constraint
as Equation 13 should also be considered. On the basis,
the candidate k − itemsets Ck can be generated.

IV. DATA DESCRIPTION
The data employed in this study is from Tianjin, China. The
data is acquired by the surveillance camera at the intersections

FIGURE 3. Distribution of surveillance camera in Tianjin, China.

FIGURE 4. Urban grid.

of most urban roads in Tianjin. The surveillance camera are
widely distributed with the total number of more than 800,
as shown in Figure 3. The surveillance camera take photos of
the passing vehicles whose information can thus be recorded,
including photographing time, the license plate number, and
the driving direction. As well, the data contains the informa-
tion of each surveillance camera, including the ID and the
location (i.e., GPS coordinate).

This study concerns the traffic within the outer ring road
of Tianjin. The data is collected from June 2, 2017 to
June 30, 2017. Totally, more than 30 billion data samples are
extracted.

A. REGIONAL GRID GENERATION
To mine the spatiotemporal associations of regional traffic
congestion, the selected area is divided into square grids
with size of Lc × Lc m2. In practice, the length Lc is an
essential parameter should be carefully addressed. Regarding
to the fact that the average distance between two adjacent
surveillance camera is approximate 300m, Lc is set to be 1 km
to ensure the sufficient road links are included in a grid.

Furthermore, case studies are conducted in the downtown
areas of Tianjin with a dense distribution of surveillance cam-
era, as is the surrounded area by the red solid line in Figure 4.
Therefore, traffic states of each grid can be well recognized
due to sufficient data.
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For the following convenience, the grids are denoted as

GridID=GxGy,Gx ∈ [A,B, . . . ,N ], Gy ∈ [1, 2, . . . , 17]

(14)

whereGx represents the abscissa value, andGy represents the
ordinate value. For the selected area, the abscissa ranges in
[E,F, . . . ,N ], and the ordinate ranges in [9, 10, . . . , 17].

B. REGIONAL TRAFFIC VARIABLES
Based on the extracted information of passing vehicles,
as well as the locations of surveillance camera, the basic
variables, such as speed and flux, can be calculated, which
will be detailed in this subsection.

1) SPEED
For a vehicle passing a road link with surveillance camera
at both the beginning and the end, the travel time is the
difference of photographing times of the two surveillance
camera. The road length can be obtained with API of Baidu
map based on theGPS coordinates of the surveillance camera.
Then, the average speed of a vehicle passing through the road
link can be calculated as follows:

vik =
lk
T ik

(15)

where vik represents the average speed of vehicle i passing
road link k; lk denotes the length of road link k; T ik denotes
the travel time of vehicle i passing road link k .
Without loss of generality, set the time interval to be 5 min-

utes. The average speed of each road link can be calculated
for each time interval as follows:

vt,k =

∑n
i=1 v

i
k

n
(16)

where t denotes the order number of time interval, t =
0, 1, . . . , 287; vt,k denotes the average speed of road link k
during the time interval t; and n represents the amount of
vehicles passing through road link k during the time interval t .
On the basis, the average speed of a grid can be calcu-

lated as,

Vgrid,t =

∑Ngrid,l
k=1 vt,k
Ngrid,l

(17)

where Vgrid,t denotes the average speed of grid grid during
time interval t; and Ngrid,l is the amount of road links in grid
grid .

2) FLUX
In this study, the flux of a road is regarded as the number of
vehicles passing through the surveillance camera locating at
the upstream intersection. Likewise, the flux is accounted for
each 5 minutes, yields,

qt,m = vehiclem,t (18)

where vehiclem,t denotes the number of vehicles passing
surveillance camera m within time interval t . Accordingly,
the regional flux can be calculated as,

Qgrid,t =

∑Ngrid,m
m=1 qt,m
Ngrid,m

(19)

where Qgrid,t denotes the average flux of grid grid during
time interval t; and Ngrid,m denotes the number of surveil-
lance camera within grid grid .

3) LENGTH OF TIME STEP
In general, an appropriate time interval should be determined
to match the characteristics of congestion propagation. A too
small time interval may result in unrealistic fluctuation of
flux due to the impacts of signals; while a too large time
interval may neglect some of the dynamic characteristics.
In terms of existing traffic practice, the time interval is set to
be 15 minutes, and 96 time intervals can be obtained. Based
on the average speed and flux of grids within 5 minutes, these
variables of 15 minutes can be easily obtained as,

Vgrid,t ′ =

∑2
i=0 Vgrid,3t ′+i

3
(20)

Qgrid,t ′ =

2∑
i=0

Q grid ,3t ′+i (21)

where t ′ (t ′ = 0, 1, . . . , 95) represents the time interval
within a day.

C. DATA PREPROCESSING
The original data is obtained by the surveillance camera
to take photos of the passing vehicles. Then, the specific
information of the vehicles such as the license plate can be
extracted based on the image recognition technology. During
the process, there are many factors that may lead to data
missing or anomalies. To ensure the accuracy and reliability
of the following case studies, it is necessary to pre-process
the data.

1) MISSING DATA
The missing data can generally be preprocessed with various
approaches, such as ignoring the data, filling the data by
interpolation, regression, or prediction, and so on. In this
study, the missing data are addressed as follows:
• If the data are continuously missed for more than
30 minutes, they are neglected.

• For the isolated missing data, it is filled by averaging the
data of two adjacent time intervals.

2) OUTLIER VALUE DATA
In this study, the link travel time is regarded as the time
difference for a vehicle passing two adjacent surveillance
camera. In accordance with the extracted travel times, one
can find some of them are extremely large which may be
caused by various issues such as randomly roadside parking,

VOLUME 8, 2020 3703



D.-F. Xie et al.: Spatiotemporal Apriori Approach to Capture Dynamic Associations of Regional Traffic Congestion

and so on. The abnormal travel times may further result in
unrealistic speeds. To this end, the travel time is filtered based
on the following criterion:

0 < T ik < 1h (22)

Furthermore, the speed is filtered by:

µspeed − 3σspeed ≤ vt,k ≤ µspeed + 3σspeed (23)

where, µspeed and σspeed denote the average and standard
deviation of the speeds, respectively. Equation 22 is applied
to eliminate the unrealistic link travel times. Equation 23
represents the classical 3σspeed criterion, which is further used
to remove the unrealistic speeds.

V. TRAFFIC STATE RECOGNITION
To investigate the spatiotemporal association rules of regional
traffic congestion, it is necessary to develop approaches to
recognize regional traffic states based on empirical traffic
data.

So far, various criterions have been proposed to recog-
nize traffic states, such as the criterion in HCM (textcol-
orred HCM 2000). Nevertheless, traffic states themselves are
fuzzy, which cannot clearly classified. To this end, the fuzzy
c-means (FCM) algorithm is extended to recognize traffic
states.

A. CLUSTERING ALGORITHM FOR TRAFFIC
STATE RECOGNITION
1) INTEGRATED CLUSTERING ALGORITHM
The FCM algorithm can be used to calculate the member-
ship of each sample to all clusters. Nevertheless, the FCM
algorithm has some obvious disadvantages which can be
concluded as follows:
• The computational amount of FCM algorithm is very
large, resulting in low efficiency.

• Since the initial clustering center is randomly specified,
the objective function may converge to a local minimum
value by gradient method.

To overcome the drawbacks of the FCM algorithm, it is
extended by integrating the k-means++ algorithm. In detail,
the clustering results of the k-means++ algorithm is used as
the initial clustering centers of the FCM algorithm.

Both k-means++ and FCM are classical clustering algo-
rithms which are not repeated in this study. One can refer [47]
and [24] for details.

2) PARAMETER SETS OF THE CLUSTERING ALGORITHM
In general, several essential parameters should be specified
for the FCM algorithm, such as the number of clusters,
the fuzzy weight coefficient, termination condition of the
algorithm, and so on.

a: OPTIMIZATION OF CLUSTERING NUMBER
So far, there is no confirmed conclusion about the classifi-
cation of traffic states. In practice, traffic flow is generally
divided into 3 levels, 4 levels, 5 levels, and so on.

In this study, sum of squared errors (SSE) is employed
as the performance index of the clustering results. It is
expressed as,

SSE =
k∑
i=1

∑
p∈Ci

|p− mi|2 (24)

where Ci denotes cluster i; p denotes the sample of Ci; andmi
is the center of Ci. In general, the SSE can be regarded as the
clustering error. The smaller the SSE, the better the clustering
results.

b: THE FUZZY WEIGHT COEFFICIENT m
The fuzzy weight coefficient m is an important parameter of
FCM algorithm, which may seriously impact on the conver-
gence. According to [24] and [48], the optimal value of m is
2 in most cases, which is applied in this study as well.

c: THE TERMINATION CONDITION
A stopping tolerance ε > 0 should be predetermined for
FCM algorithm. In this study, a sufficient small ε = 10−6

is specified to ensure the accuracy of the FCM algorithm.

3) PERFORMANCE INDEX OF CLUSTERING RESULTS
FCM algorithm is an unsupervised clustering algorithm.
It attempts to obtain clustering results with high intra-class
aggregation and low inter-class coupling. Here, the Xie-Beni
index [49] is used as the performance index of the clustering.
It is expressed as,

vXB(U ,V ,X ) =

∑c
i=1

∑n
k=1 u

2
ik ‖xk − vi‖

2

n
(
mini6=j

∥∥vi − vj∥∥2) =
δ/n
sep

(25)

where X is the data sample set; V is the cluster centroid;
U is a positive definite matrix; sep = mini6=j

∥∥vi − vj∥∥2
denotes the degree of separation between clusters; δ =∑c

i=1
∑n

k=1 u
2
ik ‖xk − vi‖

2 is total variation; n denotes the
number of samples; and δ/n represents the intra-class
compactness.

In terms of Equation 25, the smaller the vXB(U ,V , X ),
the better the clustering results.

B. DATA PREPARATION
In this study, the grid traffic states are evaluated in terms of
both the speed and flux, which have been extensively used in
traffic flow theory to represent a specific traffic state.

The prepared data in Section IV is employed with each grid
of 1km × lkm and time interval of 15 minutes. In addition,
the data within [22:00, 6:00] is omitted due to the extraordi-
nary low traffic during the night, and traffic congestion may
not appear. To this end, the time range is selected as [6:00,
22:00], with totally 64 time intervals during a day. The data
of 29 days (from 2 June 2017 to 30 June 2017) is used in the
following clustering, and the number of samples is 167040.
Each data sample contains two parameters, i.e., speed and
flux, which can be represented as Xi = [xi1, xi2] , i =
1, 2, . . . , n. Here, n denotes the number of samples.
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FIGURE 5. Variation of SSE with cluster number.

TABLE 2. Xie-beni coefficients of different clustering algorithms.

FIGURE 6. Traffic state classification based on the extended FCM.

The pre-processed data should be normalized to avoid
the differences in magnitude. Here, the Z-score approach is
applied, which is formulated as,

z =
x − µ
σ

(26)

where z is the normalized value; µ and σ are the mean and
standard deviation of the sample data, respectively.

C. CLUSTERING RESULTS OF TRAFFIC STATE
Figure 5 shows variation of SSE with cluster number. One
can see that SSE begins to vary slowly as the cluster number
is larger than 4. Since the purpose is to obtain possible simple
clustering results with sufficient compact samples for each
cluster, the cluster number is set to be 4 in this study.

Table 2 shows the Xie-beni coefficients of the original
FCM algorithm and the extended FCM algorithm. As can
be seen, the extended FCM algorithm has smaller Xie-beni
coefficient indicating the advantages of the extended FCM
algorithm.

Figure 6 shows the clustering results with corresponding
cluster centers in Table 3. In accordance with the speed
and flux of cluster centers, the traffic states are named as
free traffic, normal traffic, slight congestion and congestion,
respectively.

TABLE 3. Clustering center for various traffic states.

TABLE 4. Several examples of the clustering results.

• Free traffic corresponds to the green points with high
speed and low flux.

• Normal traffic corresponds to the blue points. In com-
parison with free traffic, the speed becomes lower and
the flux is higher.

• Slight congestion corresponds to the yellow points. Traf-
fic condition becomes worse, and stop-and-go traffic
appears. Nevertheless, the flux is still high.

• Congestion corresponds to the red points with very low
speed and flux. Traffic congestion is very serious.

Table 4 shows several examples of the clustering results.
The traffic state of each sample is determined according to
the membership. The degree of membership indicates the
probability for the sample belonging to a cluster. Accordingly,
each sample can be labeled by a traffic state with the largest
degree of membership.

VI. CASE STUDY AND RESULTS
In this section, the IntraT-ST-Apriori and InterT-ST-Apriori
algorithms will be applied on road network of downtown in
Tianjin, China, to investigate the association and evolution
characteristics of regional congestion.

Briefly, based on traffic data of a workday, strong associa-
tion rules will be extracted based on the proposed algorithms.
Furthermore, together with the map of Tianjin, we attempt to
investigate the association and dynamic evolution of regional
congestion in Tianjin.

A. DATA PREPARATION
As discussed in Section IV, traffic data of workday is divided
into data samples with time interval of 15 minutes. Here,
the night period is neglected because there are very few
vehicles on roads, and the selected time period is 7:00-22:00,
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TABLE 5. Spatiotemporal congestion transaction set.

TABLE 6. Transaction bool matrix.

TABLE 7. Frequent itemsets of congestion items for morning and evening
rush hours, respectively.

in total 15 hours, containing 60 time intervals. The morn-
ing and evening rush hours are 7:00-9:00 and 16:00-19:00,
respectively. In generally, traffic congestion is serious during
rush hours.

With the method in Section V, the congested grids can be
obtained for each time interval. Then, the spatiotemporal con-
gestion transaction set can be derived. Examples are revealed
in Table 5

By scanning the congested transaction set, the transaction
Bool matrix of time interval i can be obtained, as shown
in Table 6.

B. MINING REGIONAL CONGESTION ASSOCIATION RULES
Based on the prepared data, the Intra-ST-Apriori algorithm is
applied to study the congestion association among the grids.
Here, the minimum support is set to be 0.5, and the minimum
confidence is 0.7.

Regarding to the morning and evening rush hours, the fre-
quent 2-item set, frequent 3-item set and frequent 4-item set
can be obtained, as shown in Table 7. Obviously, the size
of item set for morning rush hours is larger than that of
the evening rush hours, indicating more serious congestion
for morning rush hours. In addition, the results demonstrate
significant association of regional traffic congestion during
morning rush hours due to the over saturated traffic flow. As
a consequence, it should pay more attention on traffic control
and management during morning rush hours.

TABLE 8. Strong association rules for morning rush hours.

TABLE 9. Strong association rules for evening rush hours.

FIGURE 7. Congestion associations among different grids during the
morning peak of workdays.

FIGURE 8. Congestion associations among different grids during the
evening peak of workdays.

Furthermore, the strong association rules can be mined
based the IntraT-ST-Apriori algorithm. Examples are shown
in Tables 8 and 9 (as well in Figures 7 and 8) for morning and
evening rush hours, respectively. Specifically, several rules
are selected and analyzed to intuitively reveal the association
characteristics of regional congestion.
• The strong association rule ‘‘J12 ⇒ H13’’ (i.e.,
‘‘Northeast of Yingkou Road Metro Station⇒ Tianjin
University’’) can be obtained during time interval
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TABLE 10. Spatiotenporal association rules for morning rush hours.

of 7:00-7:15. The support is 0.5; the confidence is 0.83;
the lift is 1.2; and Kulc is 0.575. The lift of the rule
indicates a positive association. However, the rule is
invalidated because Kulc is close to 0.5, which means
that the antecedent and the consequent of the rule are
irrelevant. Therefore, during 7:00-7:15, one cannot infer
the traffic state of grid H13 based on that of grid J12.
Vice versa.

• For the rule (H13, J13) ⇒ H12 during 7:30-7:45,
the support, confidence, lift Kulc and IR are 0.5, 1, 1.3,
0.19, and 0.16, respectively. Accordingly, there exists
equilibrium positive association between the antecedent
and the consequent. It can thus be inferred that when the
grids of both H13 and J13 are congested, grid H12 will
also be congested. The probability is 50% for congestion
appearing in all the three areas.

• During 18:00-18:15, there is a rule (J11,H13)⇒ J10,
i.e., ‘‘(Italian Style Street , Tianjin University) ⇒ Lion
Forest Street’’. The support, confidence, lift Kulc and
IR are 0.5, 0.86, 1.42, 0.77, and 0.44, respectively.
Likewise, there exists equilibrium positive association
between the antecedent and the consequent. If both the
grids J11 and H13 are congested, grid J10 will be
congested with the probability of 86%.

Based on the spatiotemporal association rules of regional
congestion, once a region is congested, the traffic states of
correlated regions can be predicted. This is valuable which
can significantly support the collaborative control of conges-
tion regions.

C. MINING REGIONAL CONGESTION PROPAGATIONS
The InterT-ST-Apriori algorithm is applied on urban road
network of Tianjin to further explore the trajectory of regional
congestion propagation. Here, the sliding time-window is set
as 2, and the time interval λ is 1. The minimum support and
minimum confidence are 0.5 and 0.6, respectively.

By applying the InterT-ST-Apriori algorithm, 16 strong
association rules are obtained for morning rush hours,
as shown in Table 10; and 13 strong association rules are
obtained for evening rush hours, as shown in Table 11. Obvi-
ously, there are more strong association rules for morning
rush hours, indicating that congestion propagation is more
serious during morning rush hours.

Mapping the strong association rules to the map, the tra-
jectories of congestion propagations can be obtained. Several
typical examples are plotted in Figures 9 and 10 for morning

TABLE 11. Spatiotenporal association rules for evening rush hours.

FIGURE 9. Congestion propagation trajectories during the morning peak
of workdays.

FIGURE 10. Congestion propagation trajectories during the evening peak
of workdays.

and evening rush hours, respectively. Specifically, two typical
rules are selected and explained in detail as follows:
• Rule L14 ⇒ K15 occurs during 7:00-7:30 with confi-
dence of 1. This indicates that if congestion appears in
grid L14 during 7:00-7:15, congestion would propagate
to grid K15 during 7:15-7:30. To further validate the
results, we checked the data in June, and found that
the rule L14 ⇒ K15 existed for all the workdays of
the month. In terms of the results, it is expected that
traffic congestion of grid K15 can be alleviated once the
congestion in grid L14 disappears.

• During 16:00-16:30, rule H11⇒ G12 is obtained with
confidence of 0.71, which indicates that if congestion
appears in grid H11 during 16:00-16:15, grid G12 may
be congested during 16:15-16:30 with probability of
71%. It can thus be concluded that congestion in G12 is
not entirely due to the internal factors, while it is also
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affected by traffic state in grid H11. Therefore, it is
suggested to solve traffic congestion problem in grid
H11 in advance. Then, the congestion in gridG12 would
be alleviated as well.

In brief, based on the proposed InterT-ST-Apriori algo-
rithm, the spatiotemporal trajectories of regional conges-
tion can be obtained. To this end, control strategies can be
applied to the upstream grids to prevent the propagation of
congestion.

VII. CONCLUSION
To explore the underlying inherent characteristics of regional
congestion associations of a road network, this study develops
a data-driven approach based on the Apriori algorithm.

To recognize regional traffic state based on real data,
an alternative clustering algorithm is developed by integrat-
ing the classical k-means++ and FCM algorithms, which
can significantly improve the efficiency and overcome the
drawbacks of the FCM algorithm. By introducing both spatio
and temporal attributes, the IntraT-ST-Apriori algorithm is
developed to address the static features of regional traffic
congestion. Furthermore, The InterT-ST-Apriori algorithm is
developed to capture the dynamic characteristics of regional
traffic congestion. To validate the proposed algorithms, case
studies are carried out based on empirical data of Tianjin,
China. Based on IntraT-ST-Apriori algorithm, the associ-
ated congestion regions during the same time interval can
be obtained. Furthermore, the spatiotemporal trajectories of
regional congestion propagation can be obtained by applying
the InterT-ST-Apriori algorithm. To this end, the congested
regions can be obtained in advance, which would be helpful
for the regional traffic management and control, and signifi-
cantly relieve traffic congestion.
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