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ABSTRACT Due to the asynchronous and distributed nature of the data plane, the transition from the initial to
final state may result in serious transient congestion in software-defined networking (SDN). Moreover, with
the rapid development of ultra-low latency network in data-centers, the control loop between the control and
data plane becomes much longer than the ultra-low latency communication in the data plane. In this case,
traffic surges significantly in the data plane during the network reconfiguration process, and it becomes
harder for the SDN controllers to manipulate the update operations as they expect. In this paper, we consider
the traffic variation during the network update and model it as a novel minimum demand violation problem
(MDVP). Later, we prove its hardness, and propose a heuristic approximation algorithm to approach the
optimal result. Our method brings flexibility for network operators to make a trade-off between the network
congestion and update speed. Experiments show that our method can halve the intermediate network states
and reduce the demand violation ratio by 36.7 % compared to the state-of-the-art.

INDEX TERMS Software-defined networking (SDN), network update, ultra-low latency network, minimum
demand violation problem (MDVP).

I. INTRODUCTION
Because of the flexibility introduced by SDN, network oper-
ators are able to reconfigure network frequently to meet the
applications’ demand. In a typical SDN network, the con-
troller uses the OpenFlow protocol [1] to update the data
plane by modifying the underlying flow tables. However,
different from the centralized control plane, the data plane
remains a distributed system. The update process is not
atomic [2]: the slow and uncontrolled update operations of
Ternary Content Addressable Memory (TCAM) utilized by
SDN switches and disparate transmission delays between
a controller and underlay switches cause each switch to
be updated independently and asynchronously. The intu-
itive one-shot mechanism distributes all commands to under-
lay switches directly, and this careless update scheme may
result in serious transient congestion in the process of
update [3].

This serious problem has drawn a lot of attention from both
academia and industry [3]–[14]. By introducing intermediate
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network states, they bring more determinacy, thus manage to
eliminate or minimize congestion in the process of update.
These methods can be mainly categorized into 2 parts: 1) one
kind of works models the network resources like spare band-
width as the constraints in the linear programming (LP), and
they find the desired routing for each state by solving the lin-
ear programming problem. 2) the other kind of works models
the possible network updates and network resources as the
elements in the dependency graph. The controller dynami-
cally updates the graph by interacting with the real-time data
plane.

All the previous works imply an assumption that all flows
have fixed demand and their rates remain the same as their
demands in the process of network update. This assumption
is correct when the update can be completed before traffic
varies in the data plane. In traditional networks, a typical
deployment of SDN controllers is out-of-band where con-
trollers connect to the switches within one hop and messages
can be delivered directly. On the contrary, the end-to-end
latencies between end-hosts are usually as high as tens of mil-
liseconds. The short control loop and long end-to-end latency
make the time consuming on the control plan much less than
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the time the traffic control mechanisms at end-hosts take
effects.

However, with the emerging ultra-low latency network in
data-centers, this assumption cannot be held anymore. Nowa-
days, the customized hardware in data-center network has
already reduced the end-to-end latency to tens of microsec-
onds [15]. Moreover, with the novel hardware-based con-
gestion control algorithm deployed in network interface card
(NIC), the convergence time of flows on a congested link
can be reduced to several microseconds [16]. The control
loop in such a network becomes several orders of magnitude
longer than the communication in the data plane network.
During multiple interactions between the control and data
plane, the volume of traffic will inevitably vary a lot because
of the traffic control at end-hosts.

In this paper, we study the transient congestion caused
by network updates in the ultra-low latency data plane net-
work. We model the problem as the linear programming as
previous works, but considering the flow dynamics during
the network update process. To guarantee the performance
of high-value critical flows that have fixed demands for
bandwidth, we firstly propose theminimumdemand violation
problem (MDVP) to minimize the overall negative impacts
on flows. In MDVP, we propose the novel objective, demand
violation ratio, to quantify such negative impacts. The main
design goals of ourmethod are: 1) minimum demand violation
ratio, 2) controllable network congestion, 3) reduced inter-
mediate network states. In the process of network update,
we consider each network state and estimate the resulting
flow rates in each stage. Later we use the estimated new
flow rate as the input of the next-stage update. By this mean,
we keep pace with the real-time flow dynamics tightly, and
have better performance than prior static update mechanisms
which ignore flow dynamics.

Moreover, we prove the hardness of the original MDVP
problem, and relax the original problem to fit it into the stan-
dard LP solver. Later, we design an approximation algorithm
to compute the update sequence, and we evaluate our algo-
rithms in both intra- and inter- data-center networks. Exper-
iments show that by introducing the appropriate congestion
extent parameter, λ, our algorithm can bring flexibility for
network operators to do a trade-off between the network con-
gestion and the introduced intermediate states. When setting
a proper λ and the number of flows existing in the network is
3000, the intermediate network states can be halved. Finally,
in our experiment, we show that our algorithm can reduce the
demand violation ratio for flows by 36.7%, compared to prior
works.

The remainder of the paper is organized as follows. § II
presents background of ultra-low latency network and SDN
update problem. In § III we introduce our network model and
describe our motivation examples. In § IV we formulate the
minimum demand violation problem (MDVP) and the design
details of our algorithms to solve the problem. We evaluate
the simulation results in § V, and we conclude in § VI.

II. BACKGROUND AND RELATED WORK
The recent SDN network is composed of the decoupled
control and data plane, which results in greater latency
than the traditional integrated network. This makes it harder
for the SDN controllers to manipulate switches precisely,
and can disrupt the network performance seriously. On the
other hand, the new trend in data-center network is the
pursuit of ultra-low latency, and it desires a network pro-
viding a stable end-to-end delay which is usually lower
than 100 us. This poses new challenges for SDN network
update. In this section, we will briefly introduce the devel-
opment of the ultra-low latency network and network update
problem.

A. ULTRA-LOW LATENCY NETWORK
With the popularity of new applications like distributed
machine learning and distributed key-value store, the data-
center network is desired to offer a much lower and stabler
network latency. As reported in [17], an additional 500us
latency can degrade the performance of distributed machine
learning application (Spark MLlib) by 60%. However, most
of current commodity cloud data-center such as Microsoft
Azure and Amazon Web Service (AWS), can only guarantee
a network latency at the millisecond level, and they cannot
control the tail-latency precisely because of the uncontrol-
lable network queue buildup and packet loss. Moreover, even
under the simple circumstance where one source server sends
data to one sink server, the mean end-to-end latency of tra-
ditional TCP is 20X larger than the basic link latency [18].
This is because the traditional TCP/IP stack is kernel-based,
and it requires CPU to run multi-level stacks to accomplish
complex network functions. It poses great challenges for
CPU to control latency as it has to serve the whole sys-
tem, not limited to the network functions. When CPU is
called to perform the network functions, it will cause great
overhead, including context switching, system interrupts,
memory copy, etc, which all contribute to the high latency
spike.

To relieve the burden on CPU, more customized hard-
ware like remote direct memory access (RDMA) and smart-
NIC, are designed to take more networking jobs [15], [19].
These techniques greatly reduce the long-tailed latency of
kernel-based approaches by totally bypassing the kernel and
CPU. Recently, the advanced cloud providers like Microsoft
and Alibaba, have been reported to deploy RDMA in their
commodity public cloud data-centers at large scale [15], [16].
As shown in [15], in Microsoft’s data-center, RDMA effec-
tively reduces the 99-th percentile latency from 700us
(TCP/IP) to 90us. Moreover, [16] shows that by design-
ing an effective congestion control mechanism, they control
the network latency lower than 10us in their cluster. The
ultra-low end-to-end latency shows a great opportunity to
react to network events like link failures, network congestion,
quickly.
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B. THE SDN UPDATE PROBLEM
A network update can involve multiple unsynchronized
devices at the data plane, so achieving the consistency is
challenging during the updates. Specifically, the whole SDN
update problem can be categorized into 3 parts in terms
of different properties [20], [21]. 1) Forwarding black hole
problem. The forwarding black hole problem refers to the
case where a packet entering an SDN switch cannot match
any rule in the forwarding table. The packet will be dropped
or forwarded to the SDN controller according to the default
actions of SDN switches. 2) Forwarding loop problem. The
forwarding loop problem means that a packet suffers the for-
warding loops and cannot be routed to its destination during
the network update. These two problems are indeed caused
by the route inconsistency, and Reitblatt et al. [2] firstly
study the problem of route consistency in SDN. They propose
the well-known two-phase commit mechanism, a version-
stamping mechanism, to ensure the consistent update. This
scheme assigns a version number to each configuration
and stamps the packets entering the network at the ingress
switch. When a network update occurs, this mechanism per-
sists: each packet is processed either using the configuration
in place prior to the update, or the configuration in place
after the update, but never a mixture of the two. By default,
the network operators should adopt one of the approaches like
two-phase commit mechanism to avoid the serious problems
caused by the route inconsistency.

FIGURE 1. In this example, all edges have a unit capacity and both the
red and green flows have a unit size. Both red and green flows are
updated directly. Solid flows represent stage 1, and dashed flows
represent stage 2. If both red and green flows are updated in one shot,
red flow can be firstly migrated to the link (switch A, switch C) due to the
asynchrony of switches. Thus, both the red flow in stage 2 and green flow
in stage 1 are routed through the same link (switch A, switch C). The
overall size of these flows is 2, and the capacity constraints for the link
(switch A, switch C) is violated.

Even the route consistency guarantees the routing of a
single flow, when involving multiple flows, 3) transient con-
gestion can still happen during the network update, as we
illustrate in Fig. 1. [12] thinks of network update problem as
the multi-commodity flows problem. [7] considers the depen-
dencies among multiple updates, and uses the classic depen-
dency graph to model the dependencies between network
stages. [11] moves one step further than [7] to avoid high
overhead in update ordering, they divide the global dependen-
cies among updates into multiple local restrictions. Given that
a congestion-free update plan does not always exist, [14] aims

TABLE 1. Scenarios of network update problem.

to minimize transient congestion instead of eliminating con-
gestion. The previous works concern little about the long
update duration, which disrupts the efficiency of updates. [13]
aims to address the real-time route update, which jointly con-
siders the optimization of flow route selection in the control
plane and update schedule in the data plane. [8] and [6] pro-
pose to update the network in a fast and distributed manner to
overcome the low scalability of centralized SDN controllers.
To make the readers have a better understanding of the SDN
update problem, we also present the representative scenarios
of the problem in Table 1.

III. MOTIVATION AND PRELIMINARIES
In this section, we firstly introduce our network model for
the network update problem, and list the key variations. Fur-
ther, we introduce the motivation using the examples shown
in Fig. 3 and Fig. 4 to help readers have a better understanding
of our solution which is elaborated in § IV.

A. NETWORK MODEL
A network can be modeled as a directed graph G= (V ,E),
where V is the set of switches, and E is the set of links
between switches. For each link e ∈ E , the capacity of e is
denoted byCe.We denote the set of flows in data-centers asF ,
thus a single flow f ∈ F . A flow f is routed from origin to
destination, and letP(f ) be all the feasible paths for the flow f .
When network operators plan a network update, the maxi-
mum number of update stages should be determined firstly,
and we denote the maximum number of update stages by n.
Let the set of update stages be S = {1, 2, . . . , s, . . . , n−1, n},
and a specific network stage s ∈ S. Note that the initial and
final configurations are at stage 1 and stage n, respectively.
For each network stage, a flow f will select one feasible path
p among all feasible paths P(f ), thus a selected path p ∈ P(f ).

When a flow f goes through a link e, f will consume
certain bandwidth according to its demand and real-time net-
work condition, and we denote the demand by df . However,
the demand of flow f cannot be always guaranteed because
congestion happens during network update, and the real-time
flow rate rsf can be lower than its demand df . As we show
in Fig. 2, there is a flow f whose demand is df at state s.
Assume its demand is fully satisfied because of the sufficient
bandwidth resource during state s, so the flow rate equals
its demand, i.e., rsf = d sf . Later, the network state starts to
transform from state s to s+1. However, due to the unsynchro-
nized network devices and flows, flow f encounters network
congestion during the network state changes. Because of the
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FIGURE 2. Flow rate changes when the network stage transforms.

TABLE 2. Key notations for network model.

ultra-low latency in the data plane, the flow f will perceive
the congestion at the beginning of state s+ 1. Further, it will
react to it quickly and converge to a new rate rsf ’ during the
state s+ 1, as shown in Fig. 2.
For convenience, we summarize important notations

in Table 2.

B. FLOW CLASSIFICATION
A modern data-center hosts diverse applications, and the
flows corresponding to these applications have widely vary-
ing demands. One type of applications generates high-value
data, and the corresponding flows are sensitive to congestion
and network delay. This kind of flows wants to consume a
constant amount of bandwidth to guarantee the quality of data
transmission, and this is also the kind of flows which SDN
controller manipulates in this paper.

Furthermore, we categorize the flows into 2 parts in this
paper: 1) satisfied flows, 2) throttled flows. If the demand of
a flow, df , is fully satisfied during every intermediate state,
we denote this kind of flow as the satisfied flows. On the other
hand, if a flow encounters congestion during the network
states transform, the ultra-low latency in the data plane will
cause the quick perception of congestion, and the effective
congestion control algorithms at end-hosts will lead to the
quick convergence on the congested link. By contrast, due
to the out-of-band deployment and the complex functions
SDN controller performs, the latency of SDN control loop
is usually as high as tens of milliseconds. When the SDN

controller collects flow information at state s and computes
update plan for the following states, it is likely that the flow
rates already change significantly. Hence, the assumption of
previous works that the flow rates equal to their demands
in every intermediate state will not be held. We denote the
congested flows whose demand is not satisfied at one inter-
mediate state as throttled flows. It is noteworthy that the flow
rates will not exceed their demands, so the maximum rate of
a flow f , at any state is d sf .

C. MOTIVATION EXAMPLE
In this section, we provide two motivation examples to show
that by considering the real-time network condition and flow
characteristics (flow rate and demand), we can successfully
obtain all the design objectives, i.e., minimum demand viola-
tion, controllable network congestion, and reduced interme-
diate states.

1) THE CASE OF THE FLOW SWAP
In motivation example 1, we show the simple network update
case of the flow swap, which is depicted in Fig. 3. In our
example, we have four switches S1-S4 in our network, and
each link has a capacity of 10 units. There are three flows
F1, F2, and F3 in the network, and they are colored by blue,
green and red, respectively. Each flow ismarked by the format
(converged flow rate in this state: flow demand), as shown
in Fig. 3. In this case, the goal of network update is to swap
the paths which flow F1 and F3 go through, as shown in the
initial state (Fig. 3a) and target state (Fig. 3b). It is obvious
that the demands of F1, F2 and F3 are all satisfied in both
initial and target state.

When the controller wants to update the network from the
state (a) to (b), there are some update plans it can choose.
The first one is the simple one-shot mechanism. Due to
the unsynchronized nature of network devices as introduced
before, a network state where all three flows are on the path
S1 → S2 → S4 may happen, as shown in Fig.3c. In this
case, all flows will encounter serious congestion on the path
(S1, S2, S4) at a transient state because the total flow rate of
all three flows (6 + 4 + 6 = 16) is much greater than the
capacity of each link (10).

This undesired result causes the network operators to pre-
fer to introduce more determinacy, i.e., intermediate states,
in the network update process. In this example, two flows
F1, F3 swap the paths they go through. This introduces two
possible intermediate states, i.e., all flows are either on the
path (S1, S2, S4) or F1 and F3 are on the path (S1, S3, S4).
Note that transient congestions happen in both intermediate
states. If the network operator introduces the intermediate
state where all flows are on the path (S1, S2, S4) as shown
in Fig. 3c, all flows will encounter the most serious con-
gestion as the one-shot mechanism. Further, because of the
ultra-low latency in the data plane, all flows will converge
quickly during the intermediate state. The resulted flow rates
can be computed according to the max-min fairness principle,
which is maintained by the congestion control algorithms

VOLUME 8, 2020 2137



C. Huang et al.: Updating Data-Center Network With Ultra-Low Latency Data Plane

FIGURE 3. Motivation example 1.

at end-hosts. Therefore, the flow rates of F1,F2,F3 will
be converged to 10/3, 10/3, 10/3, respectively. The result
shows that all flows are throttled at the intermediate state, and
their demands are all not satisfied.

On the other hand, if we migrate F1 to the path (S1, S3,
S4) firstly, the network congestion will happen on the path
(S1, S3, S4). However, the extent of network congestion will
be greatly reduced, as the total flow rates of F1 and F3 is
12 at the beginning of the intermediate network state. This
slightly exceeds the link capacity by 2, which means the
less possibility of packet loss and fewer chances to trigger
the expensive link-level flow control mechanisms (priority
flow control). Moreover, when the flows are converged in
the intermediate state, the rates of F1, F2, and F3 are 5, 4,
and 5, respectively, which is shown in Fig. 3d. Indeed, even
the F1 and F3 are throttled in the intermediate, the extent of
demand violation is smaller than what is planned in Fig. 3c.
Thus, a sophisticated network update mechanism should not
only alleviate the transient congestion but also minimize the
demand violation for all flows. The key takeaway is that when
the congestion is inevitable, we should alleviate the extent of
the transient congestion during the network update process.

2) THE CASE OF THE LINK FAILURE
In motivation example 2, we show the update plan when
facing the link failure passively, which is depicted in Fig. 4.
In this example, there is one source sending data to two
sinks simultaneously, and there are five flows coexisting in
the network, i.e., F1,F2,F31,F32 and F4. These flows are
colored by blue, green, orange, orange and purple respec-
tively, and the demands of these flows are 8, 6, 3, 3, 10.
It is noteworthy that there are two same orange flows going
through the path (source, S2, sink1), and the capacity of each
link is 10. As shown in Fig. 4a, all five flows are satisfied
in the initial state. Suddenly, a link (source, S4) is broken,
then the network update is triggered to migrate the F1 to the
path (source, S1, sink1) in the target state, which is shown
in Fig. 4(b).

If the network operator adopts the one-shot mechanism,
serious congestion may happen on the link (source, S1).
When the F1 is migrated to its final path while the F4 still

FIGURE 4. Motivation example 2.

remains on its initial path because of the unsynchronized
nature of switches. In this case, the transient traffic on link
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(source, S1) is 8+ 10 = 18, which exceeds the link capacity
by 8. Thus, the F4 should be migrated to its final path before
the F1 is moved to the link (source, S1, sink) to avoid the
serious network congestion, and the network operator has to
firstly move the F1 to other feasible paths to ensure the F4 has
been migrated, which also introduces intermediate network
states to bring more determinacy.

However, the free capacities of the links (source, S2) and
(source, S3) are both 4 in the initial state, which means the
network congestion will happen when F1 is migrated to either
of these links. Moreover, the extent of network congestion
will be the same, because the total transient traffic at the
beginning of both intermediate states will be 14, which are
shown in Fig. 4c and Fig. 4e. Then with the same transient
congestion, there exist two update sequences, i.e., state (a)→
(c) → (b) or (a)→ (e) → (b).

If we adopt the update sequence state (a) → (c) → (b),
the converged rates of all five flows, F1,F2,F31,F32,F4 in
the intermediate state will be 5, 5, 3, 3, 10, respectively, which
is shown in Fig. 4d. Moreover, F1 and F2 are throttled in
the intermediate state, and the total demand violation ratio of
all flows is (6 − 5)/6 + (8 − 5)/8 = 13/24. On the other
hand, if the update sequence is state (a) → (e) → (f ),
the converged rates of all five flows in the intermediate state
will be 4, 6, 3, 3, 10, which is shown in Fig. 4f. Similarly, only
F1 is throttled, and the total demand violation ratio is (8 −
4)/8 = 1/2 during thewhole update process, which is smaller
than the previous plan. Therefore, the update sequence state
(a)→ (e) → (f ) is preferable in this example as it minimizes
the demand violation ratio for all flows. The key takeaway
is that with controllable extent of congestion, we prefer the
update with minimum demand violation during the whole
update process.

IV. DESIGN DETAILS
In this section, we formulate the MDVP as an integer linear
programming (ILP) problem, and prove its hardness. Further,
we propose a heuristic algorithm to approximate the optimal
solution. The reason whywe do not use the dependency graph
to model the problem like [7] is that the over-subscription
of bandwidth in our assumption makes it impossible for the
graph construction.

A. PROBLEM FORMULATION
Based on the network model as described in § III-A, we will
formulate the minimum demand violation problem (MDVP)
as an integer linear programming problem in this section.
Given the maximum congestion network operators allows,
we aim to update the network from initial to target state
while minimizing the demand violation ratio for all flows to
minimize the negative impact.

Objective

minimize
∑
s∈S

∑
f ∈F

df − rsf
df

(1)

Constraints

(1+ λ)Ce ≥
∑
f ∈F

rsf
∑

p∈P(f ):e∈p

max(xsf ,p, x
s+1
f ,p ) (1a)

rs+1f = min
p∈P(f ):e∈p

Alloc
e∈p

(G,F, xsf , df ) (1b)

rsf ≥ 0 (1c)

df ≥ rsf (1d)

λ ≥ 0 (1e)

xsf ,p ∈ {0, 1}, ∀f ∈ F, ∀p ∈ P(f ),

∀s ∈ {2, 3, . . . , n− 1} (1f)

1 =
S∑
s=1

xsf ,p (1g)

We assume each flow f has its bandwidth demand df .
When the flow f encounters network congestion, its perfor-
mance degrades transiently at the beginning of the update.
Further, its performance degrades consistently if its current
rate is lower than its demand. The demand violation for a flow
f at the state s can be quantified as the difference between
its current rate rsf and its demand df . Therefore, we sum
up the demand violation ratio for all flows F during the
whole update process to quantify the extent of performance
degradation, and the optimal objective (1) aims to minimize
the total demand violation ratio to alleviate the performance
degradation during the whole update process.

The constraint (1a) limits the maximum transient conges-
tion a link e can accommodate at the state s. Due to the asyn-
chronous nature of switches, we cannot determine the update
sequences of different flows in the adjacent stages. Therefore,
we use the sum of all possible flows walking through a link in
two adjacent stages to represent themaximum traffic load that
can be in a link, i.e., rsf ∗max(x

s
f , x

s+1
f ). Note that the phrase,

rsf ∗ max(x
s
f , x

s+1
f ), is not linear, which cannot be solved by

the linear programming method, and we will discuss it in
§ IV-B. The parameter λ represents the maximum congestion
extent the whole network allows, and by setting different λ
the network operators can make a trade-off between update
speed and network congestion. A larger λ means the flows
can tolerate a larger scale network congestion, and this frees
more space for designing the update plan, which is beneficial
for introducing less intermediate states. For instance, if the
λ is +∞, this means the flows can ignore any congestion
happening in the network, so the network operator can adopt
the plan which introduces zero intermediate states, i.e., one-
shot update plan.

The constraint (1b) will estimate the converged rate of the
flow f at the state s based on its demand and the current
network condition. Note that the converged rate of the flow
f at the state s is the real-time flow rate at the beginning
of state s + 1, i.e., rs+1f . Because the inevitable congestion
may occur in the network, the flow demand and rate mis-
match, and it is necessary to estimate flow rate dynamically
based on current network state rather than its original demand
exclusively. Hence, the function Alloc(G,F, rsf , df ), assumes
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the congestion control algorithm at end-hosts will drive the
flow rates to converge to the ones conforming to the max-min
fairness at the end of any network states. However, to compute
the values which conform to the max-min fairness across
flows is a classic and complex problem, and it involves a lot
of non-linear computation. Thus, we need to approximate and
relax the problem, and we will discuss it in § IV-B.

In this paper, we assume that there is only one kind of
flows (unsplittable) in the network. If the flows are unsplit-
table, the variable, xsf , is binary, representing the flow f can
only choose one of the feasible paths. Note that even if
the splittable characteristic benefits from multi-path routing,
the splittable flows introduce a number of out-of-order pack-
ets, which can hurt the network performance greatly. Thus we
only assume single path routing in this paper, which is repre-
sented in the constraint (1f). The constraint (1g) means there

is only one feasible routing for flow f , thus the
S∑
s=1

xsf ,p = 1.

Finally, the constraint (1c) means any flow rate should
be greater than 0. The constraint (1d) represents that a flow
cannot grab more bandwidth than its demand. It is obvious
that the congestion extent λ is greater than 0, which is shown
in the constraint (1e).

B. TRANSFORMATION TO LINEARIZATION
Because of the max function, the constraint (1a) is not linear.
By introducing the auxiliary variable ysf ,p, we can transform
the constraint (1a) to the following linear constraints. The
auxiliary variable ysf ,p equals 1 when flow f is routed through
path p either in state s or s+ 1, and equals 0 otherwise.

(1+ λ)Ce ≥
∑
f ∈F

rsf
∑

p∈P(f ):e∈p

ysf ,p (2a)

ysf ,p ≥ xsf ,p, ∀f ∈ F (2b)

ysf ,p ≥ xs+1f ,p , ∀f ∈ F (2c)

The other non-linear constraint is the Alloc function in
the constraint (1b). The Alloc function is responsible for
allocating bandwidth among flows in a max-min fairness
manner.When the set of flows are routed through the network
without congestion, their demands are satisfied automatically,
and equal their real-time flow rates. On the other hand, when
a flow f routes through path p at stage s, transient congestion
can occur along the path, and the demandwill not be satisfied.
In this situation, the rate of the flow f at state s will converge
quickly in this stage.
Indeed, the computation of the Alloc function is similar

to the well-known Max-Min Fair (MMF) multi-commodity
flow problem [22], and there exist two kinds of approaches
to solve this problem. The first one is the progressive filling
algorithm [23]. The algorithm works as follows: 1) initially,
all flow rates are set to 0; 2) then a small amount of bandwidth
ε is added to all flows in a round-robin manner; 3) the
algorithm continues to grow the rates of all flows until some
flows are satisfied, and the algorithm will skip these flows in

the next round bandwidth allocation; 4) finally, the algorithm
keeps bandwidth allocation until all the bandwidth capacity
is used or all flows are satisfied. However, this algorithm
involves multiple rounds of bandwidth allocation, in each
stage, it has to allocate bandwidth among flows, and it needs
to exclude the flows who have already been satisfied. These
functions make the progressive filling algorithm too complex
to be modeled as the linear programming problem.
The other kind of approaches is to solve the Max-Min

Fair (MMF) multi-commodity flow problem by a series of
linear programming [3], [24]–[27]. However, this linear pro-
gramming approach requires to solve a number of commodity
linear programs, which becomes too time-consuming as the
size of the problem increases. Moreover, we cannot replace
the constraint (1b) with a series of linear programs, otherwise,
it becomes a nested linear programming in the original prob-
lem, which is also too complex for the linear programming
solver.
Therefore, we need to replace the constraint (1b) with

an easy and standard one, which is shown in the following
equation.

rs+1f = min
e∈E

(
Ce∑

p∈P(f ):e∈p
xsf ,p

) (3)

This simple equation means that the converged flow rate at
state s is just determined by the number of flows coexisting
on the same link, then its final rate is the minimum value out
of all the links it goes through. Note that themin function can
be translated to linear constraints similar to the way the max
function does. The simple flow estimation is obviously not
accurate, and we need to design an algorithm to approach the
precise solution, which will be discussed in § IV-D.

C. HARDNESS ANALYSIS
Even after approximating the original constraints in the previ-
ous section, the MDVP problem is still a very hard problem.
In this section, we will prove the hardness of MDVP problem
by constructing the following case in Fig. 5.

FIGURE 5. Reduction from set partition to MDVP problem.

Proof: Consider there are I green flows routed through
the path S1 → S2 → S5, and each flow has the
demand di, i ∈ {1, 2, 3, . . . , I }. Similarly, there are J
blue flows routed through the path S1 → S4 → S5,
and each flow has the demand dj, j ∈ {1, 2, 3, . . . , J}.
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The capacities of links, (S1, S2), (S2, S5), (S1, S4), and
(S4, S5), are the same, and they equal the sum of the demands
of the green flows, i.e., CS1,S2 = CS2,S5 = CS1,S4 =

CS4,S5 =
I∑
i=1

di =
J∑
j=1

dj. On the other hand, the capac-

ities of links (S1, S3) and (S3, S5) are half of other links,

i.e., CS1,S3 = CS3,S5 =
I∑
i=1

di/2.

Now we need to swap the paths where green and blue
flows go through, and in the final state the blue flows
go through the path (S1, S2, S5), and the green flows go
through the path (S1, S4, S5). If all flows are sensitive to
packet losses, the congestion tolerance λ in the constraint
(2a) should be set to 0, then the network update from initial
to final state is congestion-free. To minimize the interme-
diate states and speed up the update process, the update
plan should make full use of the path (S1, S3, S5). There-
fore, the controller should firstly find the subset of green
flows whose total demand approaches the capacity of the
path (S1, S3, S5) as closely as possible. The optimal situ-
ation is that finding a subset of green flows whose total
demands equal the capacity of the path (S1, S3, S5), then
place these flows onto the path (S1, S3, S5). After that,
finding a subset of blue flows whose total demands equal
the free capacity on the path (S1, S2, S5), then swap the
paths of these flows from the path (S1, S4, S5) to the path
(S1, S2, S5). Later the update plan can continue in a similar
logic.

However, finding a subset of flows whose total demands
equal a specific value is the well-known set partition
problem. The set partition problem has been proven that
finding a subset of values that the sum of them equals
a specific value is NP-Complete. Therefore, the MDVP
problem is NP-Complete, and with the integer xsf ,p, it is
very difficult to find the appropriate routing plan to min-
imize the update process while controlling the congestion
extent.

D. THE HEURISTIC APPROXIMATION ALGORITHM
We now design a heuristic approximation algorithm to tackle
the original NP-Complete MDVP problem.

As we prove in § IV-C, the binary variable xsf ,p makes the
MDVP problem NP-Complete. Thus, we can introduce the
continuous variable x̃sf ,p to replace xsf ,p to relax the original
problem, and the continuous variable x̃sf ,p ∈ [0, 1]. Moreover,
it is also noteworthy that flows can be throttled during the
update process, thus we should change the constraint (1g) to

1 ≥
S∑
s=1

x̃sf ,p. However, when we solve the relaxed MDVP

problem, there will be multiple x̃sf ,p that are greater than 0 in
one stage, which means the flow f splits its traffic into multi-
ple subflows, then these subflows are transmitted on different
paths. Note that we do not allow multi-path transmission, and
a flow f can only transmit data through one of its feasible
paths. Therefore, if we have multiple x̃sf ,p whose values are

Algorithm 1 The Heuristic Approximation Algorithm

1: Input: the optimal fractional result x̃sf ,p, the estimated
flow rate at each state rsf ,p

2: output: the integer result xsf ,p
3: for s← 1, 2, . . . , S do F S is the number of planned

network states
4: for f ← 1, 2, . . . ,N do F N is the number of flows
5: if x̃sf ,p == 1 then
6: xsf ,p← 1
7: else if x̃sf ,p > 0 then
8: θ ←∞

9: k ← p
10: for all rsf ,p do
11: if θ > |rsf ,p - d

s
f | then

12: θ ← |rsf ,p - d
s
f |

13: k ← p
14: end if
15: end for
16: xsf ,k ← 1
17: end if
18: end for
19: end for

greater than 0 in a stage, we should select one of the feasible
paths among these x̃sf ,p.
Now we will introduce our heuristic approximation algo-

rithm, shown as Algorithm 1, to determine the routing for
every flow in each network state. First, we should solve
the relaxed MDVP problem introduced before, and use the
multiple x̃sf ,p whose values are greater than 0 as the input
of our heuristic algorithm. The goal of this algorithm is to
select one of the possible paths for each flow to approximate
the optimal result which minimizes the demand violation
ratio. As shown in Algorithm 1, for x̃sf ,p is already integer
(lines 5-6), we directly adopt this result as the final routing,
because the integer means this value is already the feasible
solution for flow f at state s. Otherwise, we use our heuristic
algorithm to decide the final solution (lines 7-16). Recall that
in § IV-A, we ignore the flow demand and set the converged
flow rate equally across multiple flows, i.e., each flow equally
shares the bandwidth capacity. This estimation may violate
the max-min fairness due to the ignorance of flow demand,
e.g., for a flow with small demand, the estimated flow rate is
larger than what it actually consumes. Therefore, we should
find the flow routing xsf ,p which makes the estimated flow
rate rsf ,p as close as possible to its demand. This alleviates
the overestimation or underestimation of flow at each state,
and achieves a rather good performance which will be shown
in § V.

V. EXPERIMENTAL EVALUATION
In this section, we first introduce the metrics and bench-
marks for performance comparison. Then we will conduct
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FIGURE 6. Network topologies used in our simulation.

extensive experiments to evaluate the overall performance
and properties of our algorithm.

A. SIMULATION SETTINGS
We conduct our comparison experiments in two realistic
topologies, and topologies are built using the FNSS [28].
• A4-pod fat-tree for the DCN scenario as shown in Fig. 6.
This topology has 3 layers and both the edge and aggre-
gation layer have 4 switches in each pod. Each switch
in the edge layer connects to hosts, and the number of
hosts connecting to an edge switch is 4. The links in
this topology have a bandwidth capacity of 10 Gbps, and
each link latency is 1 us.

• A realistic inter-DC topology for interconnecting
Microsoft’s data centers as illustrated in Fig. 6b. The
links have a capacity of 10 Gbps, and the link delay is
1 ms.

Now we introduce the benchmarks that will be compared
and evaluated in our simulations.
• One Shot: Transition directly from the initial to the final
state with no intermediate stages.

• SWAN [3]: State-of-the-art congestion-free update
algorithm. This algorithm assigns the maximum number
of states, then computes a congestion-free plan by solv-
ing a series of LP problems.Wemodify the basic SWAN
algorithm to remove the remaining capacity margin to
fully utilize link bandwidth.

• MCUP [14]: State-of-the-art update algorithm to min-
imize transient congestion instead of computing a
congestion-free plan. This algorithm can guarantee an
update plan in a given number of intermediate stages.

• Heuristic: The heuristic approximation algorithm as
described in Algorithm 1.

B. PERFORMANCE EVALUATION
1) THE IMPACT OF PARAMETER λ
We show the impact of parameter λ in § IV-A and by changing
the value of λwe can trade off the network congestion and the
update speed.

FIGURE 7. The impact of parameter λ.

Setup: We generate 3000 flows in both the scenarios of
fat-tree and inter-DC network. Specifically, the source and
destination of flows are chosen arbitrarily, and their demands
which are also randomly set should be guaranteed in the
initial and final network states.

Results: Fig. 7a shows the values of the congestion extent,
λ, can be set differently with a varied number of network
states MDVP introduces. In Fig. 7a, when the number of
network states is set to 2, which is the one-shot update,
it is inevitable to cause serious network congestion. Thus,
we have to set λ to 0.71, only then MDVP can produce
a feasible update plan. As we introduce more intermediate
network states, MDVP can compute the plan which alleviates
network congestion greatly. For instance, in Fig.7a, when
the number of states is 6, the maximum congestion extent λ
can be greatly reduced to 0.11. Essentially, by introducing
more intermediate states, MDVP can move more traffic to
redundant paths in both scenarios temporarily to free more
space for updating. This feature gives flexibility to network
operators to compute the desired update plan based on the
requirements of different kinds of network traffic. Moreover,
Fig. 7b shows the similar trend as Fig. 7a, but introduces
slightly more congestion. It is because there are fewer redun-
dant paths in the inter-DC scenario compared to the fat-tree
topology.

2) THE REDUCED NETWORK STATES
By increasing the number of flows, we manually exacerbate
the congestion in the network. The MDVP shows its ability
to speed up the update by introducing controllable network
congestion.

Setup: The source and destination of generated flows are
chosen arbitrarily, and their demands are guaranteed in the
initial and final network states.We set the parameter λ to 0.05,
which introduces small congestion (5 % bandwidth over-
subscription) in the network. Because MCUP should assign
the number of intermediate states before network updates,
in this experiment where we need to compare the varied
number of network states, we omit the MCUP for a clear
explanation.

Results: Fig. 8a shows with the increasing number of
flows, MDVP can greatly reduce the number of network
states, compared to SWAN. Specifically, when the number
of flows is 3000 in the network, SWAN introduces 18 net-
work states to compute an update plan. By contrast, MDVP
only introduces 9 network states, which greatly reduce the
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FIGURE 8. The number of states each method introduces.

FIGURE 9. The total demand violation ratio.

update time. This is because SWAN cannot tolerate network
congestion at all, and it involves a large amount of compu-
tation to explore the possible paths to get a congestion-free
update plan. On the contrary, by introducing slight con-
gestion, MDVP does not need to explore much to find a
congestion-free update plan, and can obtain a feasible plan
in a short period. In addition, both Fig. 8a and Fig. 8b show
a similar trend, and the gap between SWAN and MDVP
becomes larger when the number of flow grows. Note that
the one-shot method always consists of two network states,
i.e., the initial and final states.

3) DEMAND VIOLATION RATIO
One of the main goals of this paper is to minimize the demand
violation ratio during the network process. In this experiment,
MDVP shows its ability to reduce the demand violation ratio
for flows, thus disturbs as few flows as possible.

Setup: In this experiment, we generate 3000 flows, and
choose their source and destination randomly as before.
We study the demand violation ratio by deploying our algo-
rithm, heuristic, and other benchmark algorithms, MCUP,
SWAN, and we will evaluate all algorithms in both fat-tree
topology and inter-DC topology. We set λ in MDVP to 0.08,
and set the update states of MCUP introduces to 6 for a fair
comparison. The one-shot mechanism is skipped because it
only consists of the initial and final states, and introduces no
throttled flows in the intermediate states.

Results: As Fig. 9a depicts, the demand violation ratio of
our heuristic algorithm is much smaller than that of MCUP.
Specifically, the mean value of total demand violation of our
heuristic algorithm is 251. By contrast, themean value of total
demand violation of MCUP is 343, which is 36.7% larger
than that of ours. This is because MCUP only concerns the
maximum network congestion in the network, but ignores the
demand violation of throttled flows in the intermediate states.
As illustrated in § III, even the two update plans causing

the same network congestion, the resulting demand viola-
tion ratio can be different. Our heuristic algorithm takes this
into account, and computes the update plan that minimizes
the demand violation ratio. A similar result is also shown
in Fig. 9b. Note that SWAN will compute a congestion-free
update plan, there is be no demand violation during the update
process, which is shown in Fig. 9.

VI. CONCLUSION
In this paper, we present the minimum demand violation
problem (MDVP), and use it to model the network update
process. It firstly considers traffic variation in the cur-
rent ultra-low latency data-center network, and it uses the
max-min fairness across flows to estimate the converged
rate of each flow at intermediate states. Our method brings
flexibility for network operators to do a tradeoff between the
network congestion and update speed. Finally, it improves the
overall update performance by reducing the demand violation
ratio by 36.7 % and halving the introduced intermediate
states.
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