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ABSTRACT In order to compensate for any failure on the use of point spread function (blur kernel)
estimation and image estimation priors, we propose a novel regularization priors scheme with adapting
the parameter for image restoration involving adaptive optics (AO) images. Our scheme uses a maximum
a posteriori estimation with Gaussian statistics on the image and point spread function (blur kernel).
An efficient regularization prior method associated with alternating minimization method is described to
obtain the optimal solution recursively. Our method is applied to synthetic and real adaptive optics images.
After applying our restoration method, satisfying results are obtained. Experimental results demonstrate that
our proposed model and method performs better for restoring images in terms of both subjective results and
objective assessments than the current state-of-the-art restoring methods. In addition, our proposed method
can be a new way to promote their performances for AO image restoration.

INDEX TERMS Image restoration, regularization priors, adaptive optics, Huber-Markov random field,
maximum a posteriori.

I. INTRODUCTION
Seeing is the primary obstacle to obtaining high resolu-
tion astronomy observations from the ground. Atmospheric
turbulence along the line of sight randomly distorts the
wavefronts [1]. The result is geometrical distortions and
blurring in the collected images. Adaptive optics (AO) is
an important tool that allows solar astronomers to achieve
diffraction limited observations from existing ground based
telescopes [2], [3]. Adaptive optics facilitates solar imaging
with expressively reduced low-order aberrations. However,
due to the time scale of seeing evolution, AO only copes with
limited high-order corrections.

Post-facto image restoration techniques can correct higher
order aberrations, which is required for reaching the diffrac-
tion limit. Affected by many factors such as ambient
light, attenuation, and scintillation, the image deconvolution
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problem seemed too difficult to solve for general blur kernels
called the point spread functions (PSF). On the basis of the
degraded image, the PSF and object image are jointly esti-
mated, which is called the blind deconvolution method [10].
Deconvolution appears in a wide range of application areas,
such as astronomical imaging, microscopy, medical imaging,
remote sensing, photography, super-resolution applications,
and motion tracking applications [11], [12].

The blind deconvolution problem is very challenging since
it is hard to infer the original image and the unknown
degradation only from the observed image [12]. In the past
few decades, many image restoration techniques have been
proposed to solve this problem under all kinds of condi-
tions. Both single and multiframe restoration schemes are
reported in the literature. A single-channel blind deconvo-
lution method [16] is proposed by Ayers et al., which is
more complicated than the classical deconvolution problem.
In order to handle the ill-posed nature of blind deconvolution
to a great extent of considering multiple images, Tian et al.
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FIGURE 1. The flow chart of our proposed method for AO image restoration.

presented another multiframe restoration algorithm based on
the frame selection techiques [17]. Approaches based on
improved expectation maximization for AO image restora-
tion was proposed in [18]. An adaptive image restoration
method based on hierarchical neural network is proposed
by Yap et al. [19]. They usually involved some regulariza-
tions which assured various statistical properties of the image
or constrained the estimated image and/or restoration filter
according to some assumptions [13]. Sroubek et al. devel-
oped a robust multichannel blind deconvolution algorithm
based on an optimization problem with image and blur regu-
larization terms [11]. Levin et al. in [14] claimed that the joint
posterior probability of the image-blur pair favoring a trivial
solution of the blur being a delta function was more appropri-
ate. Other authors [4], [15] used the alternating maximum a
posteriori (MAP) methods. However, they used ad hoc steps
that often lacked rigorous explanation.

Here, we propose an adaptive optics image restoration
method that can handle the point spread function and objec-
tive image estimation with better accuracy and speed. The
method is based on MAP estimation, and it is formulated
as a constrained optimization problem by using a regular-
ization method. For the image regularization, we adopt the
Huber-Markov random field (HMRF) method [6], and for
the blur regularization, we use the constraint method pro-
posed in [11]. Furthermore, our method solves the opti-
mization problem in an iterative way by alternating between
minimizations with respect to an image regularization term
(f -step) and with respect to a blur kernel regularization term
(h-step).

This paper is organized as follows. In Section II, we gives
the statement of the AO image model. Then, the AO image
restoration problem will be placed into a statistical model,
using a MAP estimation. Section III builds the prior dis-
tributions of the original image and the blur kernel, and
then the alternating minimization (AM) algorithm is built.
Section IV presents experimental results for the AO image
restoration techniques, quantitatively comparing the pro-
posed method to other forms of image restoration methods
on synthetic and real adaptive optics images. In Section V,
the paper is concluded. The flow chart of this work is shown
in Fig. 1.

II. MULTIFRAME AO IMAGE RESTORATION BASICS
A. ADAPTIVE OPTICS DEGRADED IMAGE MODEL
Single frame blind deconvolution amounts to estimating
an image f from an observed image g, which can be
expressed as

g(x) = f (x)⊗ h(x)+ n(x), x ∈ � (1)

where h(x) is called the PSF (or blur kernel) and is unknown,
f (x) is the original image, g(x) is the observed image, n(x) is
random additive noise, � is the support area of an image,
x refers to a lexicographically ordered vector of the pixel
coordinates in a 2-D image, that is x = (x, y) ∈ � (x is a
position at the xth column and the yth row in the image), and
the operator⊗ denotes a 2-D convolution. The images are of
size N1 × N2.
Consider multiframe degraded AO images model that con-

sists of M measurements of an original image f . The rela-
tionship between the observed sequence image gm and the
original image f is defined by

gm(x) = f (x)⊗ hm(x)+ nm(x), 1 < m ≤ M (2)

where hm(x) is the point spread function of the mth channel
blur, nm(x) is the signal independent noise. Note that gm is the
only known variables. When no ambiguity arises, we drop
index x from the notation. In the vector-matrix notation,
Eq. (2) becomes

gm = Hmf + nm = Fhm + nm (3)

where matricesHm and F perform convolution with hm and f ,
respectively.

Our objective is to estimate f (x) and h(x) based on
the degraded image g(x) and prior information about the
true image scene. This process is known as blind image
deconvolution. Over the last few years, single frame blind
deconvolution based on the Bayesian paradigm experiences
a renaissance [5]. According the feature of the degraded
AO images which is dominated by a strong homogeneous
background, we assume that theAO image is further degraded
with additive white Gaussian noise n with zero mean and
variance σ 2.
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B. STATISTICAL MODEL
Based on the Bayesian rule, simultaneous restoration of f
and h amount to solving the standard maximum a posteriori
estimation, which is

P(f , h|g) ∝ P(g|f , h)P(f , h) =
P(g|f , h)P(f )P(h)

P(g)
(4)

where P denotes probability, P(g|f , h) is the noise distri-
bution, P(g), P(f ) and P(h) are the prior distributions on
the observed image, original image and PSF, respectively.
P(g) is a constant and can be omitted.

The MAP technique is to maximize the conditional prob-
ability for the PSF and the object image given a certain AO
degraded image. That is{

f̂ , ĥ
}
= argmax

{f ,h}
logP(f , h|g) (5)

where logP(f , h|g) is the log-likelihood function. Maximiza-
tion of the posterior P(f , h|g) is equivalent to minimization
of its negative logarithm, and according to Eq. (4), we have{
f̂ , ĥ

}
= argmin

{f ,h}
{− logP(g|f , h)−logP(f )−logP(h)} (6)

In order to compute theMAP estimation, the noise distribu-
tion P(g|f , h) = P(n)|n=g−Hf and the prior distribution P(f )
and P(h) should be defined. For the noisy system model in
Eq. (1), the conditional density has the Gaussian form [6]

P(g|f , h) =
1

(2πσ 2)
N1N2

2

exp
(
−‖g− Hf ‖2

2σ 2

)
(7)

where σ 2 is the Gaussian noise variance, ‖·‖ is the Euclidean
norm.

III. PROPOSED ALGORITHM
A. A PRIOR DISTRIBUTION OF THE IMAGE
A Bayesian estimation technique needs to be provided a
meaningful prior probability, which becomes a shortcoming.
Several different approaches of the image a prior probabilities
were proposed in [5], [6], [13]. Some approaches are suitable
for a specific class of images and others are more general. The
classical form selects the Laplacian operator as the inverse of
the covariance matrix of f , but it does not fit for the prior
model, since the L2 norm of the image gradient penalizes too
much the gradients around edges and an oversmoothing effect
is observed [13].

Because a prior image distribution consists of a convex
function of measures, here we use the Huber-Markov random
field (HMRF) to model the prior distribution P(f ). To model
the image, aMarkov random field (MRF) is assumed with the
Gibbs density function [6]

P(f ) =
1
Z
exp

{
−
1
ζ

∑
c∈C

ρ(dTc f )

}
(8)

where Z is a normalization constant, ζ is the ‘‘temperature’’
of the density, points c is called cliques, C denotes the set of
all cliques throughout the image, dc is a coefficient vector

for clique c, the superscript notation (·)T in Eq. (8) is the
transpose operator, and ρ(·) is a function satisfying the fol-
lowing properties: convexity, symmetry, and reduced growth
at regions of discontinuities, i.e., for a large |v|, ρ(v)� v2 [6].
Among functions which satisfy these properties, the Huber

function is considered, and it is defined as

ρ(v) =

{
v2, |v| 6 ξ

ξ2 + 2ξ (|v| − ξ ) |v| > ξ
(9)

where ξ is the Huber threshold which controls the transition
between L1 and L2 norms. The Huber function is convex and
nonquadratic when ξ <∞ [7].

B. A PRIOR DISTRIBUTION OF THE BLUR KERNEL
The marginalized probability P(h) can be expressed in a
closed form only for simple priors, such as variational
Bayes [9] or the Laplacian distribution [8], [11], that can be
used. For the blur kernel prior distribution, we use Laplacian
distribution on the positive PSF values to force sparsity and
zero on the negative values. The kernels hm can be of different
sizes, and the largest size is L × L (L � N1,N2). In oder
to guarantee positivity and sparsity, we present to use an
effective blur kernel regularizer, so a prior distribution P(h)
can be defined as

P(h) ∝ exp
{
1
α
hTQ1h+Φ(h)

}
(10)

where α is the weight that controls the effect of the multi-
frame constraint Q1, Q which is a matrix with 1 denoting a
convolution with the discrete Laplacian kernel l (in 1-D case,
l = [1,−2, 1]), the Q1 is defined as [11]

Q1 = [1G2,−1G1]T [1G2,−1G1] (11)

where matrix Q1 depends only on the input images gm, and
the construction is trivial. The function Φ(·) forces sparsity
by computing the L1 norm of positive PSFs and ensures
positivity by absolutely penalizing negative values. It is
given as

Φ(h(x)) =
M∑
m=1

L∑
x=1

ϕ(hm(x)) (12)

where

ϕ(v) =

{
v, v ≥ 0
+∞ v < 0

(13)

C. ALTERNATING MINIMIZATION FOR MAP ESTIMATION
Combining with the prior distributions presented in Eq. (7),
Eq. (8), and Eq. (10), from Eq. (6), we can obtain the negative
log-likelihood which is shown in Eq. (14)

J (f̂ ,
{
ĥm
}
) = argmin

{f ,{hm}}
{− logP(g|f , {hm})− logP(f )

− logP({hm})}

=

∑
x

{
N1N2

2
ln σ 2

+
‖g(x)− Hf (x)‖2

2σ 2

}
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+

∑
x

{
1
ζ

∑
c∈C

ρ(dTc f (x))

}

+

∑
x

{
1
α
hT (x)Q1h(x)+Φ(h(x))

}
(14)

Minimizing Eq. (6) is equal to minimizing J (f̂ ,
{
ĥm
}
).

The standard method to solve Eq. (14) is called alternating
minimization algorithm (AM) [11] and will be adopted here
as well. The AM algorithm is summarized as follows,

‘‘f -step’’:

min
f
{− logP(g|f , {hm})− logP(f )} (15)

‘‘h-step’’:

min
{hm}
{− logP(g|f , {hm})− logP({hm})} (16)

and alternate between them.
TheAMalgorithmwhich solves themultiframeAO images

restoration problem, consists of two subproblems: minimiza-
tion with respect to the image regularization term (f -step)
and the minimization with respect to the blur regularization
term (h-step). Accoring to the AM algorithm, the numerical
iterative process is then obtained,

ĥk+1t (x) = ĥk (x)

{
f̂ k (x)⊗

[
f̂ k (x)⊗ ĥk (x)− g(x)

σ 2

]}
×

1

1+
∑
x∈�

1
α
Q1ĥk (x)

, (17)

ĥk+1(x) =
ĥk+1t (x)∑

x∈�
ĥk+1t (x)

(18)

and

f̂ k+1(x) = f̂ k (x)

{
ĥk+1(x)⊗

[
f̂ k (x)⊗ ĥk+1(x)− g(x)

σ 2

]}
×

1

1+ 1
ζ

∑
c∈C

dcρ′(dTc f̂ k (x))
(19)

where the superscript indexes the number of iteration, and
ρ′(v) denotes the first order derivative of the function ρ(v),

ρ′(v) =

2v, |v| 6 ξ

2ξ
v
|v|
|v| > ξ

(20)

where ξ is a threshold for the Huber function.

D. IMPLEMENTATION
We have analyzed the main steps (f -step and h-step) of the
proposed algorithm. Now we proceed with the description
of the main loop of the algorithm. Using Eqs. (17)-(18), and
Eq. (19), the estimation for the object image f̂ and the PSF ĥ
are obtained by iterations. The pseudo-code for our algorithm
is summarized in Algorithm 1.

Algorithm 1 Steps for Our Proposed Algorithm
Step 1: Initialize operation. The M (M ≥ 2) frames of
input images {g1, g2, . . . , gM } are obtained with frame
selection technique [17], then the initial object image is
f̂ 0 = (g1 + g2 + · · · + gM )/M ;
Step 2: Obain the initial estimation of the PSF, ĥ0t (x), is to
delta functions, calculate Q1, and choose the values of
parameters dc, α, ζ , and ξ ;
Step 3: Iterate through j = 1, 2, . . ., MaxIteration
(MaxIteration = 200 or 300):
1) The inner loop count variable of PSF h_count = 0;
2) (h-step) The iteration process of PSF estimation,

k = 0, 1, . . ., Max_count;
a) Complete the PSF estimation ĥk using opti-

mized Eqs. (17)-(18);
b) Increase h_count; Increase k;
c) Check the value of the loop variable k: if

k < Max_count , continue; otherwise, go to
Step 3 (3).

3) The inner loop counter variable of object estima-
tion: f _count = 0;

4) (f -step) The iteration process of object estimation,
q = 0, 1, . . ., Max_count;
a) The conjugate gradient method was used to

optimize Eq. (19) and to obtain object image
estimation f̂ q;

b) Increase f _count; Increase q;
c) Check loop variable q: if q < Max_count ,

continue; otherwise, go to Step 3 (5);
5) Check whether the extrinsic loop is over, if j >

MaxIteration, then go to Step 4;
6) Increase j, return to Step 3 (1).

Step 4: If j > MaxIteration, then output object estimate
image f̂ and PSF estimation ĥ, and end the algorithm;
otherwise go to Step 3.

FIGURE 2. The parameter file(parameter1.txt). The first column is the
parameter name; the second column is a label;the third column is the
parameter type;and the fourth column gives the range or domain.

In our method, parameter settings is based on the irace
package [21]. First, we define a parameter file(parameter1.txt,
Fig. 2). Then, we create a scenario file( setmaxExperiments =
1000 runs of ACOTSP [21], which is an applications of
irace.) We create a basic target-runner-run script that runs the
ACOTSP software and prints the objective value of the best
solution found.
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FIGURE 3. Original 640 × 960 images and simulated degraded images with the PSF size set to 7× 7. (a) original images used for simulations; (b) the
gray images of (a); (c)-(e): degraded images for three different noise levels: 50 dB, 35 dB, and 25 dB under ideal conditions.

FIGURE 4. Restoration result comparisons using five methods (with 150 iterations). (a) the RL-IBD method; (b) the ML-EM method; (c) the
CPF-adaptive method; (d) the RMF-MLE method; (e) our method with ξ = 1 and σ2 = 1.7.

At the end of a run, irace prints the best configurations
found as command-line parameters. We have noticed that,
in general, the parameters can be fixed relative to one of
variables, e.g., α, which depends on the noise level. In this
case, ζ , with respect to the weight α of the fidelity term can
be determined. The rule of thumb is to set α to a ratio of
signal and noise variances. That is, with SNR= 50 dB, α can
be set to 105 or with SNR = 30 dB, α can be set to 103.
Then, we found that choosing ζ = 10−1α usually results in
better convergence. The up-sample ratio was L1 = L2 = 5.
In our case, we used a Gaussian blur with variance σ 2

= 1.7.
The variance of noise is estimated at a ‘‘smooth’’ area of a

low-resolution. The threshold for the Huber function is set at
ξ = 1 for our method.

IV. EXPERIMENTAL RESULTS
In this section, we demonstrate the performance of our
algorithm on simulated images and real adaptive optics
images. First, the simulated data for different SNR are
used to compare results of the RL-IBD method [23], the
ML-EM method [24], the CPF-adaptive method [25],
the RMF-MLE method [26], and our method. Second,
the performance of our method is evaluated on adaptive
optics images taken by a 1.2 m AO telescope from Yunnan
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FIGURE 5. Close-ups of degraded/restoration image regions extracted
from Girl images in Fig. 3(c) and Fig. 4. (a) is from Fig. 3(c); (b)-(f) are from
restored Girl image regions extracted from Fig. 4(a)-(e), respectively.

Observatory, China. The main parameters for this telescope
are: the atmospheric coherence length r0 = 13 cm, telescope
diameter D = 1.08 m, the pixel size of CCD is 7.4 µm, focal
length l = 22.42 m, the wavelength in center λ = 700 nm.
Moreover, all algorithms were implemented in Matlab and
executed on a standard PC with a 2.7 GHz Intel i7-7500U
CPU and 8.0 GBRAM, running on a 64 bitWindows 10 oper-
ating system.

For the evaluation on the performance for the simulated
data and real AO data, we use percentage mean squared
errors (EPMSE) [13], peak signal to noise ratio(EPSNR), and
Laplacian sum (ELS) [20]. The EPMSE is used for the esti-
mated PSF ĥ and for the estimated restored image f̂ , respec-
tively, defined as follows

EPMSE(f (x, y)) = 100×
‖f̂ (x, y)− f (x, y)‖
‖f (x, y)‖

,

EPMSE(h(x, y)) = 100×
‖ĥ(x, y)− h(x, y)‖
‖h(x, y)‖

(21)

where (x, y) is a pixel location. Both ĥ(x, y) and f̂ (x, y) are
the outputs of our method.

TheEPMSE is a measure of the quality of an estimator of the
overall deviations between the original image and the object
image, and it is always non-negative, and a value close to zero
is better. A lower EPMSE value indicates that the deviation is
small and a better restored result is obtained.

The EPSNR is the ratio of the maximum signal to the noise
level, and is defined as

EPSNR = 10 log(
maxx,y(f (x, y)− f̂ (x, y))2

1
MN

M∑
x=1

N∑
y=1

(f (x, y))2
) (22)

The ELS is for very pixel in a 3 × 3 neighborhood after
applying the Laplacian operator, and getting the differential

value of eight neighborhood, and then summing in the range
of image. It is defined as

ELS =

M−1∑
x=2

N−1∑
y=2
|A(x, y)|

(M − 2)(N − 2)
(23)

where

A(x, y) = 8g(x, y)− g(x, y− 1)− g(x − 1, y)− g(x, y+ 1)

−g(x − 1, y− 1)− g(x − 1, y+ 1)

−g(x + 1, y− 1)− g(x + 1, y+ 1) (24)

whereM and N represent the total number of pixels along the
x-axis and y-axis of the image, respectively. g(x, y) denotes
the degraded image or the restored image. A higher ELS value
indicates that a better restored result is obtained.

A. SIMULATED DATA EXPERIMENT
In the simulated data experiment, we run our restoration
method on three standard datasets [22] ‘‘Girl’’ (640 ×
960 pixels), ‘‘Animal’’ (640 × 960 pixels), and ‘‘Flower’’
(640 × 960 pixels) to test the performance of our proposed
method. The parameters are set the same as the 1.2 m AO
telescope on Yunnan Observatory, China. The set of exper-
iments compares the proposed method with the RL-IBD
method [23], the ML-EM method [24], the CPF-adaptive
method [25], and the RMF-MLE method [26].

The setup for the simulated data experiment was the fol-
lowing. Fig. 3 is the test data set, including the original
images and degraded images. We select the ‘‘Girl’’, ‘‘Ani-
mal’’, and ‘‘Flower’’ images from the datasets [22] are shown
in Fig. 3(a), and the corresponding gray images are shown
in Fig. 3(b). The images are convolved with 7 × 7 blurs
and noises are added at three different levels with SNR =
50 dB, 35 dB, and 25 dB with real AO imaging conditions
including atmospheric turbulence as shown in Fig. 3(c)-(e).
The comparison results based on the five methods are shown
in Fig. 4. In our method, the parameters ξ = 1 and σ 2

= 1.7
were selected experimentally for visually acceptable results
by using the irace package [21]. The results shown in Fig. 4(a)
contain significant noise, indicating that the algorithm has
poor noise suppression ability. Images Fig. 4(b) exhibit an
obvious block effect, which worsens the visual effect of the
image. Images Fig. 4(c) has better brightness, but the image
appears a smooth transition. Images Fig. 4(d) and (e) have
the best overall consistency and similar restoration results,
although (e) superior to (d) in terms of texture details and
anti-noising. In Fig. 5, we select certain parts from the ‘‘Girl’’
blurred image in Fig. 3(c), and the corresponding areas from
the four restoration images, which are shown in Fig. 5(b)-(f).
From Fig. 5(f), we can see that the contours of face and
hand become clearer, which demonstrates that the proposed
method is effective.

The reference evaluation results of the restored images
from high-degradation images( Fig. 3) are presented
in Table 1. Table 1 gives the results of our method and
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FIGURE 6. Six frames of the observed flying object AO images and their variances. (a) Frame 1 with variance S2
1 = 427.91;

(b) Frame 2 with variance S2
2 = 423.62; (c) Frame 3 with variance S2

3 = 431.79; (d) Frame 4 with variance S2
4 = 418.65;

(e) Frame 5 with variance S2
5 = 435.53; (f) Frame 6 with variance S2

6 = 427.91.

TABLE 1. Performance of the five methods on simulated data in Fig. 4.

those of the RL-IBD method [23], the ML-EM method [24],
the CPF-adaptive method [25], the RMF-MLE method [26],
and the iteration number for the five methods is 150.
The results indicate that our proposed method via regu-
larization priors achieves the best performance, especially
in providing better object estimation and preserving
boundaries.

B. FLYING-OBJECT AO IMAGE EXPERIMENT
The last test which we have conducted was on the real
adaptive optics images obtained in the observation of a
flying object. The restoration experiment on the flying
object images is carried out using our proposed algorithm.
Since the atmospheric conditions may change very quickly,
the observed AO image sequence usually contains differ-
ent quality from sharp to heavy blurred ones. The flying
object images for the experiment were taken by a 1.2 m
AO telescope from the Chinese Academy of Sciences in
Yunnan Observatory on January 13, 2007. The AO sys-
tem parameters are the same as that at the beginning of
Section IV. The initial estimated PSF model for the anisopla-
natic effect for the flying-object image is as follows: the grid
of space-variant PSF is 3×3; the isoplanatic angle θ is 2′′; the

field-of-view is 10′′; the full field-of-view for the system
is 20′′; and the Zernike model is with the first 35 orders. In the
experiment, we chose α = 102, ζ = 10−1α, σ 2

= 1.83,
the threshold for the Huber function is set at ξ = 1.2 for
visually acceptable results based on the irace package [21].
Then, we compared the performance of the proposed restora-
tion strategy using our algorithm with those of blind decon-
volution strategies, including the RL-IBD method [23], the
ML-EMmethod [24], the CPF-adaptive method [25], and the
RMF-MLE method [26]. The frame selection method which
is introduced in [26] is applied, and 50 frames are selected
from 200 frames of degraded AO images on a flying object
as blind convolution images. The degraded AO images on
the flying object are given in Fig. 6 (only 6 frames of the
AO images are shown). Moreover, we have calculated the
variance for each observed AO image in Fig. 6, and their
values are close to each other between 418 and 436.

In the restoration process, Eqs. (18) and (19) are iterated
for 200 times. We can obtain the restoration results based
on our proposed method which are shown in Fig. 7 with
comparison results based on four other methods. Fig. 7(a)
is the restored image by the RL-IBD method with EPMSE =

13.03 and ELS = 5.2466; Fig. 7(b) is the restored image by
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FIGURE 7. The comparison of restored results on observed flying object AO images using five methods. (a) Result from the RL-IBD
method; (b) Result from the ML-EM method; (c) Result from the CPF-adaptive method; (d) Result from the RMF-MLE method;
(e) Result from our method; (f) Estimated PSF by our method.

the ML-EMmethod with EPMSE = 12.51 and ELS = 5.0203;
Fig. 7(c) is the restored image by the CPF-adaptive method
with EPMSE = 12.08 and ELS = 5.3786; Fig. 7(d) is the
restored image by the RMF-MLE method with EPMSE =

11.79 and ELS = 5.3059; Fig. 7(e) is the restored image
using our method with EPMSE = 10.24 and ELS = 6.0633
for 200 iterations; and Fig. 7(f) shows the resulting PSF by
our method. Note that the PSF tends to become discrete.
We observe that the PSF enhances the image, providing
brighter active regions and darker background regions with
low intensities than in the original image. Fig. 8 is the plot on
the energy spectra for the five restoration methods. Fig. 8(a)
is the energy on the restored image in Fig. 7(a) based on
the RL-IBD method; Fig. 8(b) is the energy on the restored
image in Fig. 7(b) based on the ML-EM method; Fig. 8(c)
is the energy on the restored image in Fig. 7(c) based on the
CPF-adaptive method; Fig. 8(d) is the energy on the restored
image in Fig. 7(d) based on the RMF-MLE method; and
Fig. 8(e) is the energy on the restored image in Fig. 7(e)
based on our method. With the comparison, it shows that the
proposed method is better than the other four methods.

Table 2 are the EPMSE, ELS, and computation time com-
parison on the restored flying object AO images (iteration
number is 300). Comparing with the RL-IBD, ML-EM,
CPF-adaptive, and RMF-MLE methods, we can see that the
EPMSE measures from our method are decreased by 19.9%,
16.7%, 10.6%, and 8.6%, respectively. It can be seen that our
method has achieved the smallest EPMSE value among the

FIGURE 8. Energy spectra comparison for the restored AO images from
the five methods. (a) Energy of the restored image using the RL-IBD
method on Fig. 7(a); (b) Energy of the restored image using the ML-EM
method on Fig. 7(b); (c) Energy of the restored image using the
CPF-adaptive method on Fig. 7(c); (d) Energy of the restored image using
the RMF-MLE method on Fig. 7(d); (e) Energy of the restored image using
our method on Fig. 7(e).

TABLE 2. The EPMSE, ELS, and computation time calculated for the
flying object images (iteration number is 300).

five methods, and the ELS value from our method is higher
than those from the others. From the computation time of the
experimental results, the time of our method is slightly higher
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FIGURE 9. The restoration comparisons on EPMSE and ELS measures versus the iteration number for the five methods. (a) EPMSE versus the
iteration number of the five methods. (b) ELS versus the iteration number of the five methods.

than that of the othermethods. In order to reduce the computa-
tion time, some functions such as the proximity operatorsmay
be computed in parallel becausemany of the convex functions
on which they are defined are separable [27]. If our algorithm
is implemented in C++ instead of MATLAB, the time spent
can also be reduced.

Moreover, Fig. 9 shows that the EPMSE and ELS
measures of our method and those of other restora-
tion methods such as RL-IBD, ML-EM, CPF-adaptive,
and RMF-MLE. The EPMSE measure versus the iteration
number for the five restoration methods on the flying object
AO images are plotted in Fig. 9(a). Fig. 9(b) is the ELS
results for the five restoration methods. One can see that
the proposed method provides accurate results and shows
robustness with respect to noise. Our method ranks on the top
of the list, and the results demonstrate the superiority of our
method.

C. COMPUTATIONAL COMPLEXITY ANALYSIS
Let N denote the number of pixels in the output image f ,
and Let L̂ denote the pixels in PSF support. The calculation
of Q1 can use the fast Fourier transform(FFT), thus the
overall complexity is O(KL̂N logN ). In general, the most
time-consuming is the f -step, which requires an inversion of
the huge N × N matrix. To avoid any ringing artifacts close
to image boundaries, we should perform valid convolution,
for example, the output image is smaller and covers a region
where both the convolution kernel and input image are fully
defined. The TV regularizer [28] can help to reduce such
artifacts. Therefore, the f -step performed with an overall
O(N logN ) cost.
The h-step is performed in the image domain, since we

need constrain kernel support L̂. Otherwise, Q1 becomes
a very uninformative regularizer. On the h-step method,
we have to invert matrix and thus much smaller than the
matrix in the f -step. Typically, for two input images (K = 2),
and the size of blurs is not more than 30×30 pixels(L = 900),

the matrix size is 1800× 1800 which is relatively small. One
can apply a conjugate gradient to solve the iterative problem.
This can be computed in O((KL̂)3) time. Again, the update
steps for k and h_count require O(KL̂) operations.

V. DISCUSSIONS AND CONCLUSIONS
This paper presents a novel method for solving adaptive
optics image restoration. There are two main contributions
in this paper. The first contribution was that we defined prior
distributions for image and blur regularization terms, which
help for the solving of ill-posed problems when estimating
the true image from observations. The image regularization
is formulated using the Huber-Markov random field. For the
blur kernel prior distribution, we use Laplacian distribution
on the positive PSF values to force sparsity and zero on the
negative values. The second contribution is that we solve
the optimization problem in an iterative way by alternating
between minimization with respect to the image (f -step)
and with respect to the PSFs (h-step), which can solve each
step efficiently and reduce the computational complexity
as well. Experimental results illustrated both quantitatively
and qualitatively that our proposed method outperforms the
state-of-the-art methods on both synthetic degraded images
and real AO images, but at a slightly more computational
cost. To overcome this computational speed issue, our future
research can focus on parallel computing.
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