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ABSTRACT AUV (autonomous underwater vehicles) are required to have long-term and high-precision
positioning capability relative to seabed targets in most deep-sea exploration tasks. However, acoustic
positioning error is positively correlated with its operating range and inertial navigation has inevitable
accumulated time errors, neither of which provide precise AUV positions. TAN (terrain aided navigation)
directly calculates the AUV position to the seabed terrain coordinate system by tracking the seabed
topographic characteristics, which can guide the AUV to seabed target accurately. However, the initial TAN
positioning error will increase with the AUV operation depth, which causes a large PF (particle filter)
initialization error and particle coverage interval, and will affect the convergence and stability of TAN.
To solve this problem, we first propose a TAP (terrain aided position) confidence interval model. We then
use the confidence interval to constrain the initial particles to a smaller range. Finally, the validity of the
algorithm is verified by playback simulation with ship-borne multi-beam sonar sensor measured data. The
results show that the TAP confidence interval can reduce the coverage of the initial particle, and can improve
the convergence speed and filtering accuracy of the TAN.

INDEX TERMS Autonomous underwater vehicle, terrain-aided navigation, particle-filter, underwater
navigation, confidence interval.

I. INTRODUCTION
Seabed space, especially deep seabed space, contains abun-
dant resources closely related to the future development of
mankind. Many countries are devoting themselves to explor-
ing and exploiting seabed space. To this end, many underwa-
ter vehicles have been developed for exploring deep seabed.
High-precision navigation information is the basis for the safe
and stable operation of deep-sea underwater robots and is the
basic information needed for AUV (autonomous underwater
vehicles) to perform ocean exploration tasks. In situ obser-
vations and sampling of seabed environmental information,
the fixed-point operation of a seabed target area, and the fine
detection and salvage of seabed targets requires underwater
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vehicles to have the ability to accurately locate seabed tar-
get points. As shown in Fig.1, acoustic positioning errors
increase with distance and the DR (Dead reckoning) position
includes inevitable cumulative error, which makes the AUV
positioning in deep seabed space have larger uncertain inter-
vals. This results in AUV being unable to accurately arrive at
the target point in the seabed. Therefore, there is an urgent
need for an accurate position method without cumulative
errors and distance correlation errors in order to accurately
guide AUV to reach the target point in the seabed topographic
space.

TAN (Terrain aided navigation) positioning AUV are used
to track seabed terrain features in seabed space. It can provide
bounded error positions for AUV in infinite time. As shown
in Fig.2a. TAN is a kind of integrated navigation method,
which includes a reference navigation system and a terrain
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FIGURE 1. Inaccuracies in commonly used positioning methods in seabed
space.

FIGURE 2. Using terrain-guided AUV for seabed target location.

matching positioning unit. The reference navigation system
is usually integral navigation mode, such as DR [9], [25].
Due to the time accumulation error of DR Navigation, and
the error of terrain matching positioning is bounded, the ter-
rain matching positioning can constrain the accumulation of
Dr error, and the correlation of DR Navigation can constrain
the skip point phenomenon of terrain matching positioning.
The terrainmatching navigation system uses fusion algorithm

to fuse two kinds of navigation information online, so as to
improve the positioning accuracy. Due to the time accumula-
tion error of DR Navigation, and the error of terrain matching
positioning is bounded, the terrain matching positioning can
constrain the accumulation of DR error, and the correlation of
DR Navigation can constrain the skip point phenomenon of
terrainmatching positioning. The terrainmatching navigation
system uses fusion algorithm to fuse two kinds of navigation
information online. In the seabed area without prior topo-
graphic map, AUV uses pure DR Navigation for positioning.
After entering the prior topographic map area and starting
the terrain matching navigation system. Then, the system
measures the seabed terrain under AUV in real time and car-
ries out online matching positioning with prior topographic
map and estimates the location of AUV iteratively through
filtering algorithm (Fig.b). Because the location error of TAP
is bounded, it can constrain the error accumulation of DR.
TAN solves for the AUV position in the topographic map
coordinate system, so it can guide it to the seabed target
accurately.

The state transition equation of TAN system is shown in
equation (1), and the state X t is given by the DR system [23].

X t+1 = X t + ut + vt
Zt = h (X t)+ Et
t = 0, 1, 2, 3 . . .

(1)

where X t+1, X t are the position in the horizontal plane at
time t and t + 1 respectively; ut represent the travel distance
between t and t + 1 and it is provided by the DR system. The
measured depths to the bottom are collected in the matrix Zt
and the matrix h (X t) collects the depths according to the map
if AUV is in position X t . The error in the DR system is vt ,
where vt is an additive white noise input. In TAN system, ut
and vt are directly given by DR. Et is the error in the depth
measurement at time t , the variance estimates are described
in equation (2).

At present, TAN based research on seabed topographic
mapping, seabed environmental information in situ obser-
vation and space-time synchronous modeling [2]–[4], AUV
ultra-long range high-precision navigation [5], [6], etc. has
been carried out. TAN has become a new navigation technol-
ogy aimed at use for near seabed space.

II. RELATED WORKS
TAN includes two stages: initial positioning and tracking
filtering [7]. The purpose of the initial phase is to reduce the
positioning deviation of the starting point, to ensure that the
TAN system can converge steadily and track to the correct
position in the tracking filtering stage as shown in Fig.3.
In the past 20 years, underwater TAN research has been
focused on tracking filtering methods, such as PF (particle
filter) [8]–[10], robust PF [11]–[13], and PMF (point mass
filter) [14]–[18]. The PF method is the best filter method for
TAN systems because of its advantages in dealing with the
state estimation of non-linear and non-Gaussian systems [19].
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FIGURE 3. The two TAN phases and their tasks.

The tracking navigation filtering TAN theory is not new, but
research on initial positioning is rare.

In [7], the TERCOM (terrain contour matching) algorithm
was proposed to estimate the initial position; however, the
probability of pseudo-peaks and mismatches increased with
the increase in the initial search area, making the positioning
results very unstable. Reference [20] addressed the initial
positioning problem for aircraft TAN, by proposing the use
of continuous acquisition of many TERCOM points, where
the consistency of these TERCOM points was tested. The
points that pass the consistency test can be identified as initial
positions, as used by reference [21] for underwater geomag-
netic navigation. This method needs a wide range of suitable
matching areas and is not suitable for the initial position of
underwater TAN. Similar problems are mentioned in [22],
which proposed an effectiveness testing method and recovery
method for the TAP (terrain-aided positioning) system in
case of large abrupt position deviation; however, there is no
in-depth study on the reinitialization after the generation of
large bias. In [7], the author divides underwater TAN into
two phases, the initial phase and the tracking phase. The task
of the initial phase is to reduce the cumulative error of the
reference navigation to a smaller range using the matching
positioning method, and then the tracking phase, which esti-
mates the location of AUV recursively by filter. The stability
and positioning accuracy in the initial TAN stage cannot be
ignored, especially in the case of large initial positioning
deviations.

In order to verify the possibility of correcting the AUV
accumulated error using TAN technology we wanted to
test AUVs deployed by deep diving and ultra-long cruises
(Fig.4a). We carried out an experiment in August 2017 in the
Zhongsha Reef Sea Area, Jiaozhou Bay, Shandong Province
(Fig.4b). However, our filter, unfortunately, did not converge
to the correct position.

As shown in Fig.5a, the accumulated error caused the
DR position probability distribution of the initial TAN way-
point to significantly deviate from reality. There are also
pseudo-peaks and pseudo-positioning points in the proba-
bility distribution of the TAP of the initial TAN waypoint
(Fig.5b). As shown in Fig.6, the initial particle distribution
is obtained by sampling from the probability distribution
position of the initial TAN waypoint, where each particle
has a position parameter and a weight parameter to represent
the probability of the particle location. However, the initial
positioning probability distribution function has been seri-

FIGURE 4. Experiment area and experiment simulation scenario.

ously distorted, which will lead to a large coverage of the
initial particle and the particles distribution having a serious
deviation from the true value.

As shown in Fig.7a, if the PF cannot converge quickly in
the initial stage, it will very likely diverge once the AUV
enters the low matching adaptability area (Fig.7b). The ini-
tialization accuracy and coverage of the initialization particle
will directly affect the stability and accuracy of TAN. The
high-precision PF initialization is crucial, especially when
the initial position error is large. Therefore, the PF TAN
initialization must be paid attention to.

This study proposes using the PF initialization by using
the confidence interval of TAP, such that the initial particle
approximates the real position. The main purpose of this
study is to solve the PF initial positioning problem when the
TAN initial positioning system error is large, and to ensure
the fast convergence of the initial particle approximation
to the real position and initial stage. The rest of the paper
mainly includes: Section II:confidence interval estimation
method based on the TAP position jump model is introduced;
Section III: PF initialization based on the effective position
points of TAP is discussed along with two types of ini-
tial weight distribution methods, and the TAN accuracy and
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FIGURE 5. The cloud chart of position probability distribution.

FIGURE 6. Schematic diagram of particle filter initialization.

stability with initialization method based on effective TAP
is compared with the other two particle-filter initialization
methods. Section V: shows the conclusion.

III. TAP CONFIDENCE INTERVAL
At present, there are two ways to estimate the TAP confi-
dence interval. The first is to replace the confidence interval
boundary with the CRLB (Cramer-Rao Lower Bound) [7].
However, the CRLB needs to be computed at a known
TAP position, and it cannot handle issues such as mul-
tiple pseudo-peaks and pseudo-positions. As shown in
Fig.8a, the self-similarity of the terrain results in multiple
pseudo-peaks in the searching area, and the CRLB of each
peak is different. In this case, it is impossible to obtain an
accurate confidence interval. Fig.8b shows the mismatch,
mainly caused by local topographic distortion. The peak at the
mismatched position is clearly higher and sharper than that
near the true position, which will produce a wrong CRLB.
Fig.8c shows the anisotropy of TAP. It can be seen that the
probability distribution is different in different directions, and
the anisotropy TAP character cannot be accurately described
by the CRLB.

FIGURE 7. Large initial particle coverage interval and low terrain
adaptability causes filter divergence.

The other is hypothesis test method based on statistics of
terrain matching residuals [23]. Assuming there are m× n
terrain nodes in MTM. In fact, this method regards the mea-
surement error of a terrain node as Gauss distribution, and
then the measurement error of MTM obeys the chi-square
distribution of degree of freedom (mn− 1). It didn’t consider
the nonlinear mapping relations Z = h (Xp) + E between
measured terrain Z and the TAP Xp. h(�) represents the
equation of terrain surface. which is an unknown mapping
relationship and has strong nonlinearity, E is the error in the
depthmeasurement (possibly includingmap errors, tide level,
interpolation errors etc.).

Based on the above reality, this study is the first to pro-
pose a confidence interval estimation method based on the
TAP position jump model. As shown in Fig.9, the black and
gray points represent the searching points, and the ellipse
represents the contour of the likelihood function. The peak of
likelihood function (red point) is obtained by Equation (2).

Xp
=argmax

Xkl
∈X s

C � exp

−
m∑
i=1

∑n
j=1

(
hij
(
Xkl)
− zij − tkl

)
2mn

(
σ kl
)2



(2)
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FIGURE 8. Several typical TAP likelihood functions.

where Xp represents the TAP point; X s represents a search
interval, Xp

∈
{
Xkl, k = 1, 2, 3 . . .m, l = 1, 2, 3 . . . n

}
, and

m, n represent the rows and columns of the search point set,
Xp
∈ X s, Xkl

∈ X s; hij
(
Xkl) refers to the interpolation

elevation value whose index is ij in the interpolation elevation
sequence of Xkl position in the prior topographic map; tkl

refers to the tidal range value of the search point whose index
number is kl; zij refers to the height value whose index num-
ber is ij in the measurement topographic elevation sequence.
Based on the likelihood function of the vertical section

through the TAP position (Fig.9), because of position uncer-
tainty, the TAP position will tend to jump to other searching
points with a certain probability. With the decrease in the
likelihood function of one searching point, the probability
of the TAP jumping to that point will decrease. Until the

FIGURE 9. Map of the TAP point confidence intervals and boundary
points.

likelihood function drops to a certain value L1−α , the TAP
point will jump to it with a very small probability, α. This
point is defined as the boundary point of the confidence
interval of the TAP likelihood function, with a confidence
level of 1− α.
Positioning deviation is mainly caused by TAN sensor

measurement error and terrain interpolation error. It is dif-
ficult to obtain the relationship between terrain measurement
errors and TAN sensor errors, because of the coupling effect
between the TAN sensor errors; however, it can be estimated
by matching residuals, according to the conclusions of [7].
Thus, the residual of the multi-beam TAP has the characteris-
tics of a progressive Gaussian distribution, and the residuals
can be assumed to obey the Gaussian distribution when the
position estimation is carried out. Suppose we get the TAP
position Xp, the MTM sequence is zij, and the interpolation
sequence of MTM in a DEM at the TAP position is hij(Xp).
Assume the height residual sequence 1hij(Xp) represents
the difference between hij(Xp) and zij, and 1hij(Xp) can be
regarded as the observation sequence of terrain elevation
measurement error E ∼ N (tp, σ p). Tidal tp and measure-
ment error standard deviation σ p at the TAP position can be
obtained according to Equation (3):

1hij(Xp) = hij(Xp)− zij

tp =
1
mn

m∑
i=1

n∑
j=1

1hij
(
Xp)

Sp =

√√√√√ m∑
i=1

n∑
j=1

(
1hij (Xp)− tp

)2
mn− 1

σ ≈ λ � Sp

(3)

where it represents the interpolation height sequence ofMTM
at Xp in DEM (Digital Elevation Map), Sp represents the
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estimation of the standard deviation of themeasurement error,
and λ is the correction parameter that considers the non-
Gaussian distribution of the residuals.

According to the conclusions of [7], in the case of suffi-
cient measurement data, the TAP residual is the asymptotic
Gaussian distribution. The following two assumptions can be
obtained:
Assumption 1: The height residual sequence1h(Xp) at the

TAP point obeys the Gaussian distribution N
(
0,
(
(σ p)2

))
;

Assumption 2: The measurement error of each measuring
point 1hij(Xp) obeys the same distribution N

(
0,
(
(σ p)2

))
.

Equation (3) yields the tide and measurement error esti-
mates at the TAP position, and substitutes them into Equa-
tion (1). Using the logarithmic form of Equation (1), it can be
written as (4):

l
(
Xp)
= ln (C)−

1
2mn

m∑
i=1

n∑
j=1

(
hij (Xp)− zij − tp

)2
(σ p)2

(4)

This assumes the likelihood surface represents a biquadric
surface in the confidence interval of Xp. Any X in the confi-
dence interval of Xp can be rewritten into the quadratic shape
function form l (X):

l (X) = ln
(
Xp)
+

1
2
∂2l (Xp)

∂e2
|1xe|2 + 0

(
|1x|n

)
(5)

where 1xe represents the position deviation 1xe = Xp
− X ,

e represents the unit direction vector of 1xe, and 0 (|1xe|n)
represents the higher order infinitesimal of 1xe.
The residuals square sum function of the TAP position can

be defined by Equation (6):
S
(
Xp)
=

m∑
i=1

n∑
j=1

(
hij
(
Xp)
− zij − tp

)2
Sij
(
Xp)
=
(
hij
(
Xp
− zij − tp

))2 (6)

In the same way, this assumes the likelihood surface rep-
resents a biquadric surface in the confidence interval of Xp.
Any X in the confidence interval of Xp can be rewritten into
the quadratic shape function form S (X):

S (X) = S
(
Xp)
+
∂S (Xp)

∂e
1xe +

1
2
∂2S (Xp)

∂e2
|1xe|2

+ 0
(
|1xe|n

)
(7)

where, e =
(
ex, ey

)
represent unit direction vector; Because

∂S(Xp)
∂e is equal to zero at the TAP position, (7) can be simpli-

fied to (8):

S (X) ≈ S
(
Xp)
+

1
2
∂2S (Xp)

∂e2
|1xe|2 (8)

where S (X) represents the residual sum of the squares func-
tion at the real AUV location and S (Xp) represents the
residual sum of the squares function at the TAP position.
According to the theory of parameter estimation, we obtained
the information matrix for the TAP position using (9):

I =
1

2 (σ p)2
E
(
∂2S (Xp)

∂e2

)
(9)

According to the previous hypothesis, S (Xp) is an approx-
imate quadratic shape function form at Xp. According to
the statistical theory of parameter estimation, the variance
E
(
|1xe|2

)
of the estimated value, Xp, can be obtained by the

information matrix using Equation (10).

E
(
|1xe|2

)
= I−1 = 2

(
σ p
)2 [E(∂2S (Xp)

∂e2

)]−1
(10)

Assuming the dimensions of MTM are mn, according to
the premise in Section 2, the terrain nodes measurement
error is independent and identically distributed N

(
0, (σ p)2

)
.

According to the conclusions in [24], for a given σ p, if l (Xp)

is an approximate quadratic surface about parameter, X , near
the TAP position, Xp, a confident interval that is more than
confidence 1− α can be defined as (11).

∂2l (Xp)

∂e2
|1xe|2 < χ2

1−α (mn− 1) (11)

Based on Equations (4) and (6), Equation (12) can be
obtained.

∂2l (Xp)

∂e2
≈

m∑
i=1

n∑
j=1

1

2 (σ p)2
∂2Sij (Xp)

∂e2
(12)

Then, we can obtain Equation (13) according to Inequality
(11) and Equation (12).
m∑
i=1

n∑
j=1

1

2 (σ p)2
∂2Sij (Xp)

∂e2
|1xe|2

< 2
(
σ p
)2
χ2
1−α (mn− 1) (13)

According to Equation (3), the following equation is
established:

2
(
σ p
)2
=

λ

mn− 1
S
(
Xp) (14)

By introducing the form of (14) into (7), we can obtain the
1− α confidence interval isoline of the square sum function
of the TAP (15):

S (X)1−α ≈ S
(
Xp) [1+ λχ2

1−α (mn− 1)

mn− 1

]
(15)

By introducing (15) into Equation (3), the 1−α confidence
interval isoline of the likelihood function of TAP can be
established:

L1−α = C � exp
(
−
S (X)1−α
(σ p)2

)
(16)

The new TAP confidence interval estimation method men-
tioned in this paper considers the biquadric surface character
of the TAP likelihood function and has higher accuracy. The
amplification coefficient, λ, is usually chosen in the interval
λ > 1, because of the terrain measurement error is not
absolutely Gaussian white noise. Fig.10a shows the DR track,
GPS track of the experiment route, and DR position confi-
dence interval and searching area of each waypoint. Fig. 10b
shows the estimate result using the new method.
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FIGURE 10. Likelihood function and confidence interval of the TAP based
on the new algorithm (λ = 1).

The Monte Carlo method is used to simulate and verify
the positioning. A total of 1000 positioning experiments were
carried out. In the experiment, N (0, 0.2) Gauss noise is
added to the measured terrain. A total of 7050 TAP position-
ing points that include false points and mismatched points,
marked as color dots in Fig.11, were obtained. The TAP
confidence interval is 95%, and the red solid line in Fig.11
is the edge of TAP confidence interval. There are 157 points
outside the confidence interval, and the effective point ratio
is 2.23%.

FIGURE 11. Monte Carlo simulation results of TAP.

IV. PARTICLE INITIALIZATION IN THE INITIAL TAN STAGE
The PF initialization with effective TAP includes two parts:
initial TAP and likelihood function refinement, and calcula-
tion of effective TAP position and distributed particle. Let us
assume that in the initial TAN time the cumulative error of

FIGURE 12. Diagram of search interval computation.

DR is P0.

P0 =

[
σ 2
x σxy
σyx σ

2
y

]
(17)

where P0 represents the DR error at the first waypoint in the
initial phase of TAN; σx and σy represent the error in the x
and y directions, respectively; and σxy is the covariance of the
DR navigation error in the x and y directions.

Fig.12 shows the elliptical DR position confidence inter-
val. The minimum rectangular interval containing the confi-
dence interval can then be calculated and it is called the TAP
searching area [23]. The calculation methods of parameters
of λ1, λ2, θ are as follows (18). Finally, the continuous search
interval is discretized using a gridding method.

λ1 =
1
2

[
σ 2
x + σ

2
y +

√(
σ 2
x − σ

2
y

)
+ 4σ 2

xy

]

λ2 =
1
2

[
σ 2
x + σ

2
y −

√(
σ 2
x − σ

2
y

)
+ 4σ 2

xy

]

θ =
1
2
arctan

(
2σxy

σ 2
x − σ

2
y

) (18)

A. INITIAL TAP AND LIKELIHOOD FUNCTION
REFINEMENT
The probability distribution function of the terrain matching
location is obtained by calculating the similarity between the
measured terrain and priori terrain. The similarity between
the measured terrain and priori terrain correspond to search
points and reflects the probability that AUV is located at
that point at the moment (Fig.13). As can be seen from the
schematic diagram, the search point is actually the grid node
in the search area, so the time consumed in the matching
process is related to the grid scale of the search area. The
smaller the scale, the greater the time consumed.

A larger searching step is used to improve computing
speed. Then, the likelihood function mesh is refined by the
interpolation algorithm. Fig.14a and b shows the likelihood
function with a 4 m searching step which is then interpolated
into 1 m× 1 m. Fig.15 shows the time consumption and
interpolation error while the searching step is 1 m, 2 m, 3 m,
and 4 m, then interpolated into the 1 m× 1 m. The time con-
sumption decreases rapidly with an increase in the searching
step size. The interpolation error is small at the 3 m searching
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FIGURE 13. Diagram of computing TAP likelihood function.

FIGURE 14. Mesh refinement by interpolation.

step size but then increases rapidly. The interpolation error is
on the order of 103 while the searching step is less than 4 m.

B. EFFICIENT TAP POSITION ESTIMATION AND PARTICLE
INITIALIZATION
Equation (15) determines an isosurface, where the contour
line obtained by intercepting the likelihood function at the
isosurface is the confidence interval boundary of the TAP

FIGURE 15. Time consumption and interpolation error with mesh
refinement.

FIGURE 16. A example of the calculation of the TAP confidence interval
and effective TAP position.

(Fig.16a and b). If the likelihood function value L
(
Xkl) of the

search point Xkl (Xkl
∈ X s

)
is greater than the lower bound

L1−α or equal to L1−α , then the searching point Xkl is the
effective TAP point and is marked as Xc

ij, and the point Xc
ij

is included in the confidence interval Xc
(
Xc
ij ∈ X

c
)
, i =

1, 2, 3 . . .Cm, j = 1, 2, 3 . . .Cn.Cm and Cn represent the
row and column number of effective TAP points respectively,
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FIGURE 17. Arrangement of the same number of particles at the effective
TAP point.

as shown in (19):
if
(
L
(
X s
ij

)
> L1−α

)
⇒ X s

ij ∈ X
c
ij

X s
ij ∈ X

s

Xc
ij ∈ X

c

(19)

where L
(
Xkl) represents the likelihood function value at

search point Xkl , X c represents the confidence interval for
TAP; Xc

ij represents the confidence interval point in X
c, and

L1−α represents the lowest bound of the likelihood function
calculated by Equation (15). The schematic diagram of the
search interval X s, the search point Xkl (Xkl

∈ X s
)
) the con-

fidence interval X c, and the jump point Xc
ij

(
Xc
ij ∈ X

c
)
are

described in Fig.16b.
The initialization of particles mainly considers the particle

arrangement at
(
Xc
ij ∈ X

c
)
. The same number of particles is

arranged at each effective point; in the experiment, all the
effective TAP positions distribute one particle. The question
is how to define the initial weight of the initial particles. There
are two methods:

1) Use the likelihood value of the effective TAP position as
the initial weight, as shown in Fig.17. The likelihood function
value of the effective TAP position reflects the probability
of the AUV at this point; thus, it is reasonable to use the
likelihood function value as the weight of the initial particles.

2) Give all initial particles equal weights, as shown
in Fig.17, due to the possible existence of pseudo-positioning
in terrain-matched positioning points. As the peak of the
likelihood does not necessarily appear at the true position,
the value of the likelihood at the true position is often smaller
than the value of the likelihood at the TAP position when
the positioning deviation occurs. Using equal weights can
weaken the effect of the location deviation.

V. CONTRAST EXPERIMENT OF PARTICLE
INITIALIZATION
DEMwere obtained in 2010 by using a GS+ sounding sonar,
and the main parameters are shown in Table 1. The data
acquisition area is located in the Gulf of Jiaozhou, near the

FIGURE 18. Real-time multi-beam measuring equipment.

TABLE 1. DEM parameters.

TABLE 2. TAN Sensor parameters.

Zhong Sha reef (Fig.18). Topographic sounding equipment
and their connections are shown in Fig. 11.

MTM is measured using real-time multibeam sonar that
can acquire terrain profile data in real time and realize online
filtering terrain reconstruction. The sensor parameters are
listed in Table 2.

The experiment uses playback simulation in order to test
the algorithm; the raw data obtained from the real-time multi-
beam measurement are used as input data. Due to the input
error of the dead reckoning navigation system, and the dead
reckoning navigation process is an integral process, the posi-
tioning error of the navigation systemwill increase with time,
and eventually gradually deviate from the actual value more
and more [9], [23]. Since the deviation of the DR position is
approximately 5%−6% of distance traveled (DT), the devia-
tion of the DR position is up to 128 m in the initial TAN, and
the initial search interval is an area 200m× 200m.
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FIGURE 19. Cloud map of the likelihood function and the TAP confidence
interval at the initial waypoint of TAN.

A. COMPARISON OF TWO INITIAL WEIGHT ASSIGNMENT
METHODS
Fig.19 shows the cloud map of the likelihood function of an
initial TAP, the confidence interval of the initial TAP, and the
effective TAP position. As we can see, multiple pseudo-peaks
appear in the likelihood function, and the confidence interval
of initial TAP is scattered in the search area. However, the area
of the confidence interval is far smaller than the search area.

Test1. Initialize the particle with likelihood weights
At first, estimate the confidence interval of TAP by using

the method mentioned in Section II. Then, using the like-
lihood value as the initial weight of the initial particle as
described in Fig.17 of Section III. The particle distribu-
tion at the initial waypoint and last waypoint are shown
in Fig.20a. At the initial time of TAN, the location of AUV
may exist in the black dots in the red rectangle in Fig.20a.
After the TAN, these particles converge near the green points
as show in Fig.20a. At the initial waypoint, the particles
are concentrated in the TAP confidence interval as shown
in Fig.20b, however, it eventually converges to the exact
location (Fig.20a). The TAN track is shown in Fig.20b, and
it converges to the GPS track and maintains high tracking
accuracy. The TAN deviation is shown in Fig.20c. As we can
see, the positioning deviation decreases rapidly in the initial
phase and finally converges to the exact position.

Test2. Initialize the particle with equal weight
At first, estimate the confidence interval of TAP by using

the method mentioned in Section II. Then, using the equal
weight as the initial particle weight as described in Fig.17 of
Section III. Fig.21a shows the PF results when the initial
particle is assigned equal weight, and the particle eventually
converges to the exact location. At the initial time of TAN,
the location of AUV may exist in the black dots in the red
rectangle in Fig.20a. After the TAN, these particles converge
near the green points as show in Fig.20a. The TAN track
is shown in Fig.21b, and TAN track converges to the GPS

FIGURE 20. Particle arrangement at effective TAP positions and initialize
particles with likelihood weights.

track and maintains high tracking accuracy. The deviation
of the PF is shown in Fig.21c, and the positioning deviation
decreases rapidly after the filtering starts. The result is not
much different from that of Test1.

B. COMPARISON WITH OTHER INITIALIZATION SCHEMES
Different initialization methods are used to initialize the par-
ticles at the initial TAN stage of TAN, and their filtering
performance is subsequently compared. Next, we initialize
the particles according to the other two initialization methods
mentioned. One is the particle-filter initialization, which is
based on reference navigation information (Test3), and the
other is the particle initialization based on the search interval
(Test4).
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FIGURE 21. Arrangement particles at effective TAP positions and
initialization of particles with equal weights.

Test3. Initializing the particles based on DR information
Fig.22a shows the distribution of particles at the initial

position that the obey Gaussian distribution with variance P0.
At the initial time of TAN, the location of AUV may exist in
the black dots set in themiddle and lower part of fig.20a. After
the TAN, these particles converge to the green point as show
in Fig.20. The particles converge at the last TAN waypoint,
but as shown in Fig.22b, the PF result is converged to the
wrong position. The main reason is that the initial error and
coverage range of initialization particles are too large, which
results in the particles tracking the wrong terrain features.
As shown in Fig.22c, the TAN position deviation has been
increasing. This shows that TAN has completely diverged
and the system is completely ‘kidnapped’ by the incorrect
topographic features.

FIGURE 22. Initialization particles with DR position information.

Test4. Particle initialization based on TAP searching area
The rectangle search interval computing method, and the

search length: lx = 2γ
√
Kλ1 cos2 (θ)+ Kλ2 sin2 (θ)

ly = 2γ
√
Kλ1 sin2 (θ)+ Kλ2 cos2 (θ)

(20)

where, lx and ly representation in the x and y direction,
respectively. K is a quantity related to confidence ε with
ε = 0.03, λ1, λ2, θ defined in Equation (17), γ denotes the
square amplification factor of the search interval, and K can
be calculated by Equation (21).

ε =
1

√
2πdet (P0)

exp
(
K
2

)
(21)
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TABLE 3. Statistics and comparisons of experimental results.

This initialization method ignores the DR positioning
information at the initial TAN time and considers the prob-
ability of each point P ij in the search interval, obtained by
the estimated navigation error, is equal to Equation (22).
The initializing particles covered the entire search range (red
rectangle area) that indicates the possible location of AUV,
and the convergence of the particle at the last waypoint is
not strong (Fig.23a). As show in Fig.23b, there is a big
deviation between TAN track and GPS track. As shown
in Fig.23c, PF converges slowly and its positioning accu-
racy is significantly improved compared to that of the DR
initialization method (Fig.23c). The TAN position will be
more accurate then TEST3 while PF is initialized by search
interval.

P ij =
1

m× n
(22)

The statistics and comparisons of Test1, Test2, Test3, and
Test4 are shown in Table 3. The four statistics are listed as
follows:
A. The mean TAP point position deviates at all waypoints.
B. The mean TAP point position deviates in the con-

vergence phase. The convergence phase refers to
the TAP points from the first to the eleventh
waypoint;

C. The mean TAP point position deviates in the tracking
phase. The tracking phase refers to the TAP points from
the twelfth to the last waypoint;

D. Positioning accuracy of terrain matching navigation
endpoint.

E. The total number of particles obtained after the initial-
ization.

It can be seen clearly from Table 3 that when the DR
deviation is very large at the initial TAN phase, the PF results,
which were obtained using the DR information to initialize
the particles, is very poor (Test3). Improved PF results can
be obtained by the initialization of particles based on the TAP
search area. However, the initial particles need to be arranged
in a wide range, which increases the probability of similar
terrain and makes the filtering convergence too slow (Test4).
If an effective TAP point is obtained from the search point
and initialized to the particle, the PF convergence rate will be
faster. The TAN positioning accuracy at the last waypoint is
obviously improved, and better results can be achieved using
fewer particles (Test1 and Test2).

FIGURE 23. Arrangement particles in searching area and initialization
with weight.

VI. CONCLUSION
The cumulative DR error will be very large when the AUV
cannot receive position correction information for long peri-
ods of time, and the accumulated DR deviation reaches hun-
dreds of meters in the initial phase. Thus, the initial particle
coverage will be very large and cause the filtering conver-
gence process to be very unstable. The filtering results fail to
converge rapidly in the area with abundant topographic fea-
tures, and diverge rapidly once entering the flat terrain. This
seriously affects the stability and practicality of the TAN sys-
tem, as the underwater vehicle cannot be accurately guided
to the seabed target point. We propose estimating the TAP
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confidence interval using the mathematical characteristics of
the terrain surface and matching the TAP residuals, which is
simpler and more practical than estimating it using the sensor
error coupling relationship in a bathymetric system. The TAP
confidence interval can constrain the initial position in a very
small area and speed the convergence of PF. TAN filtering
can converge to a stable value in a relatively short distance,
thus improving the stability and accuracy of TAN system.
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