
Received November 28, 2019, accepted December 14, 2019, date of publication December 26, 2019,
date of current version January 7, 2020.

Digital Object Identifier 10.1109/ACCESS.2019.2962549

Constructing Independent Spanning
Trees on Pancake Networks
DUN-WEI CHENG 1, CHIH-TE CHAN 1, AND SUN-YUAN HSIEH 2,3, (Senior Member, IEEE)
1Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan 701, Taiwan
2Department of Computer Science and Information Engineering, Institute of Medical Informatics, National Cheng Kung University, Tainan 701, Taiwan
3Center for Innovative FinTech Business Models, National Cheng Kung University, Tainan 701, Taiwan

Corresponding author: Dun-Wei Cheng (dunwei.ncku@gmail.com)

ABSTRACT For any graph G, the set of independent spanning trees (ISTs) is defined as the set of spanning
trees in G. All ISTs have the same root, paths from the root to another vertex between distinct trees are
vertex-disjoint and edge-disjoint. The construction of multiple independent trees on a graph has numerous
applications, such as fault-tolerant broadcasting and secure message distribution. The pancake graph is a
subclass of Cayley graphs and since Cayley graphs are crucial for designing interconnection networks,
constructing ISTs on these graphs is necessary for many practical applications. In this paper, we propose
algorithms for constructing ISTs on pancake graph. Examine the use of our algorithm for constructing ISTs
on pancake graph in different dimensions. We also present proofs about the construction of ISTs on pancake
graph to verify that the correctness of these algorithms.

INDEX TERMS Interconnection networks, independent spanning trees, pancake networks.

I. INTRODUCTION
In graph theory, the pancake graph is a type of Cayley graphs
that encodes a certain abstract structure of an element group
into a graph. For example, each vertex in the pancake graph
can be used to represent a permutation of the element set. Let
P(n) (alternatively referred to as an n-pancake graph) denotes
the structure of a graph in which each vertex represents a
permutation of n elements from 1 to n; also know as an
n-dimensional pancake graph. Moreover, the graph’s edges
are given between permutations transitive by prefix reversals;
this means that when two permutations of n elements are
generated through prefix reversals, then there exists an edge
that is connected between these two vertices (e.g., an edge
exists between (1, 2, 3, 4) and (3, 2, 1, 4) because the prefix
of three elements is a reversal). The cardinality of the vertex
set in P(n) is n!, and the n-pancake graph is n − 1 regular.
Figure 1 presents the structure of P(3) and P(4). The pancake
graph can be regarded as a model of interconnecting networks
for a parallel computing structure [1], [3], [4], [14]. Con-
siderable attention has been paid to the inherent symmetric
and reversive properties of graphs such as their relative
sparsity compared with hypercubes and the sub-logarithmic
diameter that can be used to represent a delay in
communication [10], [15].

The associate editor coordinating the review of this manuscript and

approving it for publication was Kashif Saleem .

FIGURE 1. Example on P(3) and P(4).

In the design of interconnecting networks for parallel com-
puting structures, fault-tolerance can be a crucial criterion
that enables a system to continue operating properly in the
event of failures either in hardware or software that relate
to some components. Fault-tolerant broadcasting and secure
message distribution have numerous applications for con-
structing multiple independent spanning trees (ISTs) in the
relevant interconnecting networks. Let us consider the nature
of ISTs. The ISTs of a given graph constitute a set of spanning
trees that share the same root vertex, and each path from
the root to the other vertices in the graph between each
distinct spanning tree is vertex-disjoint and edge-disjoint.
Because, in a given interconnecting network, the ISTs are
vertex-disjoint and edge-disjoint. When some components

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 3427

https://orcid.org/0000-0001-9095-1288
https://orcid.org/0000-0002-8123-484X
https://orcid.org/0000-0003-4746-3179
https://orcid.org/0000-0001-8062-3301

D.-W. Cheng et al.: Constructing ISTs on Pancake Networks

are no longer operating properly, the system can use a dif-
ferent spanning tree structure to broadcast and continue to
complete jobs. Figure 2 illustrates the different spanning trees
on P(3). Considering spanning tree 1 and spanning tree 2 in
Figure 2, we observe that the paths are vertex-disjoint and
edge-disjoint. Considering spanning tree 3 and spanning tree
4 in Figure 2, we observe that although they are vertex-
disjoint, the edge between root vertex (1, 2, 3) and vertex
(2, 1, 3) is used in both trees; therefore, they are not inde-
pendent [2], [9], [16].

FIGURE 2. Example of spanning trees on P(3).

Zehavi and Itai proposed that k ITSs can be constructed
from a k-connected graph [19]. This conjecture has been
confirmed on a k-connected graph when k is less than 5
(as demonstrated in [9], [7], [19], and [8] for k = 2, 3,
and 4, respectively). However, the conjecture has yet to be
confirmed for k greater than 5. Researchers have shifted
their attention to methods for constructing ISTs on restricted
interconnected networks [5], [6]. Numerous studies have
been published regarding different types of hypercubes; in
particular, star graphs can be used for constructing ISTs on
different types of Cayley graphs [16]. We focus on construct-
ing ISTs on different graphs [5], [6], [11]–[13], [18]; the
emphasis is how to determine different independent paths
from vertex v to the root vertex [10], [17]. We consider that
an algorithm is fully parallelized if uses all network vertices
for computation [5], [18]. In this paper, we propose parallel
algorithms for determining the parent vertex for each vertex
to construct ISTs.
Property 1: The greatest number of ISTs in P(n) is n− 1.
Proof: P(n) is n − 1 regular. Each vertex in a spanning

tree has only one parent. Therefore, we can assume that the
vertices in ISTs must connect to a different parent, and n− 1
vertices can be selected as the parent for a vertex. Hence,
the greatest number of ISTs in P(n) is n− 1.

II. PRELIMINARIES
Let πn(s) denotes the set of all permutations that conform
to the following rules regarding variables n and s. The
variable n is an integer, which represents the cardinality
of elements. The permutations of n elements from 1 to
n, and the suffix of these permutations are the same spe-
cific sequence s. When s is a null sequence, the permuta-
tion set is all permutations from 1 to n (π3 = (1, 2, 3),

(2, 1, 3), (1, 3, 2), (3, 1, 2), (2, 3, 1), (3, 2, 1)). And the per-
mutation set π3(3, 1) means the specific permutation set
(2, 3, 1) in which the suffix of every permutation is obeyed
the s suffix sequence.

In the pancake graph, each vertex u ∈ πn represents a
certain permutation of n elements. For permutation u =
(u1, u2, . . . , un), let u(i) = ui denotes the value of the ith
element in this permutation; and let u−1(ui) = i denotes the
position index of the element ui in u. u 〈i〉 describes how to flip
the ordering from the permutation u. Start from the element ui
and go back through u1, after this, we concatenate the rest of
permutation from ui+1 to un. That means the new permutation
u 〈i〉 = (ui, ui−1, . . . , u2, u1, ui+1, . . . , un).
We construct an n-dimensional pancake graph P(n) using

the vertex set V (P(n)) ∈ πn and connecting these vertices
by the edge set E(P(n)) = {u, u 〈i〉 |2 ≤ i ≤ n}. The
pancake graph is an undirected graph. Let Pni denotes a subset
of vertices that the value of the last element equals to i.
In this paper, we choose a particular subset of vertices for
constructing distinct ISTs. And according to different subset
we used, we denote IST as T nt which is constructed from
the subset of vertices Pnt+1. In the context of Property 1,
we can note that the greatest number of ISTs in P(n) is
n − 1. We named this subset that we used for constructing
IST as ‘‘Main Subset’’ and the rest of subsets as ‘‘Other
Subsets’’. These two terms are crucial for the following
descriptions.

III. ALGORITHM OF ISTs
This section presents the proposed algorithms, designing
two strategies for constructing n − 1 ISTs on n-dimensional
pancake graph P(n). The first strategy constructs n − 2
ISTs according to ‘‘Main Subset’’ that introduce previously.
The second strategy deals with the exceptional case and
find ‘‘the last spanning tree’’ on P(n). Figure 3 sketches the
structure of our ISTs and uses the circle to represent the vertex
subset. Since the pancake graph is symmetric, w.l.o.g., this
paper using the vertex with permutation (1, 2, . . . , n) as the
root for every ISTs.

• The First Strategy: Constructing the IST T nt (1 ≤
t ≤ n − 2) according to ‘‘Main Subset’’ Pnt+1. Start
from the root and construct a spanning tree in Pnn.
Extending this spanning tree to ‘‘Main Subset’’ Pnt+1.
After that, connecting the remaining vertices in ‘‘Other
Subsets’’.

• The Second Strategy: Constructing the ‘‘last spanning
tree’’ T nn−1. Start from the root and construct a spanning
tree in Pn1. Extend the last spanning tree to subsets Pni
(2 ≤ i < n). After that, connecting the remaining
vertices in subset Pnn.

During the construction, since each vertex in the spanning
tree has only one parent vertex but might have multiple
children. Instead of constructing through the child vertices,
we focus on how to choose the one parent for each vertex in
this paper.

3428 VOLUME 8, 2020

D.-W. Cheng et al.: Constructing ISTs on Pancake Networks

FIGURE 3. Structure of ISTs.

A. MAIN ALGORITHM
The main algorithm constructs ISTs which connecting ver-
tices in Pnn (the specific vertex subset that the last element of
each vertex equals to n), and then using two subroutines to
deal with vertices in ‘‘Main Subset’’ and ‘‘Other Subsets’’.
According to our first strategy, we construct n−2 ISTs on an
n-pancake graph and the last spanning tree will be constructed
by those unused connections. We require four parameters
to present the construction of ISTs: the input vertex u, the
position index pos, the ordinal number of ISTs t , and a result
table table to record the constructions.
• u: an input vertex in P(n) which represents a permuta-
tion, u = (u1, u2, . . . , un).

• pos: denote a position index which indicates the inspect-
ing element.

• t: the ordinal number of ISTs that we construct here, t =
1, .., n− 1.

• table: record the construction of all ISTs. E.g.
table[u, p] = t means that the connection between
vertex u and vertex u 〈p〉 is used by IST t .

Since the pancake graph is symmetric and hierarchy,
the structure of vertex in Pnn is homogeneous to the
(n − 1)-dimensional pancake subgraph P(n − 1). The only
difference is that the permutation of a vertex in Pnn gets one
more element at the end and its value equals to n, as we
can see the structures of P44 and P(3) in Figure 1. Therefore,
we can consider Pnn to be the same as P(n−1), and follow the
ISTs in P(n− 1) to construct the spanning trees in Pnn.
According to the hierarchical structure, we inspect the

input vertex u recursively in the n-pancake subgraph until
it does not belong to Pii(1 < i ≤ n). This means at
position index pos, this input vertex is no longer following
the decreasing order (e.g. (2, 1, 3, 4) will leave the recursion
when pos = 2). Start from how to connect the root vertex,

w.l.o.g., let (1, 2, 3, . . . , n) be the root for each ISTs. When
the input vertex satisfies that u 〈t + 1〉 equals to the permuta-
tion of root, we choose the root vertex as a parent for this input
vertex in T nt . And then, the main algorithm inspects whether
the input vertex belongs to vertex subset Pnn. When position
index pos is less than t + 1, the main algorithm assigns this
input vertex to its parent vertex u 〈t + 1〉.

Algorithm 1 Main Algorithm
Input : u: the input vertex;

pos: the position index we inspecting;
t: the ordinal number of a spanning tree;
table: a two dimensional array records the

constructions of n− 1 ISTs
Output: the parent of this vertex in this spanning tree

and the two dimensional array marking which
parent of the vertices is used

1 table is initailize to 0
2 if u(pos) = pos then
3 Main Algorithm(u, pos− 1, t , table)

4 else if u 〈t + 1〉 = root then
5 table[u, t + 1] = t C (1)

6 else if pos < t + 1 then
7 table[u, t + 1] = t C (2)

8 else if pos = t + 1 then
9 for i = 2; i ≤ pos; i = i+ 1 do

10 if table[u, i] = 0 then
11 table[u, i] = t C (3)

12 else if u 〈pos〉 ∈ πn(1, t + 2, t + 3, . . . , n) then
13 table[u, pos] = t C (4)

14 else if
u 〈pos〉 ∈ {πn(t + 1, t + 3, t + 4, . . . , n) ∪ πn(t + 1, n)}
then

15 table[u, pos] = t C (5)

16 else if u(1) = t + 1 then
17 table[u, pos] = t C (6)

18 else if u(pos) = t + 1 then
19 Goto Algorithm 2

20 else
21 Goto Algorithm 3

In vertex subset Pnn, we also indicate two good vertex sets
which are used to directly connect to ‘‘Main Subset’’ and
‘‘Other Subsets’’:
• The permutation belongs to πn(1, t + 2, t + 3, . . . , n):
There is a suffix of this permutation that starts from 1,
and attaches the increasing sequence from t + 2 to n
(e.g. for IST t = 2, (2, 3, 1, 4, 5, 6) and (3, 2, 1, 4, 5, 6)
are first kind of good vertices in P66).

• And the second kind of good vertex: there is a suffix that
starts from t + 1, and attaches the increasing sequence

VOLUME 8, 2020 3429

D.-W. Cheng et al.: Constructing ISTs on Pancake Networks

from j to n for j ∈ [t + 3, n] (e.g. πn(t + 1, t + 3, t +
4, . . . , n), πn(t + 1, t + 4, . . . , n),, πn(t + 1, n)).

When the input vertex in ‘‘Main Subset’’ or ‘‘Other Subsets’’
that flipping at the pos-th element will become a permutation
belongs to good vertex sets, we choose this good vertex as the
parent for this input vertex. And by this connection, we extend
the construction of IST T nt to ‘‘Main Subset’’ and ‘‘Other
Subsets’’. Figure 4 presents an example of different pancake
graphs in T n1 ; vertices with a bottom line can be considered
good vertices in this spanning tree.

FIGURE 4. Find good vertex set on different pancake graph in T n
1 .

The next step, we choose a parent vertex in ‘‘Main Subset’’
for the input vertex u whose first element equals to t + 1.
The parent vertex we chose represents the permutation of u
that flips at the pos-th element and connect a vertex in ‘‘Main
Subset’’ to a vertex in ‘‘Other Subsets’’ for T nt . The last part
of the main algorithm, we deal with the rest of vertices. When
the input vertex is determined to end on ‘‘Main Subset’’, we
choose a parent for this vertex through subroutine ‘‘Algorithm
2’’. And other vertices must be sent to ‘‘Algorithm 3’’.

B. ALGORITHM 2
Algorithm 2 serves to connect vertices in ‘‘Main Subset’’
Pnt+1 for constructing the specific IST T nt . It requires: the
input vertex u, the position index pos, the ordinal number
of ISTs t , and result table table to record the constructions.
Here, we use one more parameter Hubs to construct IST in
‘‘Main Subset’’. Hubs is a set of vertices in ‘‘Main Subset’’
which flips at the same position index pos from the first kind
of good vertices in Pnn. We denote these vertices as hubs in
‘‘Main Subset’’.

Similar to the main algorithm, we keep shrinking pancake
graph in ‘‘Main Subset’’ down to the smaller pancake sub-
graph that contains at least one hub. We introduce a new
notation Hubs(d) to denote an element set which collects the
d th element for each hub vertex in the Hubs (e.g. the Hubs is
(1, 2, 3, 4), (2, 4, 3, 1), then Hubs(4) = {4, 1}). Algorithm 2
recursively trace those hub vertices by finding the longest

suffix between the input vertex and any hub. And let position
index d to indicate the prefix sequence besides its longest
common suffix.

Algorithm 2 Find ISTs Algorithm on Main Subset
Input : u: the input vertex;

pos: the position index we inspecting;
t: the ordinal number of a spanning tree;
table: a two dimensional array records the

constructions of n− 1 ISTs;
Hubs: the vertex set connects to good vertices

Output: the parent of this vertex in this spanning tree
and the two dimensional array marking which
parent of the vertices is used

1 d = pos
2 if u(d) ∈ Hubs(d) then
3 l ← ∅
4 for i = 1; i ≤ |Hubs|; i = i+ 1 do
5 if u(d) = Hubs[i](d) then
6 l ← Hubs[i]

7 Find ISTs Algorithm on Main Subset(u, d − 1, t ,
table, l)

8 else if u(d) = max1≤s≤d u(s) then
9 table[u, d] = t C (1)

10 else if u(1) ∈ Hubs {d} then
11 table[u, d] = t C (2)

12 else if u(1) = min1≤s≤d u(s) then
13 table[u, d] = t C (3)

14 else if u(1) = max1≤s≤d−1 u(s) then
15 table[u, u−1(min1≤s≤d−1 u(s))] = t C (4)

16 else
17 table[u, u−1(max1≤s≤d−1 u(s))] = t C (5)

In each ‘‘Main Subset’’, there is at least one hub vertex
which directly connects to a good vertex in Pnn and we use
this connection to construct the IST. Specifically, vertices in
‘‘Main Subset’’ must find a path to a hub according to its pre-
fix sequence. To demonstrate the operation of Algorithm 2,
Figure 5 and Figure 6 show an example of constructing IST
T 5
2 in P53. The cycle in these figures represents the hub vertex

and the underlined sequence denotes the prefix sequence that
we use to choose the parent for this vertex. Dotted arrows in
these figures indicate which vertex is inspected and which
vertex is the parent. Corresponding to the rules in Algo-
rithm 2, the element in boldface constitutes the key element
to choosing these rules. According to the rules, we choose the
parent for each vertex in ‘‘Main Subset’’ and find the path to
connect to the hub for constructing the IST.

C. ALGORITHM 3
Algorithm 3 pertains to constructing a spanning tree in
‘‘Other Subsets’’. When the first element of input vertex u

3430 VOLUME 8, 2020

D.-W. Cheng et al.: Constructing ISTs on Pancake Networks

FIGURE 5. The example for the rule from (1) to (2) in Algorithm 2.

FIGURE 6. The example for the rule from (3) to (5) in Algorithm 2.

equals to the main subset numberm = t+1, this vertex would
connect to ‘‘Main Subset’’ by flipping the whole permutation.
For the rest of vertices in ‘‘Other Subsets’’, we flip it at the
element whose value equals to the main subset number and
assigning that vertex as its parent. However, as discussed in
the context of Algorithm 2, some rules would entail conflicts
in ‘‘Other Subsets’’. To maintain Algorithm 2, special rules
must be determined to find the new parents in these conflicts.

As mentioned, we must add some exceptions; therefore,
we design a pre-treatment for inspecting whether we must
use special rules to find the parent for this input vertex. We
introduce two variables:

• gvs(an abbreviation of ‘‘good vertex set’’): gvs stores
an integer to denote the main subset number for which
IST that the second kind of good vertex would directly
connect to this input vertex.

• check(an abbreviation of ‘‘check position index’’):
check stores an integer to denote which position index
that we should inspect when this input vertex be treated
as a vertex in ‘‘Main Subset’’ for other ISTs.

Algorithm 3 pertains to inspecting and addressing exceptions.
Because the outlined rules pertain to Algorithm 2, we can
review them in Algorithm 2 to easily determine them.

For example, the rule (1) in Algorithm 3 is corresponding
to the rule (3) in Algorithm 2. We inspect this input vertex
from the first element to the check position. And when the
first element is theminimum between this prefix, Algorithm 2
assigns this input vertex to the parent which flipped at the

Algorithm 3 Find ISTs Algorithm on Other Subcases
Input : u: the input vertex;

pos: the position index we inspecting;
t: the ordinal number of a spanning tree;
table: a two dimensional array records the

constructions of n− 1 ISTs
Output: the parent of this vertex in this spanning tree

and the two dimensional array marking which
parent of the vertice is used

1 gvs = 0
2 check = 0
3 for i = 1; i ≤ pos ∩ u(1) = pos; i = i+ 1 do
4 if t + 1-i 6= u(i) then
5 gvs = u(i) break

6 for i = pos− 1; i > 2; i = i− 1 do
7 if i > pos− u(pos)+ 1 then
8 if u(i) > u(pos) ∪ u(i) = 1 then
9 check = i break

10 else if i = pos− u(pos)+ 1 then
11 if u(i) 6= 1 then
12 check = i break

13 else
14 if u(i) > pos− i+ 1 then
15 check = i break

16 if u(1) = min1≤s≤check u(s) ∩ u(check) 6=
max1≤s≤check u(s) ∩ u(check) = t + 1 then

17 table[u, u−1(max1≤s≤check u(s))] = t C (1)

18 else if u(check) 6= max1≤s≤check u(s) ∩ u(1) =
max1≤s≤check−1 u(s) ∩min1≤s≤check−1 u(s) = t + 1 then

19 table[u, u−1(gvs)] = t C (2)

20 else if check > pos− u(pos)+ 1 ∩ u(1) <
u(pos) ∩ u(1) > 1 ∩ u(check) = t + 1 then

21 table[u, u−1(max1≤s≤check−1 u(s))] = t C (3)

22 else
23 table[u, u−1(t + 1)] = t C (4)

check position when we treat this vertex belongs to ‘‘Main
Subset’’ in other IST. But when the value of the element at
the check position is equal to t + 1 this connection conducts
a conflict since we also intend to assign to the same parent
in Algorithm 3. The difference is that Algorithm 2 treats this
input vertex as a vertex in ‘‘Main Subset’’, but in Algorithm 3
it is a vertex belongs to ‘‘Other Subsets’’. To overcome this
conflict, we choose a new parent for this input vertexwhenwe
treat it as a vertex belonging to ‘‘Other Subsets’’. Flipping at
the position whose value is the maximum between the prefix
from the first element to the check position. The rest of rules
address the exceptions according to the rule (2) and rule (4)
in Algorithm 2.

VOLUME 8, 2020 3431

D.-W. Cheng et al.: Constructing ISTs on Pancake Networks

IV. PROOF REGARDING ALGORITHMS
We prove some of the rules of the aforementioned algorithms
to ensure that we can construct ISTs on the n-pancake graph
(P(n)).
Property 2: P(n−1) is the graph that each vertex removes

the last element n on Pnn.
Proposition 1: According to the structure of ISTs. The

root connects to the subset Pn1 at the vertex (n, n−1, . . . , 2, 1)
in the last spanning tree T nn−1, and other vertices have paths
to this subset. Therefore, the vertices whose first element is
one connect to Pn1.
Proposition 2: The spanning tree T ni on Pnn is the same as

the spanning tree T n−1i on P(n− 1) (1 ≤ i ≤ n− 2).
Proof: According to Property 2, P(n − 1) is the graph

that each vertex removes the last element n on Pnn. Therefore,
the spanning trees that added an element n to all vertices
on P(n − 1) are also the spanning trees on P(n). Hence,
the spanning tree T ni on Pnn is the same as the spanning tree
T n−1i on P(n− 1) (1 ≤ i ≤ n− 2).
Lemma 1: When there are n − 2 ISTs, the graph g is

induced by the rule of the last spanning tree on P(n). Pn1 is
connected.

Proof: In other spanning trees, the vertices in Pn1 could
find the parent by Algorithm 3. According to Algorithm 3,
when vertices find their parents, they reserve a neighbor for
Algorithm 2 to ensure Algorithm 2 works. Then, according
to Algorithm 2, each vertex must have a path to a hub.
When Algorithm 3 works on Pn1, the second FOR loop in
Algorithm 3 finds only one vertex (n, n − 1, . . . , 2, 1) as
common ancestor for the last spanning tree. In other words,
each vertex in Pn1 reserves a neighbor to ensure a path to
vertex (n, n−1, . . . , 2, 1) on Algorithm 3. Therefore, any two
vertices are connected by the vertex (n, n− 1, . . . , 2, 1), and
Pn1 is connected in g.
Lemma 2: When there are n − 2 ISTs, the graph g is

induced by the rule of the last spanning tree on P(n).
Proof: According to Proposition 1, the vertices whose

first element is one connect to Pn1. Let v denotes the vertex
whose first element is one. Then, if other vertices have paths
to v, these vertices have paths to Pn1. Since the rule 4 in Algo-
rithm 2, there are two different cases to find paths to v. The
first case focuses on vertices which the rule 4 in Algorithm 2
doesn’t work in other spanning tree, and the second case
focuses on remain vertices.

Case 1: According to the structure of ISTs, Algo-
rithm 2 and Algorithm 3. Pni (2 ≤ i ≤ n− 1) is the
Main Subset in different spanning trees. Then, most
vertices don’t connect to v in other spanning trees,
therefore we assign v to be their parent in the last
spanning tree.
Case 2: According to the rule 4 in Algorithm 2,
some exceptional vertices connect to v in other
spanning trees, and these vertices can not connect
to v this time. However, since the rule of edge, if
the rule 4 in Algorithm 2 works on this vertex,

the rule must not be used on the neighbors of this
vertex. These exceptional vertices can connect to a
neighbor which is not used in other spanning trees.
This neighbor has a path to v by Case 1, these
exceptional vertices have paths to Pn1.

Hence, other vertices have paths to Pn1.
Lemma 3: When there are n − 2 ISTs, the graph g is

induced by the rule of the last spanning tree on P(n). There
are n! vertices in g, and g is connected.

Proof: According to the structure of ISTs. The root
connects to the subset Pn1 in the last spanning tree T

n
n−1 at the

vertex (n, n − 1, . . . , 2, 1), and this subset connects to other
subsets. According to Lemma 1, Pn1 is connected in g. And
according to Lemma 2, other vertices have paths toPn1. Hence,
there are n! vertices in g, and g is connected.
Lemma 4: When there are n − 2 ISTs, the graph g is

induced by the rule of the last spanning tree on P(n). There
are n! − 1 edges in g.

Proof: Because there are n−2 ISTs, each vertex choose
only one neighbor as parent in the last spanning tree except
for the root. Then, there are n! − 1 edges in g.
Theorem 1: When there are n − 2 ISTs, the graph g is

induced by the rule of the last spanning tree on P(n). g is a
tree.

Proof: According to Lemma 3 and Lemma 4. There are
n! vertices in g, there are n!−1 edges in g, and g is connected.
Hence, g is a tree.
Theorem 2: The algorithm in this paper constructs n − 1

ISTs on P(n) (n ∈ N).
Proof:

Basic Step: The algorithm constructs 0 ISTs on
P(1).
Induction Step: According to Proposition 2,
the algorithm constructs ISTs on Pnn by following
ISTs on P(n− 1).

By induction hypothesis, the algorithm in this paper can
construct n− 1 ISTs on P(n) (n ∈ N).

V. CONCLUSION
The pancake graph is notable and similar to a bubble sort
graph. Both the pancake and bubble sort graphs can have n!
vertices if they are constructed from the same value. However,
the rules for edges are different. In the pancake graph, two
different vertices u, v in the pancake have an edge between
them, if for an integer i(2 ≤ i ≤ n), u and v are the same when
u flips its sequence on index i. However, the two different
vertices u, v in a bubble sort graph have an edge between
them, if for two integers i, j(1 ≤ i < j ≤ n), u and v are the
same, when we switch symbols in index i, j. Because of this
difference between the pancake graph and bubble sort graph,
we cannot use the rules for constructing ISTs in bubble sort.

In this paper, we propose feasible algorithms for construct-
ing ISTs on the pancake graph. According to the first kind of
structures, we construct n − 2 ISTs on P(n). According to
the second kind of structures and the rule for last spanning

3432 VOLUME 8, 2020

D.-W. Cheng et al.: Constructing ISTs on Pancake Networks

tree, we can construct one IST. Then, we construct n−1 ISTs
on P(n).

According to algorithms, input a vertex to find its parent
in ISTs by its sequence. Then we consider that is parallel
computing and the time complexity is O(n × n!) on P(n).
n! means the size of pancake graph. Then, we can consider
that our algorithm is in polynomial time. We prove the effec-
tiveness of the algorithms in constructing ISTs rapidly and
easily. We hope these theoretical contributions can be useful
for other problems.

REFERENCES
[1] S. G.Akl, K. Qiu, and I. Stojmenović, ‘‘Fundamental algorithms for the star

and pancake interconnection networks with applications to computational
geometry,’’ Networks, vol. 23, no. 4, pp. 215–225, Jul. 1993.

[2] F. Bao, Y. Funyu, Y. Hamada, and Y. Igarashi, ‘‘Reliable broadcasting and
secure distributing in channel networks,’’ IEICE Trans. Fundam. Electron.,
Commun. Comput. Sci., vol. 81, no. 5, pp. 796–806, 1998.

[3] D. W. Bass and I. Sudborough, ‘‘Pancake problems with restricted prefix
reversals and some corresponding Cayley networks,’’ J. Parallel Distrib.
Comput., vol. 63, no. 3, pp. 327–336, Mar. 2003.

[4] P. Berthome, A. Ferreira, and S. Perennes, ‘‘Optimal information dissemi-
nation in star and pancake networks,’’ IEEE Trans. Parallel Distrib. Syst.,
vol. 7, no. 12, pp. 1292–1300, 1996.

[5] J.-M. Chang, T.-J. Yang, and J.-S. Yang, ‘‘A parallel algorithm for con-
structing independent spanning trees in twisted cubes,’’ Discrete Appl.
Math., vol. 219, pp. 74–82, Mar. 2017.

[6] Y.-H. Chang, J.-S. Yang, S.-Y. Hsieh, J.-M. Chang, and Y.-L. Wang, ‘‘Con-
struction independent spanning trees on locally twisted cubes in parallel,’’
J. Combinat. Optim., vol. 33, no. 3, pp. 956–967, Apr. 2017.

[7] J. Cheriyan and S. Maheshwari, ‘‘Finding nonseparating induced cycles
and independent spanning trees in 3-connected graphs,’’ J. Algorithms,
vol. 9, no. 4, pp. 507–537, Dec. 1988.

[8] S. Curran, O. Lee, and X. Yu, ‘‘Finding four independent trees,’’ SIAM
J. Comput., vol. 35, no. 5, pp. 1023–1058, Jan. 2006.

[9] A. Itai and M. Rodeh, ‘‘The multi-tree approach to reliability in distributed
networks,’’ Inf. Comput., vol. 79, no. 1, pp. 43–59, Oct. 1988.

[10] K. Kaneko and S. Peng, ‘‘Disjoint paths routing in pancake graphs,’’
in Proc. IEEE 7th Int. Conf. Parallel Distrib. Comput., Appl. Technol.
(PDCAT), Dec. 2006, pp. 254–259.

[11] S.-S. Kao, K.-J. Pai, S.-Y. Hsieh, R.-Y. Wu, and J.-M. Chang, ‘‘Amor-
tized efficiency of constructing multiple independent spanning trees on
bubble-sort networks,’’ J. Combinat. Optim., vol. 38, no. 3, pp. 972–986,
Oct. 2019.

[12] S.-S. Kao, J.-M. Chang, K.-J. Pai, and R.-Y. Wu, ‘‘Constructing inde-
pendent spanning trees on bubble–sort networks,’’ in Proc. Int. Comput.
Combinat. Conf. Cham, Switzerland: Springer, 2018, pp. 1–13.

[13] S.-S. Kao, J.-M. Chang, K.-J. Pai, J.-S. Yang, S.-M. Tang, and R.-Y. Wu,
‘‘A parallel construction of vertex–disjoint spanning trees with optimal
heights in star networks,’’ in Proc. Int. Conf. Combinat. Optim. Appl.
Cham, Switzerland: Springer, Dec. 2017, pp. 41–55.

[14] Q. T. Nguyen and S. Bettayeb, ‘‘On the genus of pancake network,’’ Int.
Arab J. Inf. Technol., vol. 8, no. 3, pp. 289–292, 2011.

[15] M. J. Quinn, Parallel Computing: Theory and Practice. McGraw-Hill,
1994.

[16] A. Rescigno, ‘‘Vertex-disjoint spanning trees of the star network with
applications to fault-tolerance and security,’’ Inf. Sci., vol. 137, nos. 1–4,
pp. 259–276, Sep. 2001.

[17] Y. Suzuki andK.Kaneko, ‘‘An algorithm for node-disjoint paths in pancake
graphs,’’ IEICE Trans. Inf. Syst., vol. 86, no. 3, pp. 610–615, 2003.

[18] J.-S. Yang, M.-R.Wu, J.-M. Chang, and Y.-H. Chang, ‘‘A fully parallelized
scheme of constructing independent spanning trees on Möbius cubes,’’
J. Supercomput., vol. 71, no. 3, pp. 952–965, Mar. 2015.

[19] A. Zehavi and A. Itai, ‘‘Three tree-paths,’’ J. Graph Theory, vol. 13, no. 2,
pp. 175–188, 1989.

DUN-WEI CHENG received the M.S. degree
from the Department of Computer Science and
Information Engineering, National University of
Kaohsiung, in 2011. He is currently pursuing the
Ph.D. degree with the Department of Computer
Science and Information Engineering, National
Cheng Kung University, Tainan, Taiwan. His cur-
rent research interests include financial com-
puting, artificial intelligence, system-level fault
diagnosis, and hub location problem.

CHIH-TE CHAN received the M.S. degree from
the Department of Computer Science and Informa-
tion Engineering, National Cheng Kung Univer-
sity, Taiwan, in 2014. His current research interests
include design and analysis of algorithms, and
bioinformatics.

SUN-YUAN HSIEH received the Ph.D. degree
in computer science from National Taiwan Uni-
versity, Taipei, Taiwan, in June 1998. He then
served the compulsory two-year military service.
From August 2000 to January 2002, he was
an Assistant Professor with the Department of
Computer Science and Information Engineering,
National Chi Nan University. In February 2002,
he joined theDepartment of Computer Science and
Information Engineering, National Cheng Kung

University. He is currently a Distinguished Professor and the Dean of
Research. Recently, he also joints the Center for Innovative FinTech Busi-
ness Models. His current research interests include design and analysis
of algorithms, fault-tolerant computing, bioinformatics, parallel and dis-
tributed computing, and algorithmic graph theory. He is a Fellow of the
British Computer Society (BCS). He received the 2007 K. T. Lee Research
Award, the President’s CitationAward fromAmerican Biographical Institute,
in 2007, the Engineering Professor Award of Chinese Institute of Engineers
from the Kaohsiung Branch, in 2008, the National Science Council’s Out-
standing Research Award, in 2009, and the IEEE Outstanding Technical
Achievement Award from the IEEE Tainan Section, in 2011.

VOLUME 8, 2020 3433

	INTRODUCTION
	PRELIMINARIES
	ALGORITHM OF ISTs
	MAIN ALGORITHM
	ALGORITHM 2
	ALGORITHM 3

	PROOF REGARDING ALGORITHMS
	CONCLUSION
	REFERENCES
	Biographies
	DUN-WEI CHENG
	CHIH-TE CHAN
	SUN-YUAN HSIEH

