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ABSTRACT This paper concerns a novel data-based policy iteration control method for discrete-time
systems with disturbances. To avoid the need of system dynamic and state, a new system equation is
constructed by using system operation data. Based on this, we derive a new data-based Bellman equation
that can be applied to the design of model-free policy iteration algorithm. For discrete-time system with
disturbances, we transform H∞ control into a zero-sum game problem, and then use the proposed new data-
based PImethod to solve it.Wind turbine control is a typical control problemwith time delay and disturbance.
Mathematical simulation results are given to demonstrate the effectiveness of the proposed data-based PI
control method.

INDEX TERMS Policy iteration, data-driven, discrete-time system, H∞ control.

I. INTRODUCTION
Discrete system control problem [1]–[3] involves many key
fields such as logistics system, event-driven system and
impulse control. The corresponding control methods usually
include optimal control [4], tracking control [5], [6] and
optimization control, and so on. For the linear discrete-time
(DT) system, we usually assumed that the performance index
function of the controlled system is a quadratic form of sys-
tem states, and then the optimal controller is designed using
a linear quadratic regulator method. However, in practical
applications, there are usually disturbances in the controlled
system, such as external disturbances in signal transmission
and wind turbulence in wind power generation. Therefore,
the design of a H∞ controller suitable for DT system with
disturbances is of great research significance and application
value.

Adaptive dynamic programming (ADP) [7]–[13] is an
adaptive learning algorithm evolved from dynamic program-
ming. Its purpose is to solve the curse of dimensionality
problem encountered by dynamic programming by means of
iterative learning. As an important branch of ADP structure,
policy iteration (PI) algorithm has attracted extensive atten-
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tion and achieved rapid development. The PI-based control
method has been applied to many fields and proved to be
an efficient control method [14]–[16]. By combining neural
network and behrman equation, an PI-based optimal control
method is proposed in [14], which is an iterative algorithm
capable of dealing with general affine pseudo-linearized non-
linear systems. Luo et al. [15] proposed a QoS prediction
method based on ADP, in which ADP method was used to
learn the parameters of fuzzy rules and effectively improve
the prediction performance. For the continuous system with
uncertainties, in [16], an observer-based control strategy was
designed by using HJB equation to solve the optimal control
policies. In this method, the state observer was used to replace
the state of the system, and NNs were adopted to determine
the approximate control strategy.

For the H∞ control [17]–[21] of DT system, PI algorithms
also has some preliminary research work [22]–[24]. In [22],
an event-driven PI algorithm was studied to deal with the
H∞ control strategy. In [24], by transforming the H∞control
into a zero sum game problem, the optimal control strategy
with perturbation was obtained in [24], and the proof of
convergence has also been given.

However, these existing PI-based control methods usually
require the system dynamic information to be known. In prac-
tical applications, it is unrealistic to obtain all the dynamic
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information, which leads to a decrease in the performance
of the control algorithm. Therefore, a class of model-free
H∞ control methods based on PI has been studied [25]–[28].
A PI-based H∞ optimal control method was designed by
using generalized fuzzy hyperbolic model in [25]. For H∞
control problem of discrete nonlinear systems, [26] pre-
sented a tracking control method by using PI algorithm
combined with neural network with asymptotic stability of
estimated error. In [27], the PI structure was used to design
a H∞ control strategy of dynamic unknown discrete sys-
tem in which the algorithm structure is composed of three
NNs. In [28], an ADP algorithm with three neural networks
was presented to find the zero-sum game solution of DT
systems online, the explicit update rules of the three neu-
ral networks were updated by using the system operation
data.

Moreover, these methods are usually based on state feed-
back control methods, so all the states of the system need
to be used. However, in many controlled systems, all sys-
tem states are often unmeasurable, which is a challenge for
designing controllers. Therefore, data-based control methods
[29]–[35] have become a hot issue. Using the data generated
during the operation of the system to assist the controller
design is a realistic development direction in engineering
applications. Therefore, the ADP algorithm combined with
data can effectively improve the control performance of the
ADP-based controller in practical applications [36]–[39]. In
[36], a H∞ control was designed for the continuous time
system with disturbances, and the system operation data was
adopted to find the zero-sum optimal solution. In [37], a PI-
based structure was designed by using data-driven method to
solve the multivariable tracking control policy. For optimal
control of DT system, a policy gradient adaptive dynamic
programming control method was presented in [38] using
system operation data. In [39], a data-based PI structure was
designed for the linear systems. In this method, a traditional
value iterative algorithm was designed by using stochastic
approximation theory.

Although the control design based on the ADP algorithm
has the above research work. However, how to use the data-
based PI structure to design H∞ control of DT system with
disturbances has not been studied. Therefore, in this paper,
we design the H∞ controller with the aid of data-based PI,
which provides a discrete system H∞ control scheme and
extends the application of the PI-based control method. The
innovations of this paper are as follows:

(1) Based on the system measured data, a novel PI-based
H∞ control of DT system is designed, which is an online
model-free algorithm without the need of accurate model of
system dynamics, which is of great significance in practical
application.

(2) A new data-based system equation consists of sys-
tem input and output sequences is constructed that effec-
tively avoids the requirement of system state, which
extends the application scope of the PI-based control
method.

(3) For the H∞ control of DT system, the corresponding
new data-based Bellman equation is proposed to facilitate the
design of PI algorithm.

This paper is organized as follows. In Section II, the prob-
lem formulation is presented. The data-based H∞ control
is derived in Section III. The PI-based H∞ control method
is proposed in Section IV. Simulation results of DT system
with disturbances and wind turbine control are presented in
Section V. Conclusion is given in Section VI.

II. PROBLEM FORMULATION
Consider the following DT system

xk+1 = Axk + Buk + Dωk
yk = Cxk , (1)

with the system state xk ∈ Rn, system output yk ∈ Rp,
control input uk ∈ Rm and external disturbance ωk ∈ Rq.
And assumed that the controlled system is controllable and
observable.

The performance index function of the corresponding H∞
control problem is selected as

Jk (xk , uk , ωk ) = min
ui

max
ωi

∞∑
i=k

Ui

= min
ui

max
ωi

∞∑
i=k

(xTi Qxi + u
T
i Rui − δ

2ωTk ωk ),

(2)

with Q and R are both predetermined symmetric positive
definite matrices, and δ is the upper bound of the L2-gain of
the controlled system (1), which satisfies

∞∑
k=0

[xTk Qxk + u
T
k Ruk ] ≤

∞∑
k=0

δ2ωTk ωk (3)

where ωk ∈ L2[0,∞) and is usually a given level of distur-
bance attenuation.

The ideal H∞ control u∗k ensures that the system is asymp-
totically stable and canminimize the performance index func-
tion in the presence of disturbances.

Based on the Bellman optimality principle, we rewritten
(2) as

V (xk ) = Uk + V (xk+1)

= xTk Qxk + u
T
k Ruk − δ

2ωTk ωk + V (xk+1). (4)

The performance index function (2) is assumed to have the
following form:

V (xk ) = xTk Pxk . (5)

And the Bellman equation (4) is given by

xTk Pxk = xTk Qxk + u
T
k Ruk − δ

2ωTk ωk + x
T
k+1Pxk+1 (6)

The H∞ control problem solved in this paper can be
regarded as the minimax problem of the performance index
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function (4), that is

V ∗(xk ) = min
uk

max
ωk

(Uk + V ∗(xk+1)). (7)

Then, the Bellman temporal difference error satifies

lim
k→∞

ek = lim
k→∞

(xTk Qxk + u
T
k Ruk − δ

2ωTk ωk

+ xTk+1Pxk+1 − x
T
k Pxk = 0. (8)

Define the Hamiltonian function as

Hk=xTk Qxk+u
T
k Ruk−δ

2ωTk ωk+x
T
k+1Pxk+1−x

T
k Pxk . (9)

Based on (7) and (9), the control policy u∗k can be obtained
by solving for ∂Hk/∂uk = 0, when ω∗k is the solution to
∂Hk/∂ωk = 0.
Therefore, the optimal control can be obtained as follows:

u∗k = −(R1 − R2R
−1
4 R3)−1(B1 − R2R

−1
4 B2)xk . (10)

The worst case disturbance can be obtained from the fol-
lowing equation

ω∗k = (R4 − R3R
−1
1 R2)−1(B2 − R3R

−1
1 B1)xk . (11)

with

P = ATPA+ Q− [BT1 B
T
2 ]
[
R1 R2
R3 R4

] [
B1
B2

]
. (12)

where B1 = BTPA, B2 = DTPA, R1 = R + BTPB, R2 =
BTPD, R3 = RT2 , R4 = DTPD− δ2I .
Based on this, the following algorithm can be designed to

solve the H∞ control strategy.
Algorithm 1 (PI for H∞ control)
Perform policy evaluation and policy improvement itera-

tive calculation process from i to n:
Policy evaluation: Solve forPi+1 by the following equation

xTk P
i+1xk = xTk Qxk + (uik )

TRuik − δ
2(ωik )

Tωik

+ xTk+1P
i+1xk+1 (13)

Policy improvement: Solve for the control policy ui+1k by
the following equation

ui+1k = −(Ri+11 − R
i+1
2 (Ri+14 )−1Ri+13 )−1

× (Bi+11 − R
i+1
2 (Ri+14 )−1Bi+12 )xk . (14)

The updated disturbance ωi+1k is

ωi+1k = −(Ri+14 − R
i+1
3 (Ri+11 )−1Ri+12 )−1

× (Bi+12 − R
i+1
3 (Ri+11 )−1Bi+11 )xk . (15)

with Bi+11 = BTPi+1A, Bi+12 = DTPi+1A, Ri+11 = R +
BTPi+1B, Ri+12 = BTPi+1D, Ri+13 = (Ri+12 )T , R4 =
DTPi+1D− δ2I .
It can be seen from Algorithm 1 that system dynamics and

state information are needed, which is very demanding in
practical situations. Therefore, the next step the data-based
H∞ control, which utilizes the measured data of the system.

III. DATA-BASED H∞ CONTROL
First, we construct a system equation consisting of input
and output sequences, then a data-based Bellman equation
is established. Finally, an PI-based H∞ control method is
presented. From (1), we have

xk = Axk−1 + Buk−1 + Dωk−1. (16)

Then substituting the above equation from k to k−N into the
equation of state, we can get:

xk = AN xk−N +
[
B AB · · · AN−1B

]uk−1...
uk−N


+
[
D AD · · · AN−1D

]ωk−1...
ωk−N


.
= AN xk−N + Eū(k−1,k−N ) + Fω̄(k−1,k−N ), (17)

with AN ∈ Rn×n, E ∈ Rn×Nm and F ∈ Rn×Nq.
In the same way, the output equation can be written asyk−1...
yk−N



=


CAN−1

CAN−2
...

C

 xk−N

+



0 CD · · · CAN−3D CAN−2D

0
. . . CAN−4D CAN−3D
. . .

...
...

0 0 CD
0




ωk−1
ωk−2
...

ωk−N



+



0 CB · · · CAN−3B CAN−2B

0
. . . CAN−4B CAN−3B
. . .

...
...

0 0 CB
0




uk−1
uk−2
...

uk−N


.
= Gxk−N + Hū(k−1,k−N ) + Lω̄(k−1,k−N ), (18)

where G ∈ RNp×n, H ∈ RNp×Nm and L ∈ RNp×Nq.
Assume that there is an appropriate observability index Q,

so that

AN = QG, (19)

with G is a full column rank matrix.
Theorem 1: By using the system input and output

sequence, the state equation (1) can be expressed as follows

xk = Wzk (20)

VOLUME 8, 2020 14567



Y. Liu et al.: H∞ Control for a Class of DT Systems via Data-Based PI

where W = [W1 W2 W3], W1 = E − Q1H , W2 = F − Q1L,
W3 = Q1, Q1 = ANG− and the data-based state vector zk =
[ū(k−1,k−N ) ω̄(k−1,k−N ) ȳ(k−1,k−N )]T .

Proof: According to (19), by substituting (18) into (17),
we have

AN xk−N = Qȳ(k−1,k−N ) − QHū(k−1,k−N )−QLω̄(k−1,k−N )

(21)

And the left inverse of G is given by

G− = (GTG)−1GT . (22)

The general solution of (19) is

Q = ANG− + Z (I − GG−) .= Q1 + Q2. (23)

Note that Q2G = Z (I − GG−)G = 0, then (21) can be
rewritten as

xk = Q1ȳ(k−1,k−N ) + (E − Q1H )ū(k−1,k−N )

+ (F − Q1L)ω̄(k−1,k−N ), (24)

The above equation can be defined as

xk = W1ū(k−1,k−N ) +W2ω̄(k−1,k−N )

×W3ȳ(k−1,k−N )

=
[
W1 W2 W3

] ū(k−1,k−N )
ω̄(k−1,k−N )
ȳ(k−1,k−N )

 , (25)

which is the state equation (20) represented by the system
measured data.
Remark 1: The construction principle of [29] can be

referred to to ensure the observability and controllability of
the data-based system.

The feedback control policy considered in this paper is
assumed to have the following form

uk = −Kzk . (26)

According to theorem 1, the performance index function (5)
is given by

V (xk ) = zTkW
TPWzk

.
= zTk P̂zk . (27)

Then, based on the Bellman equation (6), we have

zTk P̂zk = zTk Q̂zk + u
T
k Ruk − δ

2ωTk ωk + z
T
k+1P̂zk+1 (28)

with Q̂ = W TQW , which is the data-based Bellman equation
represented by measured data.

The corresponding Hamiltonian function is given by

Hk=zTk Q̂zk + u
T
k Ruk−δ

2ωTk ωk+z
T
k+1P̂zk+1 − z

T
k P̂zk (29)

IV. PI-BASED H∞ CONTROL
Since P̂ is a symmetric matrix, we can write P̂ as a block
matrix of the form

P̂ =


puu puū puω puω̄ puȳ
pūu pūū pūω pūω̄ pūȳ
pωu pωū pωω pωω̄ pωȳ
pω̄u pω̄ū pω̄ω pω̄ω̄ pω̄ȳ
pȳu pȳū pȳω pȳω̄ pȳȳ

 (30)

The goal of H∞ control is to minimize the performance
index function with disturbance. According to the Hamilto-
nian function (9), the optimal control is solved by ∂Hk/∂uk =
0 and the disturbance is the solution of ∂Hk/∂ωk = 0.
Then the optimal control is

uk = −(R+ puu)−1(puūū(k−1,k−N+1) + puωωk
+ puω̄ω̄(k−1,k−N+1) + puȳȳ(k,k−N+1)). (31)

And the corresponding disturbance is given by

ωk = −(Iδ2 − pωω)−1(pωuuk + pωūū(k−1,k−N+1)
+ pωω̄ω̄(k−1,k−N+1) + pωȳȳ(k,k−N+1)). (32)

Theorem 2: If the data-based state equation (20) holds
and O1 and O2 exist, then the H∞ control policy can be
represented by the system measured data as follows

uk=−81ū(k−1,k−N+1)−82ω̄(k−1,k−N+1)−83ȳ(k,k−N+1).

(33)

with O1 = (I − 8upuω8wpωu)−1, 81 = O18u(puū −
puω8wpωū), 82 = O18u(puω̄ − puω8wpωω̄) and 83 =

O18u(puȳ − puω8wpωȳ).

ωk=−91ū(k−1,k−N+1)−92ω̄(k−1,k−N+1)−93ȳ(k,k−N+1).

(34)
with O2 = (I − 8wpωu8upuω)−1, 91 = O28w(pωū −
pωu8upuū), 92 = O28w(puω̄ − puω8wpωω̄) and 93 =

O28w(puȳ − puω8wpωȳ).
Proof: According to (32), (31) has the following form

uk = −8u[puūū(k−1,k−N+1) − puω8w(pωuuk
+ pωūū(k−1,k−N+1) + pωω̄ω̄(k−1,k−N+1)

+ pωȳȳ(k,k−N+1))+ puω̄ω̄(k−1,k−N+1)

+ puȳȳ(k,k−N+1)]. (35)

with 8u = (puu + R)−1 and 8w = (Iδ2 − pωω)−1.
Further, we can get

uk (I −8upuω8wpωu) = −8u

· [(puū − puω8wpωū)ū(k−1,k−N+1)
+ (puω̄ − puω8wpωω̄)ω̄(k−1,k−N+1)

+ (puȳ − puω8wpωȳ)ȳ(k,k−N+1)]. (36)

Then, if O1 = (I − 8upuω8wpωu)−1 exists, the control
policy can be solved by

uk=−81ū(k−1,k−N+1)−82ω̄(k−1,k−N+1)−83ȳ(k,k−N+1).

(37)
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with 81 = O18u(puū − puω8wpωū), 82 = O18u(puω̄ −
puω8wpωω̄) and 83 = O18u(puȳ − puω8wpωȳ).
In the same way, the disturbance is given by

ωk = −8w[−pωu8u(puūū(k−1,k−N+1) + puωωk
+ puω̄ω̄(k−1,k−N+1) + puȳȳ(k,k−N+1))

+ pωūū(k−1,k−N+1) + pωω̄ω̄(k−1,k−N+1)

+ pωȳȳ(k,k−N+1)]. (38)

If O2 = (I − 8upuω8wpωu)−1 exists, the disturbance can
be expressed as

ωk=−91ū(k−1,k−N+1) −92ω̄(k−1,k−N+1)−93ȳ(k,k−N+1).

(39)

with 91 = O28w(pωū − pωu8upuū), 92 = O28w(puω̄ −
puω8wpωω̄) and 93 = O28w(puȳ − puω8wpωȳ). This com-
pletes the proof.

Theorem 2 gives the form of the system inputs represented
by the system measurement data. Based on this, we propose
the following PI based PI-based H∞ control algorithm.
Algorithm 2 (Data-based PI for H∞ control)
Start the iterative algorithm with an initial admissible u0k .

Perform policy evaluation and policy improvement iterative
calculation process from i to n:
Policy evaluation: Calculate P̂i+1 with a certain precision

zTk P̂
i+1zk = zTk Q̂zk + (ui+1k )TRui+1k − δ

2(ωi+1k )Tωi+1k

+ zTk+1P̂
i+1zk+1 (40)

Policy improvement: Calculate the update control

ui+1k = −8i+1
1 ū(k−1,k−N+1) −8

i+1
2 ω̄(k−1,k−N+1)

−8i+1
3 ȳ(k,k−N+1). (41)

Calculate the update disturbance

ωi+1k = −9 i+1
1 ū(k−1,k−N+1) −9

i+1
2 ω̄(k−1,k−N+1)

−9 i+1
3 ȳ(k,k−N+1). (42)

The iteration is stopped when the PI algorithm converges. �
The policy evaluation equation (40) is derived from (28),

which is equivalent to the Bellman equation in [40]. And the
goal of each policy improvement equation (41) is to minimize
the respective (4) in the case of worst disturbances. Therefore,
the convergence of the two algorithms is equivalent, and the
detailed convergence proof can refer to [40]–[42].

Since this paper uses only input/output data to construct
the PI-based structure to directly solve theH∞ control policy,
it requires a sufficient training process.

V. SIMULATION
A. THE DT SYSTEM WITH DISTURBANCES
Consider the DT system with disturbances:

xk+1 = Axk + Buk + Dωk
yk = Cxk , (43)

FIGURE 1. Convergence process of P̃1i .

FIGURE 2. Control policy during the training process.

with system dynamics given by A = [1.3000− 0.4200; 1 0],
B = [1; 0], C = [1 − 0.8] and D = [0.01; 0.05]. The
parameter of the cost function were set to R = 1, Q =
3 × I3×3. A probing signal was injected into the learning
process to satisfy the PE condition.

Figure 1 shows the convergence process of P solved by
the data-based PI method as the iterative learning continues.
And we can see that the convergence process of the PI-based
control method was slowed down by the influence of distur-
bance, and more iterative learning steps are needed to achieve
convergence.

From figure 2 we can see the control input with the probing
noise signal. The probing noise signal added to the training
process of the PI algorithm is shown in figure 3 and removed
at 200 time steps. Since the probing signal can fully simulate
the situation of the system, the ADP algorithm can obtain
the optimal information by obtaining the information of the
system through the data.

B. WIND TURBINE CONTROL
For large wind turbines, when the wind speed exceeds the
rated wind speed, PI variable pitch control is usually adopted
to adjust the blade pitch angle to achieve constant power
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FIGURE 3. Probing noise signal during the training process.

FIGURE 4. Wind speed.

FIGURE 5. Pitch angle of the wind turbine.

control. Due to the characteristics of time delay and distur-
bance in large wind turbines, if the parameters of the variable
pitch controller are improperly selected, the output power
will fluctuate greatly, which will cause adverse effects on the
power grid. Therefore, it is particularly important to study
the parameter optimization of the variable pitch controller.
Considering the control problem of SUT1000 doubly-fed
wind generator, the rated power is 1MW and the rated wind
speed is 12m/s. The parameter of the cost function were set
to R = 2, Q = 2× I3×3.

FIGURE 6. Output power of the wind turbine.

The wind speed during simulation is shown in figure 4.
Through iterative learning, the variable pitch control of the
variable pitch system is shown in figure 5. The output power
of the wind turbine is presented in figure 6. It can be seen
that the control method can ensure the stability of the output
power under the condition that the wind speed fluctuates
greatly.

VI. CONCLUSION
For the optimal control of discrete system with disturbances,
a novel data-based PI algorithm was presented. By using
the input and output data in a finite horizon, the new data-
based system equations were constructed, thus effectively
avoiding the need for system dynamics and state. Based on
the new system equation, the data-based bellman equation
was obtained. For the DT systems with disturbance, the opti-
mal control was transformed into the optimal solution for
the zero-sum game. Then the PI-based control method was
designed to deal with the H∞ control problem using only
system data. As can be seen from the simulation, due to
the disturbance, the convergence process of the data-based
PI control method becomes longer, and more iteration steps
are needed to identify the internal information of the system.
Future work will attempt to deal with theH∞ control problem
for time-varying delay systems.
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