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ABSTRACT In this paper, we propose a new metric to measure goodness-of-fit for classifiers: the Real
World Cost function. This metric factors in information about a real world problem, such as financial
impact, that other measures like accuracy or F1 do not. This metric is also more directly interpretable for
users. To optimize for this metric, we introduce the Real-World-Weight Cross-Entropy loss function, in both
binary classification and single-label multiclass classification variants. Both variants allow direct input of
real world costs as weights. For single-label, multiclass classification, our loss function also allows direct
penalization of probabilistic false positives, weighted by label, during the training of a machine learning
model. We compare the design of our loss function to the binary cross-entropy and categorical cross-entropy
functions, as well as their weighted variants, to discuss the potential for improvement in handling a variety
of known shortcomings of machine learning, ranging from imbalanced classes to medical diagnostic error
to reinforcement of social bias. We create scenarios that emulate those issues using the MNIST data set
and demonstrate empirical results of our new loss function. Finally, we discuss our intuition about why this
approach works and sketch a proof based on Maximum Likelihood Estimation.

INDEX TERMS Machine learning, class imbalance, oversampling, undersampling, ethnic stereotypes, social
bias, maximum likelihood estimation, cross-entropy, softmax.

I. INTRODUCTION

Over the past several years, deep learning has achieved dra-
matic success in areas ranging from image recognition to
speech recognition and decision making. As deep learning
has been rapidly commercialized, issues have arisen.

First, machine learning has shortcomings when analyzing
imbalanced classes [1]. A simple and well-known thought
experiment motivates the problem: when seeking to identify
an uncommon disease with say a 1% occurrence, a trivial
classifier that never predicts that disease is 99% accurate.
Measures such as recall, precision, and F1 score are some-
times used as alternative measures of goodness-of-fit. Prac-
titioners have also introduced heuristics like oversampling,
undersampling, and weighted labels [2].

Second, the approach of using softmax and its associated
loss function for single-label, multiclass classification means
that probabilistic false negatives are not directly penalized
during training. This limits the ability to solve a variety
of issues, ranging from reinforcement of social bias [3] to
medical diagnostic errors that deserve extra scrutiny [4].
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In this paper, we propose a new metric for classifiers: the
Real World Cost. This metric is more comprehensive than
accuracy or F1 because it applies weights to each error based
on an estimate of its impact in the real world, such as financial
cost. The result is a metric that will be more familiar for some
end users, compared to abstract concepts like F1 or overly
simplistic measures like accuracy.

We also describe and build an efficient implementation of
a new loss function we call the ‘“Real-World-Weight Cross-
Entropy” (RWWCE), which is designed to optimize for the
Real World Cost. We find that RWWCE is a generalization
of binary cross-entropy and softmax cross-entropy (which is
also called categorical cross-entropy). Specifically, RWWCE
adds weights to address false positives.

Furthermore, we introduce a framework to set these
weights based on factors that exist in the dataset or under-
lying problem to be solved. The framework is grounded in
underlying costs of the real world problem, which means they
should be discovered and set only once. These weights are not
a machine learning model’s hyperparameters, which would
require repeated adjustments based on heuristics.

We apply the RWWCE loss function against binary imbal-
anced data to demonstrate improvements in Real World Cost.
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Our control group includes the approach of training a binary
classifier neural network for accuracy, but then after training,
tuning one of the hyperparameters (threshold) to optimize F1.
We then discuss the similarities and differences between the
RWWCE loss function and the heuristics of oversampling,
undersampling, and weighted labels.

Subsequently, we apply our RWWCE loss function
towards single-label, multiclass classification, activated by
softmax. We choose specific combinations of target label and
possible incorrect predicted label to represent high expense
or socially unacceptable mistakes. We demonstrate a reduc-
tion in these specific mislabeling errors and a reduction in
Real World Cost. We also analyze the design of the softmax
cross-entropy loss function to identify the specific additional
capabilities of the RWWCE loss function.

Finally, we sketch the outline of a proof, based on the
underlying concepts of Maximum Likelihood Estimation,
and conclude with future directions.

Il. RELATED WORK

Widely available machine learning libraries like TensorFlow
support weighting of the loss function [5]. For binary clas-
sification, the binary cross-entropy loss function can have
a weight applied to the probabilistic false negative case.
Setting this value greater than one increases the penalty for
probabilistic false negatives during training. The value can be
set to less than one to decrease the penalty for probabilistic
false negatives. For multi-class classification, the categorical
cross-entropy loss function can be weighted by class, increas-
ing or decreasing the relative penalty of a probabilistic false
negative for an individual class. Class-Balanced Loss sets
these weights in proportion to the inverse of the number of
samples per class [6].

Focal Loss sets weights based on class and difficulty
of classification. Easy to classify examples are given less
weight [7].

The idea of adding weights to increase the cost of specific
combinations of targeted and predicted class in single-label,
multiclass classification is described in [8].

Oversampling synthetically creates additional minority
examples by replicating data points from a minority class.
Undersampling removes some amount training data from the
majority class. This has the added benefit of reducing the size
of the training data. Both techniques and their extensions are
surveyed in [9].

The Synthetic Minority Over-sampling Technique
(SMOTE) creates synthetic training data in a more sophisti-
cated way than plain oversampling [10]. Applied to a minority
class, it synthesizes additional training data by interpolating
between existing data points.

Techniques have been developed to reduce social bias in
some neural networks designs such as adjusting the high
dimensional vectors representing individual words to remove
differences in the distance from the concepts of male and
female in word2vec [11] and the Seldonian approach of
describing and regulating undesirable behavior [12].
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For pairs of a false negative and false positive that reference
racist tropes, a high profile problem was reduced by eliminat-
ing the label entirely, an extreme version of a more general
practice of ignoring the outputs from a machine learning
model when confidence is below a certain threshold [13].

Weighted maximum likelihood estimators [14] address
the challenges of imbalanced classes from the perspective
of Maximum Likelihood Estimation [15]. We address this
further in the sketch of the proof of our RWWCE.

In the case of binary classification, F1 is a com-
mon measure of goodness-of-fit for imbalanced classes.
Weighted Maximum Likelihood was applied to optimize
F1 score in [16], and, loss functions have been developed
to allow a machine learning model to directly optimize
F1 score [17].

lIl. REAL-WORLD-WEIGHT CROSS-ENTROPY
LOSS FUNCTION
During neural network training, the cost function is the key to
adjusting a neural network’s weights to create a better fitting
machine learning model. Specifically, during forward prop-
agation, the neural network is run on training set data, and
outputs are generated which in the case of classification indi-
cate the probability or confidence in possible labels. These
probabilities are compared to the target labels, and, the loss
function calculates a penalty for any deviation between the
target label and the neural network’s outputs. During back-
propagation the partial derivative of the loss function is
calculated for each trainable weight of the neural network.
The weights are adjusted by these partial derivatives. Under
normal conditions, backpropagation iteratively adjusts the
trainable weights of a neural network to produce a model with
lower loss.

The standard binary cross-entropy loss function is given
by:

1 M
Tpee = =35 > [ym x og (g ()

m=1
+ (1 = y,) x log (1 — hg (xm))] (D
where

M number of training examples

ym  target label for training example m
Xy,  input for training example m

hg  model with neural network weights 6

The first term, y,, x log (hg (x,,)), disincentivizes proba-
bilistic false negatives during training. For example, suppose
a training example has target 1, the output of the machine
learning model is 0.6. We say that there is a probabilistic false
negative of 40%. In other words, from a Bayesian perspective,
the model has 40% confidence in the wrong result. Or from
a Frequentist perspective, the model will be wrong 40% of
the time. The loss function penalizes this 40% by returning
the value -log(0.6) = 0.22. In the perfect case, if the binary
classifier outputs 1, then it is completely accurate for the
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training example and the loss is -log(1) = 0. The same
logic applies for the second term and probabilistic false
positives.

The standard weighted binary cross-entropy loss function
is given by:

M

1
Jwbee = === Y [wx ym x log (g (xm))
m=1
+(1=y,) x log (1 = by (xn))] )

M number of training examples

w  weight

ym  target label for training example m
X,  input for training example m

hy  model with neural network weights 6

The additional weight can be set to adjust the importance
of the positive labels. A common use is to give more weight
to minority classes.

For the case of single-label, categorical classification (i.e.
softmax activation) the standard categorical cross-entropy
loss is given by:

1 K M
Jece = =35 D > Y x log (hy (om, K)) 3)

k=1 m=1
where

M number of training examples

K  number of classes

y’;l target label for training example m for class k
x input for training example m

hy  model with neural network weights 6

The standard weighted categorical cross-entropy loss is
given by:

1 K M
Jwece = — Z Z Wi X yI:n X IOg (ho (xXm, k)) 4

k:l m=1
where

M number of training examples

K number of classes

wr  weight for class k

y’,; target label for training example m for class k
X, input for training example m

hg  model with neural network weights 6

The Real-World-Weight Cross-Entropy (RWWCE) loss
function introduces weights on the cost of missing a positive,
and a separate weight for missing a negative. For binary
classification, RWWCE loss function is given by:

1
Jbrwwee = _M Z [quﬁl X Ym X IOg (h0 (xXm))

m=1

+ Wingtp X (1=y,,)x log (1 — hg (xm))] (5
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where
M number of training examples
Wmefn ~ marginal cost of a false negative over true positive
Wmefp ~ marginal cost of a false positive over true negative
Ym target label for training example m
X input for training example m
hy model with neural network weights 6
For the single-label, categorical classification, the
RWWCE is given by:
1
Jerwwee = _M Z Z [ Winefn X ym x log (hg (X, k))
k=1m=1
kK’
k=1
x log (1 — hg (xm, k'))]
S.t.
kK #k 6)
where
M number of training examples
K number of classes
y’,‘n target label for training example m for class k
hy model with neural network weights 6
Xm input for training example m
w];n ofin marginal cost of a false negative over a true
positive
wfn’C'}P marginal cost of a false positive of class k’ over

a true negative, when the true positive is k

The false positive matrix Wicfp has unused values along
the main diagonal, because they represent true negatives, not
false positives. This matrix and its associated triple summa-
tion in the loss function is the essence of modeling additional
loss in the case of probabilistic false positives. In future work,
we will explore multilabel, multiclass categorization. With k
labels, the weight matrix could be as large as 2 by 2% Unlike
RWWCE for binary and single-label, multiclass categoriza-
tion, we have not developed an efficient implementation of a
multilabel, multiclass RWWCE loss function.

IV. BINARY CLASSIFICATION OF IMBALANCED CLASSES
We tested the RWWCE loss function against imbalanced
classes for binary classification.

We created 100 data sets based on MNIST. MNIST is a
widely used data set for neural network training consisting of
70,000 examples of images of hand written Arabic numerals
along with labels (targets). Each example is a 28 by 28 pixel
image, which we flattened to 784 pixels in a single vector.

For each of the 10 possible digits, there are roughly
7,000 examples.

For the first data set, we took the first 630 examples of
the numeral “0” and labeled them to 1 (true). We took the
63,000 examples not labeled with the digit “0” and labeled
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them to O (false). This was our first data set. We divided up
this data set into 67.5% training, 7.5% validation, and 25%
test.

Our second through tenth data sets repeated the above
procedure but with the second through tenth batches
of 630 examples of the number “0”.

We repeated the above 10 steps for the remaining digits
“1” through ““9” for a total of 100 data sets.

We trained 100 control neural networks and 100 experi-
mental neural networks. Their only difference was the loss
function. All were trained with 10 epochs and a batch size
of 100. All took 784 inputs and then a penultimate dense
layer of 10, activated by ReLU. The final layer was a dense
layer of 1 with a sigmoid activation, the standard tech-
nique for binary classification. All were implemented with
the same Keras library using TensorFlow as the backend.
All were run on the Google Colaboratory platform. The
code is available at https://github.com/yaoshiang/The-Real-
World-Weight-Crossentropy-Loss-Function.

The control neural networks used the standard Keras binary
cross-entropy loss function, which wraps the TensorFlow
implementation. The experimental neural networks used
the custom RWWCE loss function with weights described
below.

We created a second set of 100 control neural networks.
We took the first 100 control neural networks and without
adjusting any of their weights, used the method of searching
across all possible thresholds to maximize F1 [15]. In other
words, instead of treating an output greater than the threshold
of 0.5 as a prediction of true, we searched for a different
threshold to use as the prediction of true.

For our experimental neural networks, we set the marginal
cost of not identifying a positive (marginal cost of FN) at
2,000 (e.g. for the first three data sets, imagining the label “0”’
to represent a rare but expensive disease that if missed, costs
$2,000 in future medical treatment and pain and suffering).
We also set the marginal cost of a false positive at 100 (e.g.
representing a $100 cost of a retest).

We define the Real World Cost as the sum of the marginal
cost of a false negative multiplied by the number of false
negatives and the marginal cost of a false positive multiplied
by the number of false positives, divided by the total number
of samples. Real World Cost represents deviation from the
value of a perfect classifier.

The results are summarized below. The test model has
fewer false negatives but even more false positives than either
control model, leading to an increase in top-1 error. This is
expected, because the real world cost of a false positive is far
less than the real world cost of a false negative. Crucially, our
Real World Cost measure indicates that our test would deliver
lower real world costs. The p-values are calculated using the
pairwise t-test.

A. COMPARING REAL WORLD COST TO F1
We argue that optimizing for Real World Cost can be superior
to F1 based approaches.
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TABLE 1. Results of RWWHCE Loss function for binary classification.

M M Mean ]\}gea?
Model can ean Top-1 ca
FN FP Error World
Cost
Control 1 454 12.7 0.37% $5.78
(n=100)
Control 2 31.7 20.3 0.33% $4.11
(n=100)
Test 16.1 127.2 0.91% $2.81
(n=100)
p-value 1.2x10%! 3.1x10%8 3.0x10%*  2.3x10°8
(Control 1
vs Test)
p-value 2.7x10% 2.5x1028 1.8x10%  3.1x1077
(Control 2
vs Test)

First, training a neural network for one goal, accuracy, then
performing an exhaustive search across all possible thresh-
olds to optimize a second measure, F1, is a two step process
that does not allow the weights of the neural network to adapt
to the real goal, the F1 score. That said, there has been recent
work to develop a loss function to directly optimize F1 and
related scores [14].

Second, when a machine learning model is being applied
to make decisions in the real world, the costs and benefits of
real world outcomes comprise additional information to apply
when training a machine learning model. The F1 score does
not factor in this additional information.

Finally, the F1 score is mathematically focused on infre-
quent positives. In cases where positives are frequent,
the F1 score can be high from a trivial classifier.

B. COMPARING RWW(CE TO HEURISTICS

IN BINARY CLASSIFICATION

In the binary classification case, RWWCE is mathematically
equivalent to the widely available weighted binary cross-
entropy. (As we will see, in the categorical case RWWCE is
more expressive than the weighted categorical cross-entropy
function). RWWCE allows direct application of costs for
false positives and false negatives, whereas weighted binary
cross-entropy allows one weight via a single parameter
apply to false negatives. Setting this weight to the ratio of
RWWCE’s marginal false negative cost and marginal false
positive cost creates equivalent behavior.

For binary classification, the main contribution of
RWWCE is a framework to decide its two weights. Starting
with the principle that training of a neural network should
use the loss function that represents the goal of the end user,
RWWCE’s two weights, the marginal cost of a false negative
and marginal cost of a false positive, should be set at the
estimated real world values. For example, if the marginal cost

4809



IEEE Access

Y. Ho, S. Wookey: RWWCE Loss Function: Modeling the Costs of Mislabeling

of missing a disease (a false negative) is $2,000 in estimated
future medical care and pain and suffering, and a false
positive costs $100 in unnecessary testing, the RWWCE’s
marginal false negative weight and marginal false positive
weight should be set at 2000 and 100 respectively. In the case
of imbalanced classes, false negatives are often the bigger
issue. However, it could also be the case that a false positive
has a high cost - perhaps a false positive triggers expensive,
unnecessary treatments and loss of confidence in the test.
The estimation of these values should come from domain
experts. The RWWCE’s weights should be set once and
only adjusted when domain experts believe they have better
estimates, or the world has changed. These weights are not
hyperparameters of the neural network for machine learning
practitioners to constantly tune (such as the number of layers,
optimizer, or learning rate).

Oversampling and undersampling are also heuristics
applied to imbalanced classes. Oversampling introduces
additional computational complexity better solved with
adding weights on the less frequent class (either with out
of the box weighted binary cross-entropy loss function or
RWWCE loss function). Undersampling loses information
from the training set. And setting the degree of undersam-
pling while maintaining sufficient data becomes yet another
hyperparameter to estimate and tune.

V. FALSE NEGATIVES IN SINGLE-LABEL,

MULTICLASS CLASSIFICATION

We tested the RWWCE in a scenario designed to demonstrate
a high cost mistake in a single-label, multiclass classification
problem. Examples of this type of mistake include misclassi-
fications considered racist, and expensive diagnostic error in
a medical context.

We again used the MNIST data set. We again divided up
our data set into 67.5% training, 7.5% validation, and 25%
test.

We trained 90 control neural networks and 90 experimental
neural networks. Their only difference was loss function.
All were trained with 10 epochs and a batch size of 100 with
the Adam optimizer. All took 784 inputs, then a dense layer
of 50 and a penultimate dense layer of 20. All layers except
the final layer were activated with ReLU. The final layer
was a dense layer of 10, activated with softmax, representing
the prediction for each of 10 possible classes (e.g. odds of
a digit “07, “17, “2”,..., “9”). Softmax is the standard
activation for single-label, multiclass classification. All were
implemented with the same Keras library using TensorFlow
as the backend.

For each pair of control and experimental model, the pair
was created, trained, and tested together for a total of 90 runs.
Each of the 90 runs used a different high-cost combination
of false negative and false positive labels, e.g., (1, 2) means
that mislabeling an image of a “1” as a “2” would incur
extra penalty. Within a run, the control and experimental
models were analyzed on the same pair of false negative
and false positive. There are 90 possible combinations of
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(false negative, false positive), so the 90 experimental neural
networks represent all possible mislabeling mistakes.

The 90 experimental neural networks were trained using
the RWWCE loss function. For each, the specific high cost
combination of false negative and false positive was set at a
cost of 19, and the other false negative costs left at 1. This
represents a domain expert estimating the marginal cost of a
false negative in most cases at $1, but the marginal cost of a
specific false negative, false positive pair at $20, perhaps due
to the social cost of reinforcing a social bias or mistakenly
predicting a lower acuity disease when a higher acuity disease
is present.

The results demonstrate a reduction in the number of mis-
labeled digits as well as Real World Cost. There is an increase
in top-1 error, which is expected. The neural network training
step no longer maximizes overall accuracy but rather mini-
mizes Real World Cost, which is reflected in the reduction
in high cost mistakes. The p-values are calculated using the
pairwise t-test.

TABLE 2. Results of RWWHCE loss function for single-label, multiclass
classification.

Mean number

Model of high cost 11;3; Rea(ljo\’\s]torld
(FN,FP)
Control 6.67 3.56% $0.0428
(n=90)
Experimental 2.57 3.62% $0.0390
(n=90)
p-value 1.2x10! 1.1x1072 4.5x10°®
V1. SOFTMAX

We review the design of softmax [19] and its associated
loss function, categorical cross-entropy loss function from
Equation (3). When activating a layer with softmax, the
outputs sum to 1 and the interpretation is that each of the k
outputs estimates the probability or confidence that the class
is present. For example, suppose there are three classes
of images: dogs, trees, and everything else. An output of
[0.6, 0.3, 0.1] is interpreted to mean there is a 60% chance of
a dog, 30% chance of a tree, and a 10% chance of something
else. However, the categorical cross-entropy loss function
only penalizes the 40% confidence that the image does not
show a dog (a probabilistic false negative). It does not penal-
ize the 30% chance of a tree (a probabilistic false positive).
An argument in favor of this design is that because
the negative log loss function is concave, a weighting of
[0.6, 0.3, 0.1] has a higher loss than [0.6, 0.2, 0.2], despite
both results being identical. Therefore, the probabilistic false
negatives should be ignored so that the losses are identical.
Essentially, the loss function says, ‘I don’t care what softmax
predicts on the negative classes, I only care that it predicts
60% on the positive class™. The consequence of his design is
that the typical loss function applied to softmax is unable to
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directly penalize probabilistic false positives. The RWWCE
was designed specifically to provide the ability to increase the
penalty of specific probabilistic false negatives for specific
target labels.

Softmax is a generalization of binary classification, how-
ever, the implementation details differ. In binary classifi-
cation, there is typically only one output that predicts the
probability of a positive. There is not a second output that
predicts the probability of a negative. This means that the
binary cross-entropy loss function, Equation (1), must impute
negatives via the right hand side of the expression being
summed:

M

1
Jbce = _M Z [Ym x log (ho (xm))

m=1

+(1 = y,,) x log (1 = hg (xm))]

In recent work that showed an unexpected benefit of the
categorical cross-entropy function, Mahajan et al. recently
found that it worked better than binary cross-entropy in the
case of a multilabel problem [20]. This was unexpected
because binary cross-entropy is the theoretically preferred
approach for multilabel categorization, such as when images
could include both a cat and a dog. Our observation is that
each class was very imbalanced, with most images labeled
with two hashtags (i.e. labels) among thousands of possible
labels. For any single label, a binary cross-entropy loss func-
tion would suffer from the classic problem of imbalanced
classes: there would be far more true negatives than true
positives. The classifier could achieve high accuracy by sim-
ply never predicting any hashtag, directly analogous to our
initial thought experiment. Mahajan et al. found that applying
the categorical cross-entropy loss function against only the
limited number of positive target labels performed better,
which we believe is the result of the categorical cross-entropy
loss function focusing on penalizing probabilistic false nega-
tives rather than probabilistic false positives during training.
In future work, we will test the performance of the binary
RWWCE loss function against the results of Mahajan et al.

VIl. CONNECTION TO MAXIMUM

LIKELIHOOD ESTIMATION

Suppose a binary classification scenario in which incorrectly
missing a disease costs $100 of future healthcare expenditure
and patient pain and suffering, and a false positive costs
$5 in retesting and loss of credibility. Intuitively, the false
negative should be weighted 20 times more: one false neg-
ative costs the same as 20 false positives. During neural
network training, the binary RWWCE loss function is given
by Equation (5):

1
M

Jorwwee =

M
> " [100 x yu x log (hg (xm))

m=1

+5x(1=y,)x log (1 — hy (xm))] )
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This can be rewritten as:

M
1
= _M E I:ym X 10g (hé()O (xm))
m=1

+ (1=, x log (1=hq ()’ ) |

Because the exp and log functions are monotonic, y only
takes on the values of zero or one, and the 1/M factor is a con-
stant; minimizing for the above is equivalent to maximizing
for:

M
= [ Tom x m™ @) + A=y, % (1=he ()’
m=1

The y,, and 1-y,, terms are essentially a conditional state-
ment embedded in an equation. The hg (x,,) and 1 — hg (x,,)
terms comprise the probability of predicting the target. Based
on those terms, we can easily define a probability function
f{(vlx), the probability of a machine learning model predicting
y given inputs x. We also add the condition theta to make
explicit the trainable weights of the neural network. We then
express the above as:

M
= [[£*Gulom. 0) ®)
m=1

where X = 100 if y is one and X =5 if y is zero.

Under the assumption of an independently drawn and iden-
tically distributed training set (i.i.d.), this is also the joint
probability. In future work, we will explore whether the i.i.d.
assumption indeed holds.

=1 s V1 Y20 o0 Y20 e Vi oo oy YmlX1s ooy X, 6)
where y,,is repeated 100 times if equal to 1 or repeated 5 times
if equal to O.

We have just tied our loss function backwards towards the
form of Maximum Likelihood Estimation, the principle that
the parameters theta (weights of a neural network machine
learning model) that have the highest probability of predict-
ing the observed data also have the maximum likelihoodof
being the correct thetas given the observed data. As is con-
ventional, we reverse the observations and the thetas vector
to make explicit that we are searching over the space of theta
based on fixed observations to maximize likelihood of the
correct thetas.

=LOY s Y1 Y2 oo s Y2 s Vs oo s Yims Xy -« s Xim)

where y,,is repeated 100 times if equal to 1 or repeated 5 times
if equal to 0. Effectively, each time our training data has
target 1, we are asking to optimize thetas as if it has seen
100 occurrences (or if target zero, five occurrences). In fact,
Equation (7) is the form of the weighted likelihood estimator
of Hu and Zidek as seen in [8, Def. 2, Ex. 2].

An example is to consider the simple problem of a
Bernoulli Trial with real world costs.

Suppose a game is played at an amusement park: predict
a coin flip. When a head is correctly predicted, the observer
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wins 9 stickers. Tails, she wins 1 toy. A wrong prediction
wins nothing. At the end of the game, what will be the ratio
of stickers to toys?

The observer builds a binary classifier that takes no inputs
and outputs a single value, p, which is typically interpreted
as the probability of heads but as we will soon see may
have a better interpretation. This value is both the output
and the sole trainable weight of the neural network (or theta
value). The RWWCE loss function is used with the cost of a
marginal false negative at 9 and marginal cost of false positive
at 1. Again, a false negative is a prediction of tails when the
outcome is heads, losing the opportunity to win 9 stickers.
A false positive is predicting heads when the outcome is tails.
We train on 2 randomized examples, with 1 head and 1 tail.

The cost function is plotted below. The goal of gradient
descent while training the machine learning model is to
approximate the minimum located near p =0.9. We prove that
the minimum is indeed p =0.9. From Equation (1), where
p = hy (xm), the loss is given by:

1
Jbce = 1o [log (p)+1og (p)+1og (p)+log (p)+1log (p)

+log (p)+log (p)+log (p)+log (p) +log (1 — p)]

The minimum is found where the first derivative is zero.
We eliminate the -1/10 term.

0= d]bce
dp
0 = [log (p) x 9+1log(1 —p)I
9 1
0= - —
p l—-p
9 1
p 1l-p
p_1"P
9 1
p=9-9
10p =9
p =09

This number can be used to correctly predict the ratio of
stickers to toys (observe that the 1-p equals 0.1, so the ratio
1$ 0.9:0.1 or 9:1).

To confirm the identicalness of gradient descent to
weighted maximum likelihood estimation, the task is to cal-
culate the parameter p that maximizes the joint probability of
predicting the output (1,1,1,1,1,1,1,1,1,0). Equation (7) gives

L@1,1,1,1,1,1,1,1,1,0)
=f(LL1L 11,111,100
=PpXPXPXPpXPpXPpXpXpXpx(l=p)
= p° —plo

The maximum value of £ is found where the first deriva-
tive is zero:

0= 9% —10p°
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FIGURE 1. Value of loss function J at various values of p for scenario.

9=10p
09=p

The equivalence of the results demonstrates that for this
example, gradient descent with a binary RWWCE loss func-
tion is equivalent to Maximum Likelihood Estimation on
imputed observations of real world outcomes (stickers and
toys), which are imputed from actual observations (heads and
tails) and knowledge about how those actual observations
drive real world outcomes.

This leads us to our intuition on why the RWWCE works.

As previously mentioned, the value p is obviously is not
the odds of a head, which is still 0.5. Our interpretation is
that the value p is a prediction about real world outcomes,
namely, the odds of receiving a sticker (0.9) versus a toy (0.1)
as the next prize. We believe that the RWWCE cost function is
allowing direct optimization of real world outcomes. It does
so in a manner that is equivalent to imputing observations of
real world outcomes and then applying Maximum Likelihood
Estimation on those imputed observations.

In a sense, the Real World Cost metric is a transformation
of the observed values (heads or tails or disease present)
to relevant imputed real world values (stickers or toys or
dollars). The RWWCE then optimizes for the imputed real
world values.

So far, we have only analyzed Maximum Likelihood Esti-
mation in the case of a binary classifier that does not take any
inputs. In future work, we will analyze Maximum Likelihood
Estimation in the context of single-label, multiclass classi-
fiers that are conditional on inputs.
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