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ABSTRACT In this article, a direct neural network based adaptive backstepping control approach is proposed
for a class of uncertain non-affine ship manoeuvring pure-feedback nonlinear systems. To carry out the
backstepping design, the high fidelity 3 degrees of freedom Manoeuvring Modelling Group (MMG) model
with external disturbances is transformed into the ship manoeuvring systems in non-affine pure-feedback
form. Then, by combing the Implicit Function Theorem, Mean Value Theorem and dynamic surface control
technique, the proposed approach is able to avoid completely the circularity problem and complexity growing
problem exist in the adaptive neural network controller. During the controller design, the uncertain nonlinear
functions are approximated by neural networks. Following this control approach, it is worth noting that the
direct adaptive backstepping control for the high fidelity MMG model based ship manoeuvring nonlinear
systems is achieved firstly, and the controller structure is simpler. Furthermore, it is shown via stability
analysis that all signals in the closed-loop system are uniformly ultimately bounded. At last, two reference
signals consist of a constant and a realistic performance requirement of ship are applied to simulation studies
to illustrate the utility and merits of the proposed control scheme.

INDEX TERMS Ship manoeuvring, Manoeuvring Modelling Group (MMG) model, non-affine pure-
feedback nonlinear system, adaptive neural network control, backstepping design.

I. INTRODUCTION
Since the world’s first mechanical ship autopilot was con-
structed in 1910s, the control problem of ship manoeuvring
has been an active research subject in the field of both
marine engineering as well as automation and control sys-
tem [1]. In practice, the properties of ship manoeuvring,
which include large inertia, large time-delay, nonlinearity
and uncertainty, are the major and important issue for the
control of ship manoeuvring system [2]. To deal with these
issues, a great number of control approaches have been
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studied over the past decades for control of ship manoeu-
vring system. Many significant results have been achieved,
such as classical Proportional-Integral-Derivative (PID)
control [3], [4], Linear Quadratic Gaussian (LQG) control [5],
H∞ control [6], [7], Model Reference Adaptive Control [8],
Feedback Linearization Control [9], [10], Sliding Mode Con-
trol [11]–[13] and others [14]–[18]. For example, a direct
feedback linearization based adaptive control was proposed
for automatic steering of ships [9], in which both course-
keeping and course-changingwere considered. By combining
active disturbance rejection control and modified predictor,
an effective control approach for ship steering system with
uncertainties was studied [14].
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Particularly, besides the above-mentioned control
algorithms, adaptive backstepping procedure is a system-
atic control design technique for nonlinear system [19].
Up to now, adaptive backstepping control technique is a
state-of-the-art design approaches for a large amount of
nonlinear systems [20], [21]. Recently, with the rapid devel-
opment of adaptive control design for nonlinear systems, sev-
eral adaptive backstepping control schemes for ship steering
system have been reported. As a breakthrough, a nonlinear
backstepping controller was designed for ship steering system
in strict-feedback form [22]. Later, to optimize ship steering
controller [22], the design parameters of nonlinear back-
stepping controller is determined by genetic algorithm [23].
In these papers, to construct and apply the nonlinear back-
stepping controller, the accurate parameters and nonlinear
functions of ship manoeuvring model are needed. By incor-
porating the Nussbaum-type gain into adaptive backstepping
design, a robust controller was proposed for ship head-
ing nonlinear system in the presence of unknown sign of
uncertain control coefficients [24]. Later, this approach was
extended to ship heading nonlinear system in the presence
of uncertain control coefficients and time-varying charac-
ters [25], as well as input saturation [26], [27].

Meanwhile, since the outstanding universal approxima-
tion feature of neural network (NN) has been verified in
the late 1990s, adaptive NN control design becomes an
advanced approach in dealing with the highly uncertain, non-
linear and complex systems [28], [29]. Besides NN, fuzzy
logic systems (FLSs) is another powerful tool for modeling
uncertain nonlinear systems, some remarkable works have
been well studied recently [30], [31]. For affine single-input
single-output (SISO) strict-feedback nonlinear systems with
unknown nonlinearities, a direct adaptive backstepping con-
trol scheme was developed based on NN approximation [32].
By utilizing the Takagi-Sugeno (T-S) fuzzy dynamic models,
the output feedback sliding mode control was proposed for
a class of uncertain nonlinear systems in continuous-time
form [33] and discrete-time form [34]. Then, by integrat-
ing the control approach [32] with dynamic surface control
(DSC) technique [35], the ‘‘explosion of complexity’’ prob-
lem of controller [32] was reduced obviously. Then, the min-
imal learning parameter (MLP) techniques was applied to
control scheme [35] to reduce the number of design control
parameters update online [36]. Typically, this elegant adap-
tive control scheme was extended to ship steering uncertain
nonlinear system with rudder actuator dynamic [37], as well
as input saturation [38]. Afterwards, on the back of the
achieved results in [24], [25], theDSC techniqueswasmerged
with Nussbaum gain to design an adaptive controller for ship
steering system with parameter uncertainties [39]. Recently,
a modified DSC approach and NNs based adaptive control
scheme for steering system of a robotic unmanned surface
vehicle (USV) with model uncertainties and measurement
noises was proposed [40]. Besides, several adaptive NN con-
trol approaches were employed to carry out the simulation
studies for ship steering systems [41]–[43] recently.

A common feature of the aforementioned studies
[3]–[18], [22]–[27], [37]–[43] is that the adaptive con-
trollers are designed based on ship steering linear model
of Nomoto [44], and extension nonlinear models of Nor-
rbin [45], Bech [46] and Nomoto [47]. The main reason
lies in the fact that these models are said to be in SISO
strict-feedback form [48]. So far, owing to the simplicity
and relative accuracy in describing the yaw dynamics, they
have been widely used for controller design of ship steering
system.

However, it is noticed that thesemodels are simplified from
the high fidelity 3 degrees of freedom (DOF) ship manoeu-
vring model, i.e. these models are obtained by eliminating the
surge and sway velocity components as well as simplifying
the hydrodynamic parameters and derivatives of 3 DOF ship
manoeuvringmodel [49]. As a consequence, one limitation of
these models is that they are more suitable for the description
of small rudder angle yaw dynamics and low frequencies of
rudder action, whereas the accuracy in describing large rudder
angle yaw dynamics is insufficient [50].

Nowadays, ManoeuvringModelling Group (MMG) model
is one of the well-known and high-fidelity 6 DOF mathe-
matical models for ship manoeuvring proposed by Japanese
Towing Tank Conference (JTTC). The primary features of
basic MMG model are the division of all hydrodynamic
forces and moments working on the ship’s hull, rudder, pro-
peller, and their interaction [51]. Through years of progress,
the studies on hydrodynamic forces acting on ships of
MMG model are updated constantly, and several MMG
based ship manoeuvring simulation methods have been pre-
sented [52], [53]. Recently, by taking account of accuracy
and simplicity comprehensively, a proper and standardMMG
methods for ship manoeuvring was derived from the existing
MMG methods [54].

Nevertheless, comparing to the ship steering responsive
model indicated in the aforementioned studies, it is noticed
that adaptive backstepping control has not directly developed
for the MMG manoeuvring model up to now. The reason lies
in that theMMGmanoeuvringmodel is not said to be in affine
strict-feedback form, i.e. the MMG manoeuvring model is in
non-affine form. Owing to the non-affine properties, design
exact virtual controls and actual control for MMG based
ship manoeuvring system becomes much more intractable in
conventional adaptive backstepping design procedure. As a
consequence, many ship steering responsive model based
elegant backstepping control schemes maybe not suitable for
MMG manoeuvring model.

In addition, in the field of automation and control
system, the pure-feedback system is a generalization
and extension of the strict-feedback system for describ-
ing a class of lower-triangular nonlinear systems [21],
i.e. the strict-feedback system is a special case of
pure-feedback system. In general, the implementation of
backstepping control design for pure-feedback system is
challenging since there are not affine variables which can
be adopted as virtual controls and actual control. Moreover,
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the circularity problem will be encountered if the adaptive
NN control design is applied to pure-feedback system via
backstepping directly [55], that is both actual control and
NN are a part of each other in the controller simultaneously.
In recent years, based on backstepping design, several adap-
tive NN control algorithms were studied for two kind of
simpler and special pure-feedback nonlinear systems, which
each subsystem is affine [56], [57], as well as the last and
penultimate subsystems are affine [58], [59]. Specifically,
to solve circularity problem, an ISS-modular approach based
adaptive backstepping control approach was presented for
a class of completely non-affine uncertain pure-feedback
nonlinear systems [60]. Then, the ISS-modular approach
based adaptive controller [60] was further developed by using
DSC technique [61]. Consequently, in [61], the circularity
problem and ‘‘explosion of complexity’’ problem are avoided
simultaneously. Essentially, it is obviously that the MMG
manoeuvring model is a non-affine pure-feedback nonlinear
system. Until now, there is still no report on applying the
backstepping based direct adaptive NN control for MMG
model based ship manoeuvring nonlinear system.

Motivated by above observation, in this article, a direct
adaptive NN control scheme is developed for non-affine
MMG model based ship manoeuvring nonlinear systems via
backstepping firstly. Moreover, two reference signals consist
of a constant and a realistic performance requirement of ship
are applied to simulation studies to illustrate the effectiveness
and merits of the proposed control scheme.

The rest of the paper is organized as follows. The high
fidelity 3 DOF ship manoeuvring model, i.e. the MMG
model, is introduced in Section 2 in detail. Section 3 describes
the MMG model based ship manoeuvring system is
described, and some preliminaries are provided. In Section 4,
the adaptive NN control design procedure and stability anal-
ysis for non-affine MMG model based ship manoeuvring
nonlinear system are carried out. Then, simulation studies
via two reference signals are presented to demonstrate the
effectiveness of the proposed control scheme in Section 5.
This paper ends with conclusion in Section 6.

II. MANOEUVRING MODELLING GROUP (MMG) MODEL
(3 DOF)
Nowadays, the MMG model is one of the well-known and
high-fidelity 6 DOF mathematical models for ship manoeu-
vring motion proposed by JTTC. Overall, the primary fea-
tures of basic MMG are the division of all hydrodynamic
forces and moments working on the ship’s hull, rudder, pro-
peller, and their interaction. In this section, the state-of-the-
art and standard 3 DOF MMG simulation model for single
propeller single rudder ship in still water is introduced as
follows [54].

Figure 1 shows the space-fixed coordinate system o0-
x0y0z0 and the body-fixed coordinate system o-xyz, it is worth
noting that the center of body-fixed coordinate system o is
fixed to the mid-ship of ship. As shown in Figure 1, ψ , r ,
δ, u, vm, U and β are heading angle, yaw rate, rudder angle,

FIGURE 1. Coordinate systems.

surge velocity, sway velocity, total velocity and drift angle of
ship, respectively. Then,

v = vm + xGr (1)

β = tan−1
(
−vm

/
u
)

(2)

U =
√
u2 + v2m (3)

where v means the sway velocity at the centre of gravity, xG
is the distance from centre of gravity to mid-ship.

In general, the standard 3 DOF MMG manoeuvring equa-
tions are expressed as [54]

(m+ mx)u̇− (m+ my)vmr − xGmr2 = X
(m+ my)v̇m + (m+ mx)ur + xGmṙ = Y
(IzG + x2Gm+ Jz)ṙ + xGm(v̇m + ur) = Nm

(4)

where m is ship’s mass, mx is ship’s added mass in o-x axis
direction, my is ship’s added mass in o-y axis direction, Jz
is ship’s added moment of inertia around mid-ship. X , Y ,
Nm denote the surge force, lateral force, yaw moment around
mid-ship, which are expressed as follows

X = XH + XR + XP + XA + XW + XE
Y = YH + YR + YA + YW + YE
Nm = NH + NR + NA + NW + NE

(5)

where subscripts H , R, P,A,W and E denote the hydrody-
namic forces or moment induced by ship hull, rudder, pro-
peller, wind, wave and external forces, respectively.

In the first place, the influence of current is considered as a
coordinate system that moves with the current [62], then ship
hull’s hydrodynamic forces XH , XR and XP are expressed as
follows 

XH = (1
/
2)ρLppdU2X ′H (v

′
m, r
′)

YH = (1
/
2)ρLppdU2Y ′H (v

′
m, r
′)

NH = (1
/
2)ρL2ppdU

2N ′H (v
′
m, r
′)

(6)

where ρ denote water density, Lpp denote ship length
between perpendiculars, d is ship draft. v′m is non-
dimensionalised by vm/U , r ′ is non-dimensionalised by
rLpp/U , as well as X ′H (v

′
m, r
′), Y ′H (v

′
m, r
′) and N ′H (v

′
m, r
′) are
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non-dimensionalised values, which are expressed as

X ′H (v
′
m, r
′) =−R′0+X

′
vvv
′2
m+X

′
vrv
′
mr
′
+X ′rrr

′2
+X ′vvvvv

′4
m

Y ′H (v
′
m, r
′) = Y ′vv

′
m+Y

′
Rr
′
+Y ′vvvv

′3
m+Y

′
vvrv
′2
mr
′
+Y ′vrrv

′
mr
′2

+Y ′rrrr
′3

N ′H (v
′
m, r
′) = N ′vv

′
m + N

′
Rr
′
+ N ′vvvv

′3
m + N

′
vvrv
′2
mr
′

+N ′vrrv
′
mr
′2
+ N ′rrrr

′3

(7)

where R′0 is non-dimensionalised resistance coefficient of
ship, the remaining parameters, e.g.X ′vv,X

′
vr ,X

′
rr , etc. are non-

dimensionalised hydrodynamic derivatives.
Secondly, ship propeller’s surge force XP is expressed as

XP = (1− tp)T (8)

where tp is thrust deduction coefficient, T is propeller thrust
and expressed as

T = ρn2pD
4
pKT (JP) (9)

where np is propeller revolution, Dp is propeller diameter,
KT (JP) is propeller thrust open water characteristic which can
be approximated by following equation

KT (JP) = kt2J2P + kt1JP + kt0 (10)

where kt0, kt1, kt2 are coefficients of propeller thrust open
water characteristic, and JP is propeller advanced ratio and
expressed as

JP =
u(1− wp)
npDp

(11)

where wp is wake coefficient of propeller and expressed as

wp = wp0 exp(C0β
2
p ) (12)

wherewp0 is wake coefficient of propeller in straight moving,
C0 is experimental constant, βp denote propeller’s inflow
angle when ship is manoeuvring and expressed as

βp = β − x ′pr
′ (13)

where xp is longitudinal coordinate of propeller position.
Thirdly, rudder’s hydrodynamic forcesXR, YR,NR by steer-

ing are expressed as
XR = −(1− tR)FN sin δ
YR = −(1+ aH )FN cos δ
NR = −(xR + aHxH )FN cos δ

(14)

where tR is steering resistance deduction factor, aH is increase
factor of rudder force, xH is the distance from additional
lateral force component to mid-ship, and xR is the distance
from rudder to mid-ship (= −0.5Lpp). FN is the rudder
normal force and expressed as

FN = (1
/
2)ρARU2

Rfα sinαR (15)

where AR is profile area of rudder, fα denote the rudder
lift gradient coefficient. αR and UR are angle and resultant
velocity of rudder inflow, which are expressed as{

UR =
√
u2R + v

2
R

αR = δ − tan−1(vR
/
uR) ≈ δ − vR

/
uR

(16)

where uR, vR are rudder’s longitudinal and lateral inflow
velocity, which are expressed as
vR = UγRβR
uR = εu(1− wp)

×

√
ς

{
1+ κ

(√
1+ 8KT

/
πJ2P−1

)}2
+(1−ς )

(17)

where γR is flow straightening coefficient, ζ is equal to
Dp/HR, HR is rudder span length, ε is equal to (1-wR)/(1-wP),
κ is an experimental constant, and βR is rudder’s effective
inflow angle and expressed as

βR = β − l ′Rr
′ (18)

where lR is effective distance from rudder position to mid-
ship, and treated as an experimental constant. Specifically,
the rudder’s hydrodynamic forces XR, YR, and NR are mainly
varying with surge velocity u, sway velocity vm and rudder
angle δ, respectively.

Fourthly, the wind force and moment acting on the ship are
expressed as

XA = (1
/
2)ρAATV 2

ACXA(θA)
YA = (1

/
2)ρAALV 2

ACYA(θA)
NA = (1

/
2)ρAATLppV 2

ACNA(θA)

(19)

where ρA is air density, VA is the relative wind velocity, AT
and AL are the frontal projected area and the lateral projected
area, respectively, as well as CXA, CYA and CNA are the
coefficients as functions of relative wind direction θA.
In addition, the wave-induced steady forces and moment

in regular waves are expressed as [63]
XW = ρgH2

W (B2
/
L)CXW (U ,Tv, χ0)

YW = ρgH2
W (B2

/
L)CYW (Tv, χ0)

NW = ρgH2
WB

2CNW (Tv, χ0)

(20)

where g is the gravity acceleration, B is the breadth, HW is
the amplitude of wave height, Tv is the wave period, χ0 is
the relative wave direction, CXW , CYW , CNW are steady force
coefficients in regular waves.

It is notable that several aforementioned hydrodynamic
force coefficients, such as hydrodynamic derivatives, are
usually unknown and estimated from empirical formulae,
captive model tests, numerical computations, or system iden-
tifications. Thereby, the existing mathematical model of ship
maneuvering motion, including MMG model, are typical
physical model with uncertainties in nature.
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III. MMG MODEL BASED SHIP MANOEUVRING SYSTEM
AND PRELIMINARIES
A. MMG MODEL BASED SHIP MANOEUVRING SYSTEM
Consider the MMGmodel described from Eq. (4) to Eq. (20),
the rudder angle δ is model input, the surge velocity u, sway
velocity vm, and yaw rate r are model output. In general,
the rudder angle δ is mainly applied to control ship heading
angle ψ when ship is manoeuvring, while surge velocity u
and sway velocity vm are varied accordingly.
Hence, the relationship between rudder angle δ and ship

heading angle ψ is usually used to design the controller
of ship manoeuvring. By integrating the second and third
formulation of Eq. (4), the derivative of r becomes

ṙ = fr (r)
/
σr +

(
gr
/
σr
)
sin
(
δ − vR

/
uR
)
cos δ + ξ (21)

where fr (r) = (m+my)NH +xGmur(mx−my)−xGmYH is a
highly nonlinear uncertain function of r , gr = 0.5ρARU2

Rfα×[
(1+ aH )xGm− (m+ my)(xR + aHxH )

]
and σr = x2Gmmy+

(m + my)(IzG + Jz) are uncertain parameters, ξ donates
bounded uncertain external disturbance, include wind, wave
and external forces.

Meanwhile, in view of the actual practice, the first order
rudder actuator dynamics model is expressed as follows

δ̇ = −
(
1
/
TE
)
δ +

(
KE
/
TE
)
δE (22)

where TE is time constant of a steering gear,KE is the steering
quality index, δE is the order angle of the steering gear.
Then the control system regarding the ordered rudder angle

δE and ship heading angle ψ is expressed as follows
ψ̇ = r
ṙ = fr (r)

/
σr +

(
gr
/
σr
)
sin
(
δ − vR

/
uR
)
cos δ + ξ

δ̇ = −
(
1
/
TE
)
δ +

(
KE
/
TE
)
δE

(23)

Consider the control system (23), it can be observed that
it is entirely different from affine strict-feedback nonlinear
system, which is shown in [32]. Hence, control system (23)
is not said to be considered as a class of affine strict-feedback
nonlinear systems. Furthermore, owing to the non-affine
properties, it is extremely difficult to design exact virtual
controls and actual control forMMGbased shipmanoeuvring
system (23) in conventional adaptive backstepping design
procedure.

Essentially, it is easy to find out that the control system (23)
could be viewed as a class of uncertain nonlinear systems in
non-affine pure-feedback form, as shown in [60]. Thereby, to
carry out the adaptive backstepping design for ship manoeu-
vring system, the control system (23) is considered to be
a class of non-affine pure-feedback nonlinear system with
uncertainties in this section.

For convenience, define x1 = ψ , x2 = r , x3 = δ, and u =
δE , the control system (23) is transformed to the following

form: 
ẋ1 = x2
ẋ2 = f2(x̄3)
ẋ3 = f3(x̄3, u)
y = x1

(24)

where x̄3 = [x1, x2, x3]T ∈ R3 is system state variables,
u ∈ R is system input, y ∈ R is the system output, and fi(·),
i = 2, 3, are uncertain smooth nonlinear functions with
external disturbances.

For the control design of system (24), define

g2(x̄3) = ∂f2(x̄3)
/
∂x3, g3(x̄4) = ∂f3(x̄4)

/
∂x4 (25)

where x4 = u. Owing to the external disturbances is bounded
in practice, it is easy to see that the signs of g2(·) and g3(·) are
positive, and exist constants gi1 ≥ gi(·) ≥ gi0 > 0, i = 2, 3.
In the meanwhile, for system output y, the reference tra-

jectory yr (t) is a sufficiently smooth function of t and yr (t),
ẏr (t), ÿr (t) are bounded for t ≥ 0.

B. RADIAL BASIS FUNCTION (RBF) NEURAL NETWORK
Owing to the universal approximation ability, neural net-
work (NN) has become one of the most frequently tools
in control domain. Owing to the simple structure and good
approximation capability, the radial basis function (RBF)
NN is exploited to approximate the continuous function
h(Z ): Rq→ R in this paper as follows

hnn(Z ) = W T S(Z ) (26)

where Z ∈ �Z ⊂ Rq is input vector, W = [w1, w2,. . . ,
wl]T ∈ Rl is weight vector, l is RBF NN node number, and
S(Z ) = [s1(Z ), s2(Z ),. . . , sl(Z )]T with si(Z ) is expressed as
the following Gaussian function

si(Z ) = exp
[
−(Z − µi)T (Z − µi)

/
σ 2
i

]
, i = 1, 2, . . . , l

(27)

where the centre of receptive field µi = [µi1, µi2,. . . , µiq]T ,
and σi is the width of the Gaussian function.

Furthermore, for each continuous function over a compact
set �Z ⊂ Rq, arbitrary approximate accuracy could have
achieved by RBF NN in following form

h(Z ) = W ∗T S(Z )+ ξ,∀Z ∈ �Z (28)

where weight vector W ∗ is an ideal constant and needs to be
estimated by Ŵ , ξ means the approximation error.

IV. MMG MODEL BASED ADAPTIVE BACKSTEPPING
CONTROL DESIGN
A. ADAPTIVE BACKSTEPPING CONTROL DESIGN
In this section, based on NN approximation and DSC tech-
nique, the direct adaptive backstepping control design proce-
dure for non-affine ship manoeuvring nonlinear system (24)
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is described in detail. The control design procedure contains
3 steps, as follows:
Step 1: Defining s1 = x1 − yr , then the derivative of s1 is

ṡ1 = x2 − ẏr (29)

Considering x2 as a virtual control input, and choosing the
ideal control input α2 as follow

α2 = −k1s1 + ẏr (30)

where k1 is a design positive constant.
Then, a first-order filter with time constant τ2 is employed

to turn α2 into a new state variable z2

τ2ż2 + z2 = α2, z2(0) = α2(0) (31)

Step 2: Defining s2 = x2 − z2, then the derivative of s2 is

ṡ2 = f2(x̄3)− ż2 (32)

since ∂f2(x̄3)
/
∂x3 ≥ g20 > 0, then ∂ [f1(x̄2)− ẏr ]

/
∂x2 ≥

g20 > 0.
Considering x3 as a virtual control input, on the basis of

Implicit Function Theorem, there is a continuous smooth
function x3 = α∗3 (x̄2, ż2) satisfy

f2(x̄2, α∗3 )− ż2 = 0 (33)

At the same time, in accordance with the Mean Value
Theorem, there is a λ2 (0 < λ2 < 1) t satisfies

f2(x̄3) = f2(x̄2, α∗3 )+ gλ2 (x3 − α
∗

3 ) (34)

where gλ2 = g2(x̄2, xλ2 ) with xλ2 = λ2x3 + (1− λ2)α∗i+1.
Combining (32) - (34) yields

ṡ2 = gλ2 (x3 − α
∗

3 ) (35)

Here, α∗3 (x̄2, ż2) can be approximated by RBF NN
W T

2 S2(Z2) as follow

α∗3 (x̄2, ż2) = W T
2 S2(Z2)+ ξ2 (36)

where Z2 = [x̄2, ż2]T ∈ �2 ⊂ R3, and approximation error
|ξ2| ≤ ξ

∗

2 with constant ξ∗2 > 0.
The virtual control input α3 is chosen as

α3 = −k2s2 + Ŵ T
2 S2(Z2) (37)

where k2 is a design positive constant, and consider the
following adaptation law

˙̂W2 = 02

[
−S2(Z2)s2 − η2Ŵ2

]
(38)

with any constant matrix 02 = 0T2 > 0, and a real scalar
η2 > 0.
Then, a first-order filter with time constant τ3 is employed

to turn α3 into a new state variable z3

τ3ż3 + z3 = α3, z3(0) = α3(0) (39)

Step 3: Defining s3 = x3 − z3, then the derivative of s3 is

ṡ3 = f3(x̄3, u)− ż3 (40)

since ∂f3(x̄3, u)
/
∂u ≥ g30 > 0,then ∂ [f3(x̄3, u)− ż3]

/
∂u ≥

g30 > 0.
Similarly with Step 2, there is a continuous smooth func-

tion u = u∗(x̄3, ż3) satisfy

f3(x̄3, u∗)− ż3 = 0 (41)

and there is a λ3 (0 < λ3 < 1) satisfy

f3(x̄3, u) = f3(x̄3, u∗)+ gλ3 (u− u
∗) (42)

where gλ3 = g3(x̄3, xλ3 ) with xλ3 = λ3u+ (1− λ3)u∗.
Combining (40) - (42) yields

ṡ3 = gλ3 (u− u
∗) (43)

Here, u∗(x̄3, ż3) can be approximated by RBF NNW T
3 S3(Z3)

as follow

u∗(x̄3, ż3) = W T
3 S3(Z3)+ ξ3 (44)

where Z3 = [x̄3, ż3]T ∈ �3 ⊂ R4, and approximation error
|ξ3| ≤ ξ

∗

3 with constant ξ∗3 > 0.
Then, choose the actual control input u as

u = −k3s3 + Ŵ T
3 S3(Z3) (45)

where k3 is a design positive constant, and consider the
following adaptation law

˙̂W3 = 03

[
−S3(Z3)s3 − η3Ŵ3

]
(46)

with any constant matrix 03 = 0T3 > 0, and a real scalar
η2 > 0.
Remark 1: It is worth noting that if the NNs are

employed to approximate the desired virtual control (36)
and desired actual control (44) in adaptive NN (or FLS)
control as [28]–[43], the circular construction of the actual
controller for non-affine ship manoeuvring nonlinear pure-
feedback system (24) will appear since theNN approximation
is one part of control u. To overcome this difficulty, in this
article, the Implicit Function Theorem [58] and Mean Value
Theorem are used to show the existence of desired feedback
control α∗3 and u∗, as well as design the stabilizing func-
tion, which the RBF NN is employed to approximate the
desired feedback control α∗3 and u

∗. Following this approach,
the circularity problem during adaptive backstepping design
for system (24) is avoided with less restrictive assumptions.
Remark 2: In addition, to design a practicable adaptive con-

troller, the complexity growing problem is another difficulty
in the conventional backstepping design procedure due to the
repeated differentiations of certain nonlinear functions [35],
e.g. for system (24), the derivatives of α2 and α3 would
have to appear in α3 and u respectively, lead to a complex
expression of u. Specifically, in this article, by incorporat-
ing the DSC technique, the quantity α̇i is replaced by żi in
defining the virtual control αi+1, and zi is defined by a first-
order filter with αi as input. Obviously, simpler algebraic
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operations replace the operation of differentiation. As a result,
the complexity growing problem is avoided and a much
simpler adaptive NN controller is achieved.
Remark 3: It is well known that the backstepping design

method is a major and elegant control design technique for
lower-triangular systems with nonlinearities, uncertainties,
time-varying, time-delay. Besides the ship manoeuvring non-
linear system (24), the backstepping design has been well
developed for a great deal of mechatronic systems nowadays,
e.g. to deal with the various nonlinearities and uncertainties
in teleoperation system, an adaptive fuzzy backstepping con-
trol design is proposed for bilateral teleoperation manipula-
tors [64].

B. STABILITY ANALYSIS
This section gives the stability analysis of ship manoeuvring
closed-loop system (24). To this end, define the NN weight
estimation error as

W̃i = Ŵi −W ∗i , i = 2, 3 (47)

According to Eqs. (36), (37), (44) and (45), then the error
surface si, i = 1, 2, 3 becomes

ṡ1 = s2 + z2 − ẏr
ṡ2 = gλ2

[
s3 + z3 −W T

2 S2(Z2)− ξ2
]

ṡ3 = gλ3
[
−k3s3 + W̃ T

3 S3(Z3)− ξ3
] (48)

Define{
y2 = z2 − α2 = z2 + k1s1 − ẏr
y3 = z3 − α3 = z3 + k2s2 − Ŵ T

2 S2(Z2)
(49)

then
ṡ1 = −k1s1 + s2 + y2
ṡ2 = gλ2

[
−k2s2 + s3 + y3 + W̃ T

2 S2(Z2)− ξ2
]

ṡ3 = gλ3
[
−k3s3 + W̃ T

3 S3(Z3)− ξ3
] (50)

Noting that

żi = (αi − zi)
/
τi, i = 2, 3 (51)

gives
ẏ2 = ż2 + k1ṡ1 − ÿr =−y2

/
τ2+B2(s1, s2, y2, yr , ẏr , ÿr )

ẏ3 = ż3 + k2ṡ2 −
˙̂W T
2 S2(Z2)− Ŵ

T
2
∂S2
∂ x̄2
˙̄x2 − Ŵ T

2
∂S2
∂ ż2

z̈2

= −y3
/
τ3 + B3(s1, s2, s3, y2, y3, Ŵ2, Ŵ3, yr , ẏr , ÿr )

(52)

where B2(s1, s2, y2, yr , ẏr , ÿr ) = k1ṡ1 − ÿr ,B3(s1, s2, s3,
y2, y3,
Ŵ2, Ŵ3, yr , ẏr , ÿr ) = k2ṡ2 −

˙̂W T
2 S2(Z2) − Ŵ T

2
∂S2
∂ x̄2
˙̄x2 −

Ŵ T
2
∂S2
∂ ż2
z̈2 are continuous functions and satisfies |B2| ≤ M2,

|B3| ≤ M3.

1) INPUT-TO STATE PRACTICALLY STABLE (ISPS) OF
SY-SUBSYSTEM
In this subsection, the stability analysis of sy-subsystem is
carried out, and the result shows that the sy-subsystem is
input-to state practically stable (ISpS) [65]–[67].
Lemma 1: Considering y and W̃ are input, s is state, the sy-

subsystem composed by Eqs. (50) and (52) is ISpS.
Proof: Choose the ISpS-Lyapunov function candidate of

sy-subsystem as follow

VSy =
1
2

3∑
i=1

s2i +
1
2

2∑
i=1

y2i+1 (53)

The derivative of VSy is

V̇Sy = s1ṡ1+s2ṡ2+s3ṡ3+
∑2

i=1
(−y2i+1

/
τi+1 + yi+1Bi+1)

= −k1s21 + s1s2 + s1y2 + gλ2 [−k2s
2
2 + s2s3 + s2y3

+ s2W̃ T
2 S2(Z2)− s2ξ2]+ gλ3 [−k3s

2
3 + s3W̃

T
3 S3(Z3)

− s3ξ3]+
∑2

i=1
(−y2i+1

/
τi+1+yi+1Bi+1) (54)

using the fact that

sisi+1 ≤ s2i +
(
1
/
4
)
s2i+1,

siyi+1 ≤ s2i +
(
1
/
4
)
y2i+1,

siW̃ T
i Si(Zi) ≤ s

2
i +

(
1
/
4
)
χ2
i

∥∥∥W̃i

∥∥∥2 ,
−siξi ≤ s2i +

(
1
/
4
)
ξ2i ,

yi+1Bi+1 ≤
(
1
/
υ
)
y2i+1B

2
i+1 + υ

/
4,

(55)

where χi satisfies |Si(Zi)| ≤ χi (According to Lemma 1 of
[58]), then

V̇Sy ≤
[
(−k1 + 2)s21 +

1
4
s22

]
+ gλ2

[
(−k2 + 4)s22 +

1
4
s23

]
+ gλ3 (−k3+2) s

2
3+

1
4

3∑
i=2

gλiχ
2
i

∥∥∥W̃i

∥∥∥2+ 1
4

3∑
i=2

gλiξ
2
i

+
1
2
υ +

(
1
4
−

1
τ2
+
B22
υ

)
y22+

(
gλ2
4
−

1
τ3
+
B23
υ

)
y23

(56)

From Assumption 1, |B2| ≤ M2 and |B3| ≤ M3, we have

V̇Sy ≤
[
(2− k1)s21 +

1
4
s22

]
+

[
(4ḡ2 − k2g2)s22 +

1
4
ḡ2s23

]
+ (−k3g3 + 2ḡ3) s23 +

1
4

3∑
i=2

ḡiχ2
i

∥∥∥W̃i

∥∥∥2+ 1
4

3∑
i=2

ḡiξ2i

+
1
2
υ+

(
1
4
−

1
τ2
+
M2

2

υ

)
y22+

(
ḡ2
4
−

1
τ3
+
M2

3

υ

)
y23

(57)

choose 
k1 ≥ 2+ 1

2a1,
k2g2 ≥ 4ḡ2 + 1

4 +
1
2a1,

k3g3 ≥ 2ḡ3 + 1
4 ḡ2 +

1
2a1,

(58)
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where a1 > 0, and let

1
τ2
≥

1
4
+
M2

2

υ
+

1
2
a1,

1
τ3
≥
ḡ2
4
+
M2

3

υ
+

1
2
a1,

b1 =
1
4
max

{
ḡiχ2

i |i = 2, 3
}
, c1 =

1
4

3∑
i=2

ḡiξ∗2 +
1
2
υ (59)

then, we obtain

V̇Sy ≤ −a1VSy + b1
∥∥∥W̃∥∥∥2 + c1 (60)

According to the Definition 2 of [32], if we choose a
class K -functions θ1(s) = θ2(s) =

(
1
/
2
)
s2, θ3(s) =(

1
/
2
)
a1s2 and θ4(s) = bs2, then the ISpS of sy-subsystem is

achieved and sy-subsystem’s nonlinear L∞ gain function is
expressed as

ϕ1(s) = θ
−1
1 ◦ θ2 ◦ θ

−1
3 ◦ θ4(s) =

√
2b1
a1

s (61)

2) ISPS OF W̃ -SUBSYSTEM
In this subsection, the stability analysis of W̃ -subsystem is
carried out, and the result shows that the sy-subsystem is
ISpS. For this purpose, the W̃ -subsystem is rewritten as

˙̃Wi = 0i

[
−Si (Zi) si − ηiW̃i − ηiWi

]
, i = 2, 3 (62)

Lemma 2: Considering s is input, W̃ is state, the
W̃ -subsystem (62) is ISpS.
Proof: Choose the ISpS-Lyapunov function candidate of

W̃ -subsystem as follow

VW̃ =
1
2

3∑
i=2

W̃ T
i W̃i (63)

The derivative of VW̃ is

V̇W̃ =
3∑
i=2

[
−W̃ T

i 0iSi (Zi) si − ηiW̃
T
i 0iW̃i − ηiW̃ T

i 0iWi

]
(64)

using the fact that
−W̃ T

i 0iSi (Zi) si ≤
λmin (0i) ηi

4
W̃ T
i W̃i+

‖0i‖
2 χ2

i

λmin (0i) ηi
s2i ,

−ηiW̃ T
i 0iW̃ ≤−λmin (0i) ηiW̃ T

i W̃i,

−ηiW̃ T
i 0iW ≤

λmin (0i) ηi

4
W̃ T
i W̃ +

ηi ‖0i‖
2
‖Wi‖

2

λmin (0i)
,

(65)

Then we obtain

V̇W̃ ≤
3∑
i=2

λmin(0i)ηi
2

W̃ T
i W̃i +

3∑
i=2

‖0i‖
2 χ2

i

λmin(0i)ηi
s2i

+

3∑
i=2

ηi ‖0i‖
2
‖Wi‖

2

λmin(0i)
(66)

choose

min {λmin(0i)ηi |i = 2, 3 } ≥ a2 (67)

where a2 > 0, and let

b2 =
1
4
max

{
‖0i‖

2 χ2
i

λmin(0i)ηi
|i = 2, 3

}
,

c2 =
3∑
i=2

ηi ‖0i‖
2
‖Wi‖

2

λmin(0i)
(68)

Then we obtain

V̇W̃ ≤ −a2VW̃ + b2 ‖s‖
2
+ c2 (69)

Similar with the sy-subsystem, if we choose a class
K -functions θ1(s) = θ2(s) =

(
1
/
2
)
s2, θ3(s) =

(
1
/
2
)
a1s2

and θ4(s) = bs2, then the ISpS of W̃ -subsystem is
achieved and nonlinear L∞ gain function of W̃ -subsystem
is expressed as

ϕ2(s) = θ
−1
1 ◦ θ2 ◦ θ

−1
3 ◦ θ4(s) =

√
2b2
a2

s (70)

3) ISPS OF THE COMPOSITE SYSTEM
In this subsection, based on small gain theorem [68], the
stability analysis of composite system is described as follows.
Theorem 1: In view of the closed-loop system which is

composed of sy-subsystem and W̃ subsystem. Then, for any
bounded initial conditions, all the closed-loop system signals
remain uniformly ultimately bounded, and the steady state
tracking error converges to a neighbourhood around zero by
appropriately choosing control parameters.
Proof: Choose the function

ϕ1 ◦ ϕ2(s) =

√
4b1b2
a1a2

s (71)

From the expressions of a1, a2, b1 and b2, we can choose

ki, 0i and ηi approximately to make
√
4b1b2

/
(a1a2) <

1, i.e., the composite system consisting of Eqs. (50),
(52) and (62) satisfies Theorem 1, then the closed-loop
system is ISpS.

According to the Definition 1 of [36], then∥∥∥[sT , yT , W̃ T
]
t

∥∥∥ ≤ ω (∥∥∥[sT , yT , W̃ T
]
0

∥∥∥ , t)+ e (72)

where ω(·, ·) denote a class KL-function, and e > 0. Then,
the uniformly ultimately bounded for the states of composite
system is achieved for ω(·, t)→ 0 when t →∞. In addition,
the Eq. (60) is rewritten as

V̇Sy ≤ −a1VSy + c∗1 (73)

where b1
∥∥∥W̃∥∥∥2 + c1 ≤ c∗1.

Solving the inequality (73) gives

VSy ≤
c∗1
a1
+

[
VSy (0)−

c∗1
a1

]
e−a1t , ∀t ≥ 0 (74)
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It can be seen fromEq. (74) thatVSy is bounded by c∗1
/
a1 in

the end. As a result, the semi-globally uniformly ultimately
bounded for all signals si, i = 1, 2, 3, and yi, i = 2, 3, are
achieved.
Remark 4: According to the proof, it is obvious that if

the positive constants k1, k2, k3 are increasing, as well as
the time constants τ1, τ2, τ3 are reducing, that is means the
positive constant a1 is increasing, then the quantity of c∗1

/
a1

will approach to arbitrary small. Consequently, the tracking
error will approach to arbitrary small.

V. SIMULATION STUDIES
To illustrate the effectiveness and merits of the proposed con-
trol scheme, two simulation examples for MMG based ship
manoeuvring nonlinear system are studied in this section.

In the simulation, sample ship is the VLCC tanker named
as ‘‘KVLCC2’’. Table 1 and 2 gives the principal particulars
and the main experimental hydrodynamics force coefficients
of sample ship [54], respectively.

Based on the adaptive control design of this paper, the vir-
tual control input and the actual control input for ship
manoeuvring nonlinear systems (24) are given as


α2 = −k1s1 + ẏr
α3 = −k2s2 + Ŵ T

2 S2(Z2)
u = −k3s3 + Ŵ T

3 S3(Z3)

(75)

TABLE 1. Principal particulars of KVLCC2 tanker.

TABLE 2. Main hydrodynamics force coefficients of KVLCC2 tanker.

FIGURE 2. Ship heading angle of Example 1.

and the adaptive laws are
˙̂W2 = 02

[
−S2(Z2)s2 − η2Ŵ2

]
˙̂W3 = 03

[
−S3(Z3)s3 − η3Ŵ3

] (76)

In the initial status of simulation, the heading angle ψ ,
yaw rate r , surge velocity u and sway velocity vm and rudder
angle δ of sample ship are 0◦, 0◦/s, 15.5 kn, 0 kn and 0◦,
respectively, as well as the initial weight of RBF NN are
Ŵ2(0) = 0, Ŵ3(0) = 0. Moreover, another design controller
parameters k1 = 0.05, k2 = 600, k3 = 10, 01 = 02 =

diag{10}, and η1 = η2 = 0.1. Both RBF NN Ŵ T
2 S2 (Z2)

and Ŵ T
3 S3 (Z3) contains 25 nodes (l = 25), with centre µi

(i = 1,. . . ,l) evenly spaced in [−4, 4] × [−4, 4], and widths
ηi = 2(i = 1,. . . ,l).
In this article, two reference signals are studied.
Example 1. The reference signal is assumed as a constant,

e.g.

yr = 35◦ (77)

To validate the utility of the proposed method for ship
manoeuvring systems with and without model uncertainties,
an external disturbance ξ = 0.00004×sin(0.5t) is employed
and regarded as uncertainties in control system. The simu-
lation results, including with and without uncertainties, are
presented in Figures 2-5. Figure 2 shows the heading angle
ψ of sample ship and the reference signal yr . From Figure 2,
it can be seen that the good tracking performance is achieved
for ship manoeuvring system with and without model uncer-
tainties. The curves of surge, sway and resultant velocity of
sample ship are given in Figure 3, and it is obvious that the
surge, sway and resulting velocity of the sample ship vary
with the changes of heading angle, which is steered by the
rudder. Figure 4 shows the curve of yaw rate of the sample
ship, and the curves of order rudder angle (control input) and
actual rudder angle of sample ship is given in Figure 5. It can
be observed from Figure 5 that the actual rudder angle turns
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FIGURE 3. Surge, sway and resultant velocity of Example 1.

FIGURE 4. Yaw rate of Example 1.

FIGURE 5. Rudder angle of Example 1.

from 0 degree to 35 degrees in about 20 seconds, hence the
practical rudder dynamics is considered sufficiently in this
paper. Figure 6 shows the boundedness of norms of RBF NN

FIGURE 6. Norms of NN weight Ŵ2 and Ŵ3 of Example 1.

FIGURE 7. Ship heading angle of Example 2.

weights for example 1. Based on the above observation, it is
obvious that for the proposed approach is a viable control
scheme for ship manoeuvring nonlinear system with uncer-
tainties.
Example 2. The reference signal is assumed as a realistic

performance requirement of ship, i.e.

φ̈m (t)+ 0.1φ̇m (t)+ 0.0025φm (t) = 0.0025φr (t) (78)

where φm(t) means the desired ship heading signal, φr (t) is
an order input signal with period in 500s and values from 0◦

to 20◦, i.e.,

φr (t) =
[
20
(
sign

(
sin
(
2π t

/
1000

))
+ 1

)/
2
]
π
/
180 (79)

The simulation results are presented in Figures 7-11. From
Figure 7, it is obvious that the good tracking performance is
achieved for heading angle ψ of sample ship to the reference
signal yr . Figure 8 and 9 gives the curves of surge, sway
and resultant velocity as well as yaw rate of sample ship,
respectively. The curves of order rudder angle (control input)

VOLUME 8, 2020 3281



X. Wang, C. G. Soares: Direct Adaptive Neural Network Control for Ship MMG Model-Based Uncertain Nonlinear Systems

FIGURE 8. Surge, sway and resultant velocity of Example 2.

FIGURE 9. Yaw rate of Example 2.

FIGURE 10. Rudder angle of Example 2.

and actual rudder angle of sample ship is given in Figure 10,
and Figure 11 shows the boundedness of norms of RBF NN
weights for example 2.

FIGURE 11. Norms of NN weight Ŵ2 and Ŵ3 of Example 2.

Remark 5: It is worth noting that the simulation results of
Example 2 are carried out by using the proposed approach
and the RBFNN based adaptive sliding mode control (SMC)
design scheme [69] simultaneously. From Figures 7-10, it is
easily observed that there are slight differences in the tracking
performance, yaw rate and actual rudder angle of sample ship
by using two control approaches. Since the RBFNN based
adaptive SMC design scheme have been applied to many
industrial systems and achieved many remarkable results in
practice, e.g. multilateral tele-robotic system [69], based on
the above observations, it can be certified that the perfor-
mance of proposed approach is effective and practicable.

VI. CONCLUSION
The simulation results are encouraging, and indicate that the
control performance of the proposed adaptive NN control
scheme for 3 DOF MMG manoeuvring system is excellent,
which means that the direct backstepping control design for
high fidelity non-affine ship manoeuvring system is feasible
and successful via the proposed adaptive NN control scheme.
Thereby, comparing with the controller designed based on the
simplified ship manoeuvring system, the proposed adaptive
NN control scheme is able to realize good control perfor-
mance for most of ship manoeuvres. Moreover, the complex-
ity of the proposed adaptive NN control scheme is reduced
significantly based on DSC technique, which means that it
is easy to achievable in practice. As a result, both theoretical
analysis and case studies have demonstrated that the proposed
adaptive NN controller is a workable and advanced control
scheme for high fidelity non-affine ship manoeuvring system
in this article.

Furthermore, the proposed direct adaptive NN control
scheme will be introduced to study and improve the tracking
performance of high fidelity 3 DOF MMG manoeuvring
model in regular or irregular waves in future work.
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