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ABSTRACT Modeling and analyzing the performance of distributed file systems (DFSs) benefit the
reliability and quality of data processing in data-intensive applications. Hadoop Distributed File Sys-
tem (HDFS) is a typical representative of DFSs. Its internal heterogeneity and complexity as well as
external disturbance contribute to HDFS’s built-in features of nonlinearity as well as randomness in system
level, which raises a great challenge in modeling these features. Particularly, the randomness results in
the uncertainty of HDFS performance model. Due to the complex mathematical structure and parameters
hardly estimated of analytical models, it is highly complicated and computationally impossible to build
an explicit and precise analytical model of the randomness. The measurement-based methodology is a
promising way to model HDFS performance in terms of randomness since it requires no knowledge of
system’s internal behaviors. In this paper, the estimation of HDFS performance models on account of the
randomness is transformed to an optimization problem of finding out the real best design of performance
model structure with large design space. Core ideas of ordinal optimization (OO) are introduced to solve
this problem with a limited computing budget. Piecewise linear (PL) model is applied to approximate the
nonlinear characteristics and randomness of HDFS performance. The experimental results show that the
proposed method is effective and practical to estimate the optimal design of the PL-based performance
model structure for HDFS. It not only provides a globally consistent evaluation of the design space but
also guarantees the goodness of the solution with high probability. Moreover, it improves the accuracy of
system model-based HDFS performance models.

INDEX TERMS Distributed file system, HDFS, performance modeling, randomness, ordinal optimization.

I. INTRODUCTION

The rapid growing internet services such as Google,
Yahoo!, Amazon and Facebook, are a representative style
of data-intensive applications. They use big-data-oriented
infrastructures like cloud computing platforms for scalable
services. The Quality of Service (QoS) of the underly-
ing distributed file systems (DFSs) contributes to the reli-
ability and performance of these applications [1]. Thus,
there is a strong demand [2]-[5] of modeling the perfor-
mance of these internet-scale file systems like the Google
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File Systems (GFSs) [6], Amazon Simple Storage Ser-
vice (S3) [7], Hadoop Distributed File System (HDFS)
[8] and OpenStack Swift [9], to provide predicable perfor-
mance and practical configuration guidance for performance
improvement.

HDFS has emerged as a typical representative of data-
intensive DFS [10]. Generally, the performance of HDFS
is influenced by various factors including physical cluster
deployment, disk I/O, network traffic, configuration options
as well as data access patterns [11]. In a systematic view,
it reveals not only nonlinear characteristics [5] but also ran-
domness (see instances in Fig. 2 and Fig. 3, in which the
observed HDFS W/R performance exhibits large range of
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variations with each constant input, when system configu-
rations are the same and fixed). The randomness is mainly
caused by the instability of network transmission and disk I/O
[12], [13], and is increased by some performance enhancing
mechanisms of HDFS, such as pipelines, caches, and load
balancing [14]. In the open literature, the randomness has
not been taken into account to model HDFS performance.
To best of our knowledge, there is no good solution to model
the randomness as well.

In the field of analyzing and modeling the performance
of HDFS, there are two types of methodology. A classical
methodology is to build analytical models of the system’s
internal architecture, components, or working mechanism
(e.g., [3], [15], [16]), which significantly requires solid pro-
fessional knowledge of the system. However, it is highly com-
plicated and computationally impossible to build an explicit
and precise analytical performance models in terms of the
randomness of performance by using this methodology. First
of all, analytical models usually have complex mathematical
structures or parameters that are hardly estimated. Secondly,
the professional as well as some empirical knowledge of the
system is normally inadequate to figure out an appropriate
analytical model due to the uncertainty caused by the random-
ness. Thirdly, analytical modeling typically depends on some
simplifying assumptions on the system or workload behav-
iors, thus the accuracy of analytical models may be seriously
challenged in scenarios when such assumptions are no longer
satisfied [17]. The other measurement-based methodology
(e.g., [41], [5], [18], [19]), which is to implement experimen-
tation upon the system by running benchmarks, application
programs, or specially designed data set, is a promising way
to deal with the randomness since it requires no expertise of
the dynamic behaviors of system or workloads. Evidently,
the measurement-based methodology relies on the observed
system behaviors which are always subject to various kinds
of uncertainties due to external disturbance or modeling
error. Therefore, taking the advantage of measurement-based
methodology to model HDFS performance, it mainly suffers
from the uncertainty of performance model with an extremely
huge design space, which is caused by the randomness of
performance. Heavy computational burden including time
and resource costs ensues owing to the large design space.

By this means, the estimation of HDFS performance on
account of the randomness is transformed to an optimization
problem of finding out the real best design (a design is a
solution to an optimization problem) of performance model
using a limited computing budget. Since it is highly compli-
cated to develop a precise mathematical function to describe
the nonlinear characteristics and randomness of HDFS per-
formance, piecewise linear (PL) model provides a powerful
tool to approximate these features [5], [20], [21]. Then the
design space is consisted of the key structural parameters
of PL-based performance model. Since it is computationally
impossible to find the optimal design by traversing overall
design space, the core ideas of ordinal optimization (OO) are
introduced to solve this problem. OO aims at using limited
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simulations to find some of the real good enough designs
(usually defined as the real best multiple designs) from a
set of observed good enough designs with high probability
[22]. The major contributions of our proposed method are
summarized as follows:

1. Generally, the randomness exists in every human-made
complex systems like DFSs. To model the performance of
DEFSs, it confronts the uncertainty of performance model
due to the randomness. In this paper, the estimation of
performance models of DFSs on account of the random-
ness is transformed to an optimization problem of finding
the optimal design of performance model with large design
space.

2. An OO based performance model estimation method is
proposed to figure out the real best design of PL-based per-
formance model structure without occupying unreasonable
computing budget. The proposed method provides a globally
consistent evaluation of the design space and guarantees the
goodness of solution with high probability.

3. Large experiments are conducted to verify the
effectiveness of the proposed method. The accuracy of per-
formance model built by the proposed method is improved
compared with other system model-based performance mod-
els for HDFS. Moreover, the proposed method is basically
a black box method that relieves developers and users from
expert knowledge of system’s internal behaviors, and it can
be easily applied to other similar data-intensive DFSs.

In Section II, we present an overview of the OO the-
ory. We discuss the motivation of the proposed method in
Section III-A, based on which, we mathematically model
the problem in Section III-B, and present specific procedure
of the proposed method in Section III-C. The experimental
results and analysis are illustrated in Section IV. The related
work is presented in Section V. We conclude the paper in
Section VI.

Il. OVERVIEW OF ORDINAL OPTIMIZATION

In this section, an overview of ordinal optimization is briefly
introduced in. The description of symbols in this paper are
listed in Table 1.

OO was developed to deal with the optimization prob-
lems of real world complex systems [23]. These problems
are often characterized by the lack of structure information,
large design space, uncertainties, and they usually require
time-consuming performance evaluation. As a complemen-
tary approach to optimization, OO plays a significant role
to solve simulation optimization problems, and has been
successfully applied in various fields, such as manufacturing
systems [24], power systems [25], control systems [26], and
communication systems [27].

There are two basic ideas in OO: 1) it is much easier
to find out which design is better than to answer how
much better in comparison; 2) nothing but the best is very
costly, and small retreat in softening the goal from ‘‘the
best” to “good enough” can ease the computation burden.
In fact, some ‘““good enough” solutions can often satisfy the
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TABLE 1. Explanation of symbols.

Symbol Explanation

© Design space

N The number of designs uniformly chosen in ©

© Sampled design space

0t A design of the performance model structure

G Good enough set

g Size of G

S Selected set

s Size of S

AP Alignment probability

k Alignment level

T Computing budget

sj(x) j-th submodel

swp; j-th SWP that divides two adjacent submodels

p(x) PL-based performance model

l The number of submodels

14 Relaxed model base

My (ac, G) | r-th model structure in the relaxed model base

S Vector of undetermined parameters of r-th model structure
in the relaxed model base

M Size of relaxed model base

S8t An alternative of submodel sequence

ind; Index of model structure in W that chosen as the structure
of s;(x)

L Maximal number of submodels

F Size of sampled performance data set

: Design Space

: Good Enough Set

: Selected Set

: Estimated Optimum
: Truely Optimum

P> @

FIGURE 1. General concepts of ordinal optimization.

practical demands. In a word, OO aims at seeking the good
enough with high probability instead of the best for sure.
In addition, OO uses a crude but computationally fast model
to estimate the performance of each design in the design space
and determine the order of them. The general concepts of OO
is shown in Fig. 1 [22].

As shown in Fig. 1, ®, the design space, is an arbi-
trary, huge, but finite set of alternatives that can optimize
certain targeted criteria; G, the good enough set, is usu-
ally the top-g real good designs of the design space; N,
the number of designs uniformly chosen in ®; S, the selected
set, is usually the estimated top-s of the N chosen designs
in the design space, and it is determined by certain selec-
tion rule (SR); G N S, the truly good enough designs
in S.

The size of G is denoted as |G| = g, and the size of S
as |S| = s. OO ensures to build the selected set S with at
least k truly good enough designs, satisfying the alignment
probability, AP = Pr(|G N S| > k), where k is the alignment
level.
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lIl. ORDINAL OPTIMIZATION BASED PERFORMANCE
MODEL ESTIMATION METHOD FOR HDFS

A. MOTIVATION

In general, human-made systems are nonlinear with compli-
cated structure and always subject to various kinds of uncer-
tainties due to external disturbance as well as modeling error
[21], [28]. In a systematic view, HDFS W/R performance
exhibits nonlinear characteristics (like saturation and cyclical
fluctuation) and randomness.

Denote the performance of HDFS as the following map-
ping relationship F : x +— f(x), where x refers to an
influence factor of HDFS performance (such as the file size,
block size, and the number of DataNodes). The i-th observed
performance is denoted as

i) =f(x) + & 4))

where &; refers to the random noise, f(x) represents the true
performance.

In this paper, the relationship between the file size and
HDFS W/R performance measured by throughput, a com-
monly used explicit performance QoS metric for DFS [29],
under different block size settings is studied as example.
In order to illustrate the randomness of HDFS W/R perfor-
mance, replicated uploading and downloading experiments
under the block size setting of 64 MB (denoted as BS64 for
short) are conducted. The instances of sequentially uploading
and downloading two files with the sizes of 10 MB and
100 MB for 200 times are shown in Fig. 2 and Fig. 3,
respectively. The horizontal axis is the operation number, and
the vertical axis is observed throughput, the unit of which
is MB/s. Obviously, the measured HDFS W/R performance
varies each time when uploading or downloading the same
file with fixed system configurations.

On account of the complexity and mathematical infeasi-
bility of constructing explicit and accurate analytical models
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of the randomness, PL model is a practical and effective
tool to approximately characterize the performance of HDFS
taking the randomness into consideration. In brief, it is a
global representation of some combination of a family of
independent local submodels over the global space [20]. Each
submodel within its corresponding subspace is a certain linear
system model. Every two adjacent submodels are divided by a
switching surface which corresponds to a switch point (SWP)
of a PL-based performance model due to dimension reduction
[5]. Denote a submodel as sj(x), a switch point (SWP) that
divides two adjacent submodels s;(x) and s;1(x) as swp;, then
a PL-based performance model is constructed as

l
px) = Zsj(x),x e Q

j=1
sit. lim si(x) = lim  spq(x) 2)
xT—swp; X~ —>swp;j

where j = 1,2,...,1—1,1 > 2; [ is the number of
submodels. Thus, the key structural parameters of a PL-based
performance model include: 1) the number of submodel,
2) structures of submodels, and 3) values of SWPs. They turn
uncertain due to the randomness.

By assuming the absence of the randomness, PL model
was applied to approximately characterize the nonlinear-
ity of HDFS W/R performance in our previous work [5].
An ordered model base was defined as an ordered set of
potential model structures for submodels. It consisted of a
group of linear system models with different system orders
and mathematical forms caused by different distributions of
zeros and poles [30]. These linear system models in the
ordered model base were arranged in an ascending order
based on the system order and the number of real poles.

In this case, the structure of PL-based performance model
is deterministic and determined by some industrial experience
and two presented strategies including the cluster quality
assessment strategy and the submodel selection strategy suc-
cessively. In spite of the theoretical determinacy, however,
extra uncertainties due to approximation error in case of
nonlinear system approximation using PL. model is generated
[21]. Additionally, although the strategies are effective and
efficient, they are actually unable to provide guarantees of the
goodness of the solutions. Concretely, first of all, the clus-
ter quality assessment strategy to estimate the number of
submodels, relies on the adopted clustering algorithms and
indices to assess the quality of clustering results. Clustering
is essentially a nonlinear optimization problem, which can
hardly figure out the analytical solution but take the iteration
solution instead [31]. The number of clusters is determined
by the extremum of the optimizing index, and the reasonable
division of sample data is a benchmark problem which has
not found a universal evaluation index to assess the cluster
quality [32]. Thus, this strategy cannot guarantee the accuracy
of the estimated number of submodels. Secondly, the sub-
model selection strategy is essentially an empirical heuristic
approach based on some industrial experience on linear and
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nonlinear systems to make a specific rule to determine the
structure of each submodel. Hence, it is likely to choose
a locally optimal submodel structure instead of the global
optimum [33]. Moreover, its efficiency is facilitated by the
definition of ordered model base which actually weakens the
robustness of this strategy.

In this paper, by considering the impacts of randomness
of HDFS performance, which result in the uncertainty of
PL-based performance model structure, the key points of
modeling HDFS W/R performance in system-level are sub-
ject to: 1) finding out the optimal design of PL-based perfor-
mance model structure with an extremely huge design space,
and 2) providing a mathematical guarantee of the goodness
of the solution.

To solve this problem, a large design space of PL-based
performance model is constructed on the basis of its key struc-
tural parameters. Thus, it requires great computing budget
to find out the optimal design in the design space, which is
very costly and impractical. Therefore, the core ideas of OO,
including ordinal comparison and goal softening, are intro-
duced to overcome this difficulty by making a compromise
between the optimality of the solution and computational
burden. OO contributes to not only the globally consistent
evaluation of the design space but also the mathematical
guarantee of the solution. The details of the proposed OO
based performance model estimation method is presented in
Section III-B and Section III-C.

B. PROBLEM MODELING

According to the analysis in Section III-A, modeling HDFS
performance impacted by its randomness can be described as
the following optimization problem:

min J[p(9)] (€)

where J refers to the evaluation criterion of performance
model p(0), 6 represents an alternative (i.e., a design) of the
structure parameter of performance model, ® is the design
space.

Denote a relaxed model base which is an unordered set
as W = {m.(x, )™, where m,(x,g), the r-th model
structure in the relaxed model base; ¢, vector of undetermined
parameters; M, the size of relaxed model base. To show the
correspondence between the structure of submodel and the
relaxed model base, a submodel sequence (SS) is defined as

ss = (indy, indy, .. ., ind;), (@)

where ind; € {r}M.,, thus sj(x) = ming(x, ). Namely, ind;

refers to the index of model structure in W that chosen as the
structure of s;(x). The size of SS is |ss| = [.

As mentioned in Section III-A, due to the uncertainty of
the model structure of PL-based performance model, / could
be an arbitrary positive integer that is greater than 2. Theoret-
ically, the model structure of s;(x) could be any linear system
model. Nevertheless, it is limited to the alternatives in ¥ in
this paper for simplification. Hence, the submodel sequence
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is able to reflect the core parameter of PL-based performance
model structure. It varies with the changes of / and ind;. Then
an alternative of SS is denoted as ss; = (indy, ..., ind),),
I el }1L=2’ L represents the maximal number of submodels.

According to Eq. (2), to optimize the core structure param-
eters of PL-based performance model, the design space is
constructed as

e = {6,)° 5)

=1
in which 6; is defined as a design of the performance model
structure

9[ = (l[, SS;) (6)

L
where the size of the design space |®| = Y M!.
1=2

Consequently, this optimization problem is specifically
described as:

F
. 1 2
min/ = = ];[f(k) — p(x(k), 0, 7,)] (7)
where p(x(k), 6;, 7;) refers to the performance model built by
0; based on Eq. (2), 7/ = (swp1,...,swpj,_1) is the set of
SWPs, F is the size of sampled performance data set.

C. PROCEDURE OF THE PROPOSED METHOD

In terms of the design space constructed in Section III-B,
as the increase of / and the expansion of W, the size of
|®| and the complexity of the performance model built by
6; both exponentially increase, leading to a combinatorial
problem. Therefore, it is rather difficult to figure out the
optimal design via traversing the overall design space due to
huge computational burden. In the proposed method, OO is
applied to make a compromise between the optimality of
solution and computational burden by using “good enough”
solutions instead of the real optimal solution.

The procedure of OO based performance model estimation
method for HDFS W/R performance is shown in Fig. 4. The
detailed steps are described as follows.

Step 1: Set the computing budget 7' and determine how it is
allocated to a design. Uniformly generate N sampling designs
according to Eq. (6) to construct the sampled design space ©
to scale down the full design space ®.

It is guaranteed that © is able to represent ® [34], which
means the observed top-s designs in the selected set S picked
up from © contains some real good enough designs in the
good enough set of the full design space G(®) with high
probability, thus it is common to evaluate ® instead of ® to
save the computing budget still obtaining equivalent reliable
and effective solutions.

Step 2: Choose the selection rule (SR) based on T', N; set
the size of the good enough set G, g; the alignment level, k;
the alignment probability, AP.

Step 3: Apply the crude model to evaluate each design
in © to calculate the corresponding evaluation criterion by
Eq. (7), and estimate undetermined parameters of the crude
performance model built by each design.
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Set the computing budget 7 and its allocation
mode; generate N sampling designs uniformly to
construct the sampled design space ®

l

Choose the selection rule; set the size of good
enough set G, g; the alignment level, £; the
alignment probability, AP

Apply the crude model to evaluate each design in
® to calculate the corresponding evaluation
criterion and estimate undetermined parameters base

prem———— e

Estimate the OPC class and noise level
Calculate the size of the selected set S,
s = f(g. k/N, OPC, noise level, AP, selection rule)
and pick up the observed top-s designs as S

Apply the precise model for each design in S to
obtain updated evaluation criterion and re-
estimate undetermined parameters

l

Select the top-k designs in S as truly good enough
designs, and the best of them is determined to
build the optimal performance model

CE

FIGURE 4. The procedure of the proposed method.

The crude model includes two parts: 1) the crude
performance model that is a simplified form of Eq. (2)
without the constraint; 2) the Levenberg-Marquardt (LM)
algorithm [35], a widely used iterative approach to solve
the nonlinear least squares problems, to estimate SWPs and
undetermined parameters of the crude performance model
with two user defined parameters including the maximum
number of iterations, I,,,., and the error threshold, . The
changes of these two parameters may produce influence on
the estimation results as well as the speed. In the crude
model, they are set as smaller values compared with their
values set in the precise model to get faster speed but crude
results.

Step 4: Estimate the class of ordered performance
curve (OPC) of designs in ® by ranking the evaluation crite-
rion of each design, and the noise level §, respectively. Then
the size of the selected set S is determined by s = f(g, k/N,
OPC, 8, AP, SR) = ¢“kPg” + n, where a, B, y and 5 are
constants depending on the OPC class, noise level, selection
rule, and computing budget. Select the observed top-s designs
as the selected set S.

Step 5: Apply the precise model for each design in S to
obtain updated evaluation criterion and re-estimate undeter-
mined parameters of the precise performance model con-
structed by each design in S.
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Similarly, the precise model includes the precise
performance model built according to Eq. (2), and the LM
algorithm, in which, I,y s set as a larger value while ¢ is set
as a smaller value to improve the fitting accuracy.

Step 6: Pick up the top-k designs in S as the truly good
enough designs of PL-based performance model structure,
and the best of them is determined to build the optimal HDFS
W/R performance model.

IV. EXPERIMENTS AND ANALYSIS

The experimentation is developed on a Hadoop cluster with
one NameNode and eight DataNodes in the 1 Gbps Ethernet
network. The NameNode has a 2.00 GHz dual quad core
Intel Xeon CPU, 8 GB RAM, and a 256 GB Seagate SAS
hard drive. Each DataNode has a 2.67 GHz quad core Intel
Core i5 CPU, 8 GB RAM, a 500 GB Seagate SATA hard
drive to install OS and software as well as a 1 TB Seagate
SATA hard drive to store HDFS data. To study the relationship
between the file size and HDFS W/R performance, a file set
containing 78 files with different sizes is generated. Based
on prior knowledge of HDFS [2], [4], its W/R performance
changes quickly and sharply for small files, and relatively turn
some kind of stable as the increase of file size. Therefore,
the range of size of the 78 files is from 0.25 MB to 320 MB.
The sizes of small files are designed with smaller intervals
like 0.25 or 0.5 MB, while large files with larger intervals
like 2 or 4 MB. By uploading or downloading the file set,
observed HDFS W/R throughputs over different file sizes are
calculated based on the recorded uploading and downloading
times of these files in the file set. The uploading and down-
loading experiments are deployed under four different block
size settings including 32 MB, 64 MB, 96 MB, and 128 MB,
respectively. These block size settings are denoted as BS32,
BS64, BS96, and BS128 for short in the rest of the paper. The
observed HDFS W/R throughput under the four block size
settings are shown in Fig. 7(a) and Fig. 8(a), respectively.

A. INITIAL PARAMETER SETTINGS

As described in Section III-B and III-C, in order to guarantee
the effectiveness of implementing the fitting algorithm, it is
necessary to allocate enough data for each submodel in the
experimentation. The maximal number of the submodels is
setas L = L%J, where | -] is the floor operation, F is the
size of sampled performance data set, i.e., the number of files
in the file set, ave is the average amount of data assigned to

each submodel. Try ave = 12, and then L = 6. Therefore,

6
the size of the full design space |®| = ) 50 = 1.9525 x
=2
10*. According to the scale of the full design space and
practical experience, to greatly alleviate the computational
burden, the computing budget 7 is set as a small amount,
500. In addition, the number of sampling designs N is also set
as 500. In other words, T is allocated equally to each design
once.
Since the computing budget is small, based on its allocation
mode, the Horse Race (HR) selection rule is adopted to
calculate s and choose the top-s selected designs as S.
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TABLE 2. Relaxed model base.

Model
Index

Model Structure

mo +mie P%

mo + mie P¥cos(Ex) + moe Prsin(€x)

mo +mie P1%T + moe P27

mo + mie P1% + moe P2%cos(&x) + mae P2¥sin(Ex)
mo + mi1e P1%T + moe P27 4 mge  P3¥

[ SOV S

The reason is that HR selection rule is especially suitable and
performs well in such scenario with small computing budget
especially when there is no concerns on its allocation way and
the width of search is more important than depth [36].

Moreover, in crude model, the maximum iteration number
of LM algorithm I, is set as 200 and the error threshold &
is set as 1 x 1078, while they are set as 500 and 1 x 1010
separately in the precise model.

In this paper, on account of the complexity of high-order
system models, the relaxed model base is consisted of five
step response models of linear systems of different system
orders (first-order, second-order, and third-order) with differ-
ent distributions of zeros and poles, as shown in Table 2. The
highest order of these system models in the relaxed model
base is set as three aiming to relieve the overfitting problem
as well.

B. EXPERIMENTAL RESULTS AND ANALYSIS

Based on the initial parameter settings above, the procedure
of the proposed method is then implemented step by step.
After Step 4, the normalized OPC curves of designs in ®
for HDFS W/R performance models under the four block
size settings are shown in Fig. 5 and Fig. 6, respectively.
The horizontal axis is the ranked designs, the vertical axis is
the normalized evaluation criterion (RMSE) of the designs.
According to shapes of the OPC curves, the class of every
OPC in Fig. 5 and Fig. 6 is Bell.

According to Eq. (1), the noise level is evaluated by
calculating the average standard deviations of HDFS W/R
throughput under the four block size settings. The average
noise is estimated as 0.21, which is lower than the thresh-
old of small noise level (0.25) defined in [37]. Therefore,
by looking up the regressed values of the constants presented
in Step 4, the size of the selected set S is calculated as s =
[£(20, 1/500, Bell, small, 0.95, HR) T = 20 [37], where [-]
is the ceiling operation.

Under each block size setting, the top-20 designs are then
chosen as elements of the selected set S. Thereafter, according
to Step 5 and Step 6, the top-1 design in S is picked up as
the truly good enough design as well as the best design of
PL-based HDFS W/R performance model structure. The opti-
mal performance model is then built on the basis of Eq. (2).
Consequently, the optimal designs of HDFS W/R perfor-
mance model structure under the four block size settings are
listed in Table 3 and Table 4, respectively. The corresponding
optimal HDFS W/R performance models constructed by the
optimal designs under each block size setting are shown
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FIGURE 6. Normalized OPCs of designs of HDFS read performance
models.

in Fig. 7(a) and Fig 8(a) separately. In which, the horizontal
axis is the size of file, the vertical axis is the throughput
(MBY/s). The values of SWPs of each W/R performance model
are shown in Fig. 7(b) and Fig 8(b). In which, the horizontal
axis is the block size setting, the vertical axis is the values of
SWPs (MB). For example, the five SWPs of the optimal write
performance model under BS32 are marked as blue crosses,
as shown in Fig 7(b).

According to Table 3, under each block size setting,
the optimal HDFS write performance model consists of six
submodels. And the optimal structure of all first submodels
is a third-order system model with three real poles.

Similarly, as shown in Table 4, under BS32, BS96, and
BS128, the optimal HDFS read performance models consist
of six submodels, while the one under BS64 is consisted of
five submodels. In addition, the optimal structure of every
first submodel under each block size setting is a third-order
system model with a real pole and two conjugate poles.
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FIGURE 7. Observed HDFS write throughputs and performance models.

In summary, HDFS W/R performance varies observably
for small files and becomes stable gradually as the increase of
the file size. Particularly, the fluctuation of read performance
is larger than write performance. Hence, the optimal structure
of the first submodel that characterizes HDFS W/R perfor-
mance for small files is estimated as a system model with the
highest system order. Moreover, since the system with con-
jugated poles fluctuates more severely than the one with
real poles, thus the optimal first submodel of HDFS write
performance model has three real poles while the optimal first
submodel of HDFS read performance has a real pole and two
conjugate poles.

C. COMPARISON OF HDFS W/R PERFORMANCE MODELS
In this section, we mainly compare the accuracy of HDFS
W/R performance model built by the proposed method with
that of the one constructed by the methods in [4] and [5],
respectively. For short, denote the estimated optimal per-
formance model built by the proposed method as Perf-
ModelByOO, the performance model established by [4] as
PerfModelBySI, and the one by [5] as PerfModel ByPWLM3,
respectively. PerfModelByOO, PerfModelBySI and Perf-
ModelByPWLM3 are all based on system models. The
comparison of RMSEs of PerfModelByOO, PerfModelBySI,
and PerfModelByPWLM3 for HDFS W/R performance are
shown in Fig. 9(a) and Fig. 9(b), respectively.

895



IEEE Access

T. Ma et al.: 00-Based Performance Model Estimation Method for HDFS

120

EEORLR i1y b i000s0000, s o A
VLN A LA DDA A DDA DADDA AN

100

80

A Observed throughput of BS32
Performance model of BS32
Observed throughput of BS64
Performance model of B84

+  Observed throughput of BS36

—-—-— Performance model of BS96
*  Observed throughput of BS128
Performance model of B3128

60

Throughput (MB/s)

40 3

B

204

0 50 100 150 200 250 300
File size (MB)

(a) Observed HDFS read throughputs and performance models under
each block size setting

300

250

200

Values of SWPs (MB
@
o

100% A
+ A
50 [ 1
+
0 t . L
BS32 BS64 BS96 BS128

(b) SWPs of optimal read performance models under each block size
setting

FIGURE 8. Observed HDFS read throughputs and performance models.

TABLE 3. Optimal designs of HDFS write performance model under
different block size settings.

. Optimal Design
Block Size Number of Subrgodels Subgmodel Sequence
BS32 6 (5,1,5,5,1,2)
BS64 6 (5,2,4,54,1)
BS96 6 (5.3.2,4,44)
BS128 6 (5.2,4,14,1)

TABLE 4. Optimal designs of HDFS read performance model under
different block size settings.

. Optimal Design
Block Size Number of Subrﬁodels Sub%nodel Sequence
BS32 6 (4,4,1,3,2,2)
BS64 5 (4,2,5,5,1)
BS96 6 (4,4,3,2,43)
BS128 6 (4.4,2,5.3.1)

As shown in Fig. 9(a), under each block size setting,
PerfModelByOO for HDFS write performance improves
the accuracy by 41.08%, 43.96%, 42.17% and 29.10%
separately compared to PerfModelBySI; compared with
PerfModelByPWLM3, the accuracy is improved by 28.53%,
18.38%, 7.18% and 9.20%, respectively.

Similarly, as shown in Fig. 9(b), under each block
size setting, compared to PerfModelBySI, PerfModelByOO
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FIGURE 9. Comparison of HDFS W/R performance models: case 1.

for HDFS read performance improves the accuracy by
67.18%, 55.92%, 47.86% and 47.94% separately, and
by 27.21%, 30.97%, 24.67% and 17.31% in contrast to
PerfModelByPWLM3.

Based on the comparison above, it is obvious that the
optimal HDFS W/R performance model built by the pro-
posed method evidently improves the accuracy of system
model-based HDFS W/R performance models. Furthermore,
we particularly compare the RMSEs of PerfModelByOOs for
HDFS W/R performance constructed by the top-s designs
(illustrated as box plot in Fig. 10) with those of PerfMod-
elBySI and PerfModelByPWLM3 under each block size
setting, shown in Fig. 10.

Moreover, as shown in Fig. 10(a) and Fig. 10(b), under
each block size setting, RMSEs of PerfModelByOOs for
HDFS W/R performance built by the top-20 designs
in S are all smaller than those of PerfModelBySI
and PerfModelByPWLM3, respectively. That is to say,
the observed top-s good enough HDFS W/R performance
models estimated by our proposed method are entirely better
than PerfModelBySI and PerfModelByPWLM3 except for
the estimated optimal HDFS W/R performance model, which
provides supplementary evidence of the effectiveness of the
proposed method.
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D. ANALYSIS OF SWPS

In order to study the characteristics of SWPs, we analyze all
the SWPs of HDFS W/R performance models constructed by
designs in ® under BS64 as example. Although the number
of SWPs varies for each design, we count all the SWPs in
total by identifying its sequence number (for instance, j is
the sequence number of swp;) separately. The distribution of
these SWPs is shown in Fig. 11. The horizontal axis is the
design number, the vertical axis is the value of SWP.

As shown in Fig. 11(a), in HDFS write performance mod-
els, most of swp; are spread around 8, 16 or 64 MB; the
majority of swpy are basically located in the neighborhood
of 64 MB; the values of swp3 are mainly around 96 and
112 MB; swp4 is approximately around 128 MB, and swps
is distributed around either 176 or 192 MB. In addition, some
of swpy4 and swps are greater than 200 MB.

Similarly, as shown in Fig. 11(b), in HDFS read perfor-
mance models, the majority of swp; are around 8 MB, while
some scatter near 16 MB; most of swpy are located in the
neighborhood of 16 and 64 MB; the values of swp3 are mainly
around 64 or 128 MB; swp4 is distributed either near 96 or
128 MB, and swps is mostly located around 128 MB.

Therefore, we may infer that the values of SWPs in a HDFS
W/R performance model built by our proposed method can be
characterized as swp; = uBS + 8 + ¢, where BS refers to
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the block size, i and A are both positive integers, u, A > 0, ¢
represents the estimated deviation. This deduction is verified
under BS32, BS96 and BS128 via analyzing the statistical
data of all the SWPs.

V. RELATED WORK

The extant research on HDFS performance modeling and
analysis typically includes two categories: The first cate-
gory is the model-driven based analytical modeling method-
ology by abstracting a system’s architecture, components,
and mechanism. This methodology is also characterized as
white or grey-box and usually requires solid professional
knowledge of the system. Wu et al. applied the unified model-
ing language (UML) diagram to build analyzed performance
models of DFS architecture and their key behaviors [3].
Xie et al. used communicating sequential processes (CSP)
to model and analyze HDFS write and read operations
[15]. Chattaraj et al. proposed a stochastic Petri net (SPN)
based mathematical model to formulate the HDFS stor-
age service activities and its dependability attributes [16].
The analytical performance models can provide explicit and
illustrative description of system’s internal characteristics.
However, they usually have complex mathematical structures
or parameters that are hardly estimated.
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The other popular measurement-based methodology
implements experimentation upon the system by running
benchmarks, application programs, or specially designed data
set. The system performance is either analyzed based on
the experimental results or the comparison with other DFSs
(e.g., [18], [19]). Otherwise, it is characterized by some
system models driven by system identification (e.g., [4],
[5]), which is basically a black-box approach and facilitates
to provide support for performance QoS management via
out-of-the-box control [38]. Dede et al. compared the per-
formance of HDFS and MongoDB by running application
programs [19]. Tantisiriroj et al. used micro-benchmarks
and real data-intensive applications to compare the perfor-
mance of HDFS and PVFS by integrating PVFS into Hadoop
[18]. These approaches are able to qualitatively evaluate
and analyze the performance relying on the benchmarks and
applications running upon. In addition, Dong et al. imple-
mented the system identification method to build single linear
system model based performance models for HDFS in the
file size domain [4]. Tian et al. proposed a piecewise linear
multi-model modeling method to characterize the nonlinear
characteristics of HDFS performance [5]. These approaches
relieve developers and users from expertise on system’s inter-
nal dynamics and are able to quantitatively characterize the
relationships between system performance and parameters
concerned in system level.

VI. CONCLUSION

HDEFS possesses not only system-level nonlinear character-
istics but also randomness attributed to the heterogeneity
and complexity of its hardware and network transmission,
related software operations as well as some resource con-
flicts in its intranet and extranet. The randomness prac-
tically results in the uncertainty of performance model
for HDFS.

Since it is highly complicated and mathematically impos-
sible to build explicit and precise analytical models of the
randomness, PL. model is applied to approximately charac-
terize HDFS performance driven by the measurement-based
methodology combined with system identification. The prob-
lem of estimating HDFS performance model on account of
the randomness is transformed to finding out the optimal
design of PL-based performance model structure with large
design space using a limited computing budget. OO theory
is introduced to solve this problem to find out the real best
design of PL-based performance model structure for HDFS,
and overcome great computational burden as well.

The experimental results show that the proposed method
is effective and practical to estimate the real best structure of
PL-based HDFS W/R performance model. It not only guar-
antees the goodness of the solution with high probability but
also provides a globally consistent evaluation of the design
space with small computing budget. In addition, it effectively
improves the accuracy of the system model-based HDFS W/R
performance model. Furthermore, the proposed method can
be easily applied on other similar data-intensive DFSs since
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it is black box method and requires no expertise of system’s
internal dynamic behaviors.

In future work, more evaluation metrics in different levels
will be explored to enhance the comprehensiveness of the
evaluation of the design space. Furthermore, more efforts will
be donated on the QoS-oriented DFS performance improve-
ment using system theory and control theory. We will explore
the usage of the performance model built by the proposed
method in constructing the QoS control knobs to predict and
control system performance.
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