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ABSTRACT This study presents a novel method to apply the RGB-D (Red Green Blue—Depth) sensors and
fuse aligned RGB and NIR images with deep convolutional neural networks (CNN) for fruit detection. It aims
to build a more accurate, faster, and more reliable fruit detection system, which is a vital element for fruit
yield estimation and automated harvesting. Recent work in deep neural networks has led to the development
of a state-of-the-art object detector termed Faster Region-based CNN (Faster R-CNN). A common Faster
R-CNN network VGG16 was adopted through transfer learning, for the task of kiwifruit detection using
imagery obtained from two modalities: RGB (red, green, blue) and Near-Infrared (NIR) images. Kinect
v2 was used to take a bottom view of the kiwifruit canopy’s NIR and RGB images. The NIR (1 channel)
and RGB images (3 channels) were aligned and arranged side by side into a 6-channel image. The input
layer of the VGG16 was modified to receive the 6-channel image. Two different fusion methods were used
to extract features: Image-Fusion (fusion of the RGB and NIR images on input layer) and Feature-Fusion
(fusion of feature maps of two VGG16 networks where the RGB and NIR images were input respectively).
The improved networks were trained end-to-end using back-propagation and stochastic gradient descent
techniques and compared to original VGG16 networks with RGB and NIR image input only. Results showed
that the average precision (APs) of the original VGG16 with RGB and NIR image input only were 88.4%
and 89.2% respectively, the 6-channel VGG16 using the Feature-Fusion method reached 90.5%, while
that using the Image-Fusion method reached the highest AP of 90.7% and the fastest detection speed
of 0.134 s/fimage. The results indicated that the proposed kiwifruit detection approach shows a potential
for better fruit detection.

INDEX TERMS Fruit detection, image alignment, information fusion, multi-modality faster R-CNN,
RGB-D sensor.

I. INTRODUCTION

China is the largest country producing kiwifruits worldwide,
with a yield of approximately 2.4 million tons in 2016 from
a cultivated area of 197,048 ha [1]. Within China, Shaanxi
Province has the most significant production, accounting for
approximately 70% and 33% of the Chinese and global pro-
ductions, respectively [2]. Harvesting kiwifruits in this region
relies mainly on manual picking, which is labor-intensive [3].
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Therefore, the introduction of robotic harvesting is highly
desirable.

Kiwifruits are commercially grown on sturdy support
structures, such as T-bar and pergola systems [4]. T-bar trellis
is common in China because of its low cost. It consists of
a 1.7 m high post and an approximately 1.7 m wide cross
arm, which may vary slightly in width according to the shape
and size of the orchard. Wires run on the top of cross arms
connecting them in the middle and on both edges of the cross
arms. The upper stems of the kiwifruit are tied to the top
wires to keep the egg-sized kiwifruits hanging downward,
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which makes them visible and accessible for manual pick-
ing [5]. This canopy structure also provides relatively simpler
and structured workspace for mechanized or automated field
operations such as robotic picking [3], [6], compared to other
fruit trees such as apples [7].

Fast and effective detection of fruit in the field under
natural environment is the first step for robotic kiwifruit har-
vesting [8]. Cui et al. [9] captured side-viewed kiwifruit RGB
(Red, Green, Blue) images and used Otsu threshold in 0.9R-G
component for fruit segmentation, and detected each fruit
using Canny operator and elliptical Hough transformation,
which reached 89.1% detection rate. Mu et al. [10] employed
L*a*b* color space to extract side-viewed kiwifruits fruit
edges with Canny operator and elliptical Hough transforma-
tion, which detected 88.5% kiwifruits and spent 3.98 s on
each fruit. Fu et al. [3] segmented bottom-viewed kiwifruit
images using Otsu threshold in 1.1R-G color component and
detected each fruit using minimal bounding rectangle and
elliptical Hough transform, which achieved 88.3% correct
detection and spent 1.51 s on each fruit. Fu et al. [11] devel-
oped a kiwifruit detection system at night using artificial
lighting by identifying the fruit calyx, which reached a suc-
cess rate of 94.3% and took 0.5 s in average to recognize a
fruit. Fu et al. [12] then proposed an image processing algo-
rithm to separate linearly clustered kiwifruits by scanning
each detected cluster to find the contact points between the
adjacent fruits and drawing a separating line between the two
closest contact points, which correctly separated and counted
92.0% of the kiwifruits. These studies primarily used color
and shape of calyx and fruit to detect the kiwifruit, which was
limited to detect fruit in a single cluster with few fruits and
were less effective for multi clusters in the field. To overcome
these limitations, a well generalized methodology that invari-
ant and robust to brightness, different viewpoints and highly
discriminative feature representations is desired.

Recently, deep learning has made considerable progress
in object detection and classification. In particular, convo-
lutional neural networks (CNN) showed superior perfor-
mance in object detection applications [13]-[15]. There have
been some researches using different CNN architectures
for fruit detection such as apple [16]-[18], mango [19],
strawberry [20] and kiwifruit [21], [22]. Bargoti and Under-
wood [23] applied VGG16 to detect mangoes and apples in
orchards, which achieved an F1-score of 0.9. Héni et al. [24]
employed U-Net and ResNet50 for apple detection and yield
estimation, which reached 97.8% accuracy. Fuet al. [21] used
LeNet to detect kiwifruits in the orchard, which reached
89.29% detection rate and cost 0.27 s on average to recognize
a fruit. Fu et al. [22] presented a kiwifruit image detection
using ZFNet and achieved 92.3% detection rate and cost
0.005 s on average to detect a fruit. These studies showed
good promising for fruit detection in RGB images using
CNN.

However, above mentioned studies only used RGB images
as input for the CNNs. In uncontrolled field conditions, a sin-
gle sensor modality can rarely provide the needed information

2328

to detect the target fruits under a wide range of varying
illumination, partial occlusions, and different appearances.
As such, multi-modality sensors may be more beneficial
because different sensors can provide complementary infor-
mation regarding various aspects of the fruits. Sa et al. [25]
proposed early fusion and late fusion methods of RGB
and Near-Infrared (NIR) images based on VGG16 to detect
rockmelon, strawberry, apple, avocado, mango, orange, and
sweet pepper, of which the highest F1-score reached 0.838.
Zhan et al. [26] employed RGB and NIR fusion algorithm
to distinguish the chestnut quality based on back propaga-
tion network, of which the discriminating rate is improved
by 3.75% and 6.25%, respectively, compared to using NIR
and RGB image separately Abdelsalam and Sayed [27]
extracted seven color components from RGB and NIR images
of citrus and applied a voting process algorithm to detect
citrus defects, of which the accuracy is more than 95%.
Zhang et al. [28] propose two ship models, the ““V”’ ship head
model and the *“||”” ship body one, and fed these features to a
novel ship detection method (SCNN) which is more robust
than previous methods. Bai et al. [29] present a new eddy
detection approach of combining the multilayer features in
the neural network with the characteristics of the eddies via
deep neural networks to improve eddy detection accuracy,
which results in mAP (mean Average Precision) of 90.6%.
These studies achieved higher accuracy using multi-modality
information fusion. However, they didn’t report the impact
of information fusion on the operation speed. In addition,
the alignment of RGB and NIR images that being fused for
CNN was not mentioned. Besides, most of the emerging
sensors, such as depth sensors and RGB-D cameras, have not
yet been exploited for fruit detection. The primary reason is
the lack of substantial datasets [30].

This paper introduces a Hayward-Kiwi RGB-NIR-D
dataset, which contains multi-modality aligned images of
Hayward kiwifruits in orchards, and presents a novel method
to apply the RGB-D sensors and fuse aligned RGB and NIR
images with deep learning methods for fruit detection. Faster
Region-based CNN (Faster R-CNN) is adapted and imple-
mented for kiwifruit detection using two-modality of aligned
RGB and NIR images from the dataset. Two different fusion
methods are studied: fusion of the RGB and NIR images on
input layer of the Faster R-CNN and fusion of feature maps of
two Faster R-CNN networks where the RGB and NIR images
were input respectively.

Il. MATERIALS AND METHODS

A. HAYWARD-KIWI RGB-NIR-D DATASET

1) IMAGE ACQUISITION

All the kiwifruit images were captured during three harvest-
ing seasons (2016, 2017 and 2018) on the most common cul-
tivar ‘Hayward’ at Meixian Kiwifruit Experimental Station
(34°07°39” N, 107°59°50 E, and 648 m in altitude) of the
Northwest A&F University, Shaanxi, China. An image acqui-
sition platform (consisted of an RGB-D camera mounted on

VOLUME 8, 2020



Z. Liu et al.: Improved Kiwifruit Detection Using Pre-Trained VGG16 With RGB and NIR Information Fusion

IEEE Access

TABLE 1. Specific parameters of the RGB and NIR cameras in Kinect V2.

RGB
RGB camera  camera IR and depth IR and Working
. . camera depth
resolution field-of- ) range
(pixels) view re§olut10n camera (m)
(FoV) (pixels) FoV
1920 x 1080 ?;‘é; * 512 x 424 709x60°  0.5-8

a mobile tripod at the height of 1.0 m) was used to capture
images from the bottom of kiwifruit. It was connected to a
laptop with Intel Core i7-8750H (4.1 GHz) six-core CPU,
a GPU of NVIDIA GTX 1060 6 GB GPU and 8 GB of mem-
ory via USB 3.0. The RGB-D camera, Kinect v2 (Microsoft,
Redmond, WA, USA) incorporates the RGB camera and a
depth sensor that works using NIR according to the ToF (Time
of Flight) principle (Song et al. 2017), as shown in Table 1.
This camera provides three different types of images: a three-
channel RGB image, a single-channel depth image that can
be used to generate a three-dimensional (3D) point cloud
of the scene, and a single-channel NIR image taken by the
depth sensor. The single-channel NIR image was copied and
concatenated into a 3-channel NIR image for subsequent
experiments. Specific software written in MATLAB 2018a
was developed to collect and save images automatically into
the laptop. The software generates a 3D point cloud with
RGB and depth information for each point based on the depth
sensor, and a NIR image for the same scene. Image collection
was carried out during all day and night where suitable arti-
ficial lighting 30~50 lux was provided at night, according to
Fu et al. [3]. This is to ensure the proposed methods can work
on different time with varied lighting conditions.

2) IMAGE PREPARATION

The data included a 3D point cloud (with RGB and depth
information) and the corresponding NIR image, which is
captured from the same scene based on the perspective
of the depth sensor. A pre-processing was carried out to
align the acquired images: RGB and depth images extracted
from the 3D point cloud, and NIR image. Image preparation
included two-dimensional (2D) projection of the 3D point
cloud, horizontal flipping of the NIR images, and aligning
the NIR to the RGB images. Fig. 1 illustrates a flowchart of
the image preparation.

After obtaining the 3D point cloud generated by the depth
sensor of Kinect v2, a perspective projection onto a plain
parallel of kiwifruit bottom was implemented to generate the
corresponding projected RGB and depth images. The vertical
field-of-view (FoV) of the depth sensor is larger than that of
the RGB camera, as shown in Table 1. Due to this reason,
a part of the RGB information was not registered with the
depth information in the 3D point cloud generated by the
depth sensor. Thus, there was no information given at the left

VOLUME 8, 2020

3D point cloud
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3 multi-modal images

FIGURE 1. Flowchart to prepare Hayward-Kiwi RGB-NIR-D image dataset.

and right parts of the RGB images extracted from the 3D point
cloud.

Horizontal flipping of the NIR images and aligning them
to the RGB images were performed to align the three images
(RGB, depth, and NIR) with the same pixel resolution.
A group of multi-modality images was obtained where each
pixel has information from 3 modalities: RGB, NIR and
depth (Fig. 1). The RGB and corresponding NIR images from
multi-modality images of the same group were combined
as a 6-channel image (with 3-channel RGB and 3-channel
NIR) and fed as an input of the CNN. To have similar mean
and variance between channels, the NIR and depth images
of all groups were normalized between O and 255 as the
RGB images. This normalization was desirable to ensure fast
convergence of the network. The RGB channels were saved
in 8-bit images while NIR and depth images were stored in
64-bits to avoid data precision loss.

In total, there are 1000 NIR and 1000 corresponding
aligned RGB images with the resolution of 512 x 424 pixels
were collected for this research. The Hayward-Kiwi RGB-
NIR-D dataset consisted of 1000 groups of multi-modality
images with 512 x 424 pixels resolution. Each image included
around 30 to 50 target kiwifruits. Ground truth kiwifruit
targets were manually annotated in the RGB images using
the rectangular annotations and then mapped to the NIR and
depth images of the same group, as shown in Fig. 2. A total
of 39,678 fruit were labelled in the RGB images of all the
dataset. All the labelled dataset of multi-modality images for
kiwifruit was divided into training (70%) and testing (30%)
groups. The training images were randomly obtained from
the independent and uniform sampling of the whole dataset.

® NR () Depth

(2) RGB

FIGURE 2. Sample of multi-modality images extracted from training
dataset and their associated fruit location ground truth (green bounding
boxes).
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The training and testing images were mutually exclusive,
which ensured the reliability of the later evaluation standards.
Some examples of the multi-modality kiwifruit images in the
training dataset are shown in Fig. 2. In order to further quan-
tization for representation, the depth images saved in 16 bit
were mapped to 0~255 and their contrast was enhanced
by histogram equalization. The Hayward-Kiwi RGB-NIR-D
dataset with corresponding annotations has been made
publicly available at https://github.com/Hayward-kiwi/
Hayward-Kiwi-RGB-NIR-D.

B. FRUIT DETECTION USING FASTER R-CNN

The Faster R-CNN architecture merges region proposals,
objects classification, and detection into one unified deep
object detection network [32], [28]. In Faster R-CNN, two
networks (Region Proposal Network and Faster R-CNN) are
concatenated as one that can be trained and tested through an
end-to-end process [23]. In this paper, a state-of-the-art Faster
R-CNN network VGG16 [32], [33], [29] was employed for
kiwifruit detection, as shown in Fig. 3. The VGG16 network
secured second place in the 2014 ILSVRC (ImageNet Large
Scale Visual Recognition Challenge competition). However,
it performed better than the first place (GoogleNet) in multi-
ple migration learning tasks [34], [35]. The convolutional lay-
ers of original VGG16 network are pre-trained with ImageNet
dataset [13] and fine-tuned with the kiwifruits training dataset
of RGB and NIR images, which were denoted as RGB-Only
and NIR-Only mode respectively. The depth images were not
employed in this research because only the highly exposed
kiwifruits are not visible in the image, as shown in Fig.2c.

Region Proposal Network
Cony_class
Softmax for
detection
[Cony_bbr
]
o|<|o >< Softmaxfor 1
[ o detection [
] o [N
] o 1
= 0 Bounding box | :
o regressor |
h
ayers "

FIGURE 3. Common VGG16 architecture for training kiwifruit RGB images
(3 channels input).

0
Object-like regions proposed o[ <
in feature map

C. MULTI-MODALITY FUSION

Two modified networks were developed to receive and fuse
the aligned RGB and NIR images. One was VGG16 net-
work that received RGB and NIR images simultaneously. The
other was two VGG16 networks that received RGB and NIR
images respectively, then being concatenated on the feature
map. They were denoted as Image-Fusion and Feature-Fusion
modes, respectively.

1) IMAGE-FUSION MODE

The Image-Fusion mode altered the structure of the input
layer of the VGG16 network from 3 channels to 6 channels
(3 channels for the RGB image and 3 channels for the
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NIR image). The VGG16 network was modified and
adapted to receive RGB and NIR information simultaneously.
An overview of this was provided in Fig. 4a, where the R,
G, B responses from the first convolutional parameter of the
RGB-Only mode were average to initialize the 3 channels for
the NIR images.

Faster R-CNN

(a) Image-Fusion mode

Feature map
Faster R-CNN

pa—
B Refined
egresmor Bounding Box
Feature map
Kiwifruit  or

(b) Feature-Fusion mode

VGG-16 layers

Concatenate

’ VGG-16 layers

FIGURE 4. Diagrams of the two methods to fuse the aligned RGB and NIR
images. (a) Image-Fusion mode and (b) Feature-Fusion mode.

2) FEATURE-FUSION MODE

The Feature-Fusion mode inputted the RGB and NIR images
separately into two VGG16 networks and then combined
them on the feature map. To achieve this, a Concat Layer
was added to concatenate the feature maps of RGB and
NIR images after convolution, as shown in Fig. 4b. The
two VGG16 networks were respectively initialized by the
parameter of the RGB-Only and NIR-Only modes and then
fine-tuned as the original VGG16 network.

D. NETWORK TRAINING

Training platform included a desktop computer with Intel
Xeon E5-1650 (3.60 GHz) six-cores CPU, and a GPU of
NVIDIA TITAN XP 12 GB GPU (3840 CUDA cores)
and 16 GB of memory, running on a Windows 7 64-bit
system. The software tools included CUDA 8.1, CUDNN 7.5,
Python 2.7, and Microsoft Visual Studio 12.0. The experi-
ments were implemented in the Caffe framework [36]. The
test runs on the same platform as the training.

To train the deep learning networks, two sets of informa-
tion were required, including the images to train with and
a corresponding label for each image. Stochastic gradient
descent (SGD) was used to train the four different modes
(RGB-Only, NIR-Only, Image-Fusion, Feature-Fusion) and
the momentum of the network was set to a fixed value
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of 0.9 and a weight decay of 0.0005. An optimal learning
rate was employed to help the neural network to be quick
enough to be trained with significant features. In this work,
the learning rate of 0.001 was reduced by changing it to 10%
of the current rate per 10,000 iterations.

During training, the RGB-Only and NIR-Only modes were
firstly initialized by the parameters of the ImageNet net-
work and updated by training the RGB and NIR training
dataset respectively. And then, the parameters of the two
VGG16 networks in the Feature-Fusion mode were respec-
tively initialized by the parameters of the RGB-Only and
NIR-Only modes trained before and trained by the 6-channel
images. Since the network structure of the Image-Fusion
mode was similar to that of the RGB-Only mode, the parame-
ters of the Image-Fusion mode were initialized by the trained
RGB-Only mode, and the extra 3 channels of first convolution
layer were initialized by averaging the R, G, B channels.
Finally, the SGD was used to update the initialized parameters
of fusion modes and train by the way of training the original
VGG16 network.

E. FRUIT CATEGORIES

The kiwifruits in the images taken in the field were not all
independent (or singulated) from each other. In this work,
fruits were categorized into four groups according to the
degree of visibility of fruit area in the image. The first cate-
gory denoted as occluded fruit, as shown in Fig. 5a, included
fruit partially occluded by leaves or branches causing the
incomplete outline of the fruit. The second category refers
to the fruit with some overlap between each other from the
image capture angle, which was denoted as overlapping fruit,
as shown by the rectangular boxes in Fig. 5b. The third
category referred to the fruits where contours of two or more
fruits were adjacent to each other, which was denoted as
adjacent fruit, as shown in Fig. 5c. The fourth category was
denoted as separated fruit, in which fruit contours were com-
pletely independent and separated from each other, as shown
in Fig. 5d.

(d) Separated

-(a) Occludd (b) Overlapped (c) Adjacent

FIGURE 5. Categories of kiwifruit image in the field.

F. EVALUATION
The performance of the networks was evaluated by pre-
cision (P), recall (R), average precision (AP), detection
rate (DR) and detection speed. The AP is a standard for
measuring the sensitivity of the network to object, and an
indicator that reflects the global performance of the network.
The DR was defined by the proportion of the detected
kiwifruit number in the total number of each kiwifruit
category. The kiwifruits in images were categorized into
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four groups (i.e. occluded, overlapped, adjacent, separated).
The DRs of various kiwifruit categories evaluated the per-
formance of the networks on various kiwifruit categories
giving comprehensive and accurate measure of performance
of networks in kiwifruit detection.

—&— RGB-Only —@— Feature-Fusion ‘I‘. "\||

Precision (p)

NIR-Only —o— Image-Fusion \ '\‘

Bl
o ‘ . ‘ . ol
0.0 0.2 0.4 0.6 0.8 10

Recall (R)

FIGURE 6. Precision-Recall (P-R) curves of the four modes based on
VGG16.

Ill. RESULT AND DISCUSSION

A. EVALUATION OF THE FOUR DIFFERENT MODES

The Precision-Recall (P-R) curves of the four modes were
shown in Fig. 6. As expected, the P of the Image-Fusion and
Feature-Fusion modes were higher than that of the RGB-Only
and NIR-Only modes under the same R condition. While
the same results were also presented in the APs, as shown
in Table 2. It was noted that the Feature-Fusion mode con-
tains twice as many parameters as the others and requires
more resources such as computation time and GPU memory
space, because of its two VGG16 networks, as shown Fig. 4b.
As such, it cost more time of 0.188 s to process each image
under steady state for detection than the other three modes.
The initial detection speed will be affected by the CPU
cache. The detection speed of the Image-Fusion, RGB-Only,
and NIR-Only modes are almost same under steady state
(i.e., 0.134, 0.134, 0.135 s/image). It can be observed that
the number of parameters of a network is a critical com-
ponent to increase detection performance, as mentioned
by Eitel ez al. [37]. Regarding the computational efficiency of
the neural network, the number of inferred images per second
was irrelevant to the number of channels used. This is because
the addition of channels only affects the number of operations

TABLE 2. Kiwifruit detection results from the testing dataset using the
four modes.

Detection speed under steady

Mode AP (%) state (s/image)?
RGB-Only 88.4 0.134
NIR-Only 89.2 0.134

Image-Fusion 90.7 0.135
Feature-Fusion 90.5 0.188

aDetection time may vary across different hardware settings.
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on the first layer, which is insignificant with respect to the
whole network.

The NIR-Only mode gave a better performance with the
AP of 89.2% than that of the RGB-Only mode (88.4%),
as shown in Table 2. Although NIR images have never
been reported for kiwifruit detection, the results using the
NIR images only are superior of the RGB images. This is
because the NIR image obtained by Kinect v2 is enhanced
by its own infrared light source, thus effectively avoid
the changes in image brightness caused by environmental
changes. However, the results are different from Sa ez al. [25]
where the RGB images slightly outperforms the NIR images
on sweet pepper since the pre-trained ImageNet parameters
are more suitable to operate with RGB inputs. The lower
AP of the RGB-Only mode in this study may result from
the information loss of the aligned RGB images, as shown
in Fig. 2a, whereas the RGB images of the sweet pep-
per were not reported to be aligned with their NIR images
in Sa et al. [25].

The best result, with the highest AP of 90.7% and the
fastest detection speed of 0.134 s/image, was obtained by the
Image-Fusion mode. The Feature-Fusion mode has a quite
close AP (90.5%) to that of the Image-Fusion mode, although
double convolutional layers were used to extract kiwifruit
image features. There have been some studies working on
the relationship between extracted features and detection
results [38], [39]. Based on those researches, a hypothesis
that the Feature-Fusion mode has two VGG16 networks to
learn the features from the RGB and NIR images respectively,
which results in a duplicate features learning of some impor-
tant features belonging to both RGB and NIR images, such
as fruit shape and calyx shape. The duplicate features may
cause a reduction of features on the concatenate operation
of the Feature-Fusion mode. On the other hand, the Image-
Fusion mode using one VGG16 network to learn the features
of aligned RGB and NIR images simultaneously, which avoid
the duplicate learning of the same features of both RGB and
NIR images. It could be concluded that the RGB and NIR
images are helping each other to reduce the false positives and
the modes fusing RGB and NIR can achieve higher accuracy
than RGB alone. Sample images of this effect can be found
in Fig. 7, where, when comparing results before and after
fusing RGB and NIR images, a reduction in the false positives
was observed.

B. VALIDATION OF THE FOUR MODES ON THE
MODES ON THE ORIGINAL IMAGES
The four trained modes were tested for the detection accuracy
of the four different kiwifruit categories with 50 kiwifruit
images (a total of 2,518 fruits) that obtained in the field
under different lighting conditions. Most kiwifruit in the
field images are adjacent to each other, accounted for 60.5%
(1524 of 2518), as shown in Table 3. It is consistent with a
field survey results of Fu et al. [3].

Similar to the APs of the four modes, the total DR of the
Image-Fusion mode was higher than the other three modes,
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TABLE 3. Detection results of kiwifruit images in different categories
using the four modes.

DR (%)
Kiwifruit Number
categories of fruits RGB- NIR- Image- Feature-
Only Only Fusion Fusion
Occluded 346 824 825 83.6 83.5
Fruit
Overlapped 224 853  85.3 87.4 87.5
Fruit
Adjacent 1,524 882 895 92.8 915
Fruit
Separated 424 943 944 96.7 95.9
Fruit
Total 2,518 881  89.0 91.7 90.8

reached 91.7% for images with various kiwifruit categories,
it was 0.9% higher than the Feature-Fusion mode (90.8%),
2.7% higher than the NIR-Only mode (89.0%), and 3.6%
higher than the RGB-Only mode (88.1%). Images detected by
the Image-Fusion mode has least undetected kiwifruits than
other modes, as shown in the first column of Fig. 7. Although
the NIR-Only mode has a higher DR than the RGB-Only
mode, the position of detection box is less precise than that of
the RGB-Only mode, as shown in the third column of Fig. 7.

The Image-Fusion mode achieved higher DR and more
precise position, which proved that a single sensor may
not provide all the needed information to detect the target
fruits under a wide range of variations in field illumination.
Varying types of sensors can provide complementary infor-
mation regarding different aspects of the fruits, as described
in Sa et al. [25], thus the fusion modes could achieve better
detection performance. It was noted that the kiwifruits in the
edge of NIR images are hardly detected by the NIR-Only
mode, as shown in the third column of Fig. 7. This is because
the annotated NIR images were mapped from the correspond-
ing RGB images, of which the kiwifruit in the edges was
trained as background.

In terms of various kiwifruit categories, all the four modes
obtained the highest DRs (i.e., 94.3% of the RGB-Only mode,
94.4% of the NIR-Only mode, 96.7% of the Image-Fusion
mode, and 95.9% of the Image-Fusion mode) on the separated
fruits, respectively. It was followed by the adjacent fruits,
overlapped fruit, and occluded fruit orderly in each mode,
as shown in Table 1. The results are similar to conclusions
from other works on fruit detection that the occluded and
overlapped fruits have been the most challenge task.

The DRs of the RGB and NIR fusion modes showed
the same trend and higher than that only using one image
type. The DR of the adjacent fruit improved from 88.2% of
the RGB-Only mode to 92.8% of the Image-Fusion mode,
and the overlapped fruit improved from 85.3% to 87.4%.
As shown by the yellow circles (the undetected adjacent fruit)
and the yellow rectangles (the undetected overlapped fruit)
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FIGURE 7. Kiwifruit image detection examples of the four different modes. Image-Fusion mode (first column); Feature-Fusion mode (second column);
NIR-Only mode (third column); RGB-Only mode (fourth column). Note: The undetected occluded, overlapped, adjacent and separated fruit are
respectively marked by four different yellow marks (triangle, rectangle, circle, and diamond).

of Fig. 7h, the detection results of the RGB-Only mode have
certain adjacent and overlapped fruit leakage phenomenon,
while most fruits in the same position were detected by
Image-Fusion mode, as shown in Fig. 7e.

For the two fusion modes, the DRs of the adjacent (91.5%)
and separated (95.9%) fruit in the Feature-Fusion mode were
lower than the DRs of the Image-Fusion mode, while that of
the occluded and overlapped fruit were near to each other.
It was noticed that fusion on images performed better than
fusion on features for the adjacent and separated fruit, while
no differences on the occluded and overlapped fruit.

C. SUMMARY OF KIWIFRUIT DETECTION WORKS
Although it is difficult to compare different works tested
with different kiwifruit datasets since there is no public open
datasets for fruit detection researches. The performance of
two other current state-of-the-art kiwifruit detection using
LeNet and ZFNet by Fu et al. [21a] and Fu et al. [22b] and a
kiwifruit segmentation using FCN-8S by Williams et al. [6]
was summarized and analyzed by image type, camera, image
resolution (pixel), detection rate (%), and detection speed
(s/image), as shown in Table 4.

The images taken by Kinect v2 for the proposed methods
have 512 x 424 pixels resolution which is lower than that of
2352 x 1568 pixels in Fu et al. [21a] and Fu et al. [22b] and
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1900 x 1200 in Williams et al. [6], as shown in Table 4. High-
resolution images were helping for obtaining higher DRs but
resulting slower detection speeds than low-resolution images.
The result can be found in Fu et al. [22b] and the RGB-Only
mode in Table 4. The RGB-Only mode detected on the
512 x 424 image showed a DR of 88.1% which is lower than
the 92.3% of Fu et al. [22b]. On the other hand, the detection
speed of 0.134 s/image was significantly faster than that of
the 0.274 s/image of Fu er al. [22b]. The FCN-8S used in
Williams et al. [6] is a pixel-wise detector [40], of which the
positioning is more accurate than other region-wise detectors.
However, in detecting high resolution images, the pixel-by-
pixel classification in Williams ef al. [6] tends to be slow
(3.0 s/image). Besides, Williams et al. [6] has a total DR of
81.6% in kiwifruit detection, which is the proportion of seg-
mented kiwifruit calyx number in visible kiwifruit number.

The Image-Fusion and Feature-Fusion modes which fused
the RGB and NIR images have achieved better detection
performance while maintaining similar detection speed to
single modality modes (0.134 s/image). Comparing with
Fu et al. [22b] that has the highest DR of kiwifruit in current
state-of-the-art kiwifruit detection methods, Image-Fusion
mode has a DR of 91.7%, meaning that the Image-Fusion
has acceptable overall performance of detection speed and
detection rate.
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TABLE 4. Summary of proposed methods and other deep learning
networks for kiwifruit image detection.

Deep Image Detection
Image Detection
learning Camera resolution speed
type rate (%)
networks (pixel) (s/image)
Williams
Baslar
etal
FCN-8S RGB ac1920- 1900x1200 81.6% 3.0
(2019)
40uc
[6]
Fuetal
Canon
(2018a) LeNet RGB 2352x1568 89.3 8.1
S110
[21]
Fuetal
Canon
(2018b)  ZFNet RGB 2352x1568 92.3 0.274
s110
[22]
RGB-Only Kinect
VGG16  RGB 512x424 88.1 0.134
mode v2
NIR-Only Kinect
VGG16 NIR 512x424 89.0 0.135
mode v2
Image-
RGB, Kinect
Fusion VGG16 512x424 91.7 0.134
NIR v2
mode
Feature-
RGB, Kinect
Fusion VGG16 512x424 90.8 0.188
NIR v2
mode

On the other hand, Fu et al. [22b] only worked on day-
time images, while images from night were not considered.
In terms of kiwifruit categories, the DRs of occluded and
overlapped kiwifruit detected by the Image-Fusion mode
have exceeded the current highest DR, which are 83.4% and
87.5% respectively, as shown in Fu et al. [22b]. In terms
of that, the Image-Fusion mode has better detection perfor-
mance in kiwifruit categories that are difficult to be detected.

It is hard to summary the performance of
Williams et al. [6], because DR and accurate positioning are
both important indicators for realizing automated picking of
kiwifruit. However, in detecting images of almost the same
resolution, the speed of the Image-Fusion mode is about twice
than that of Williams et al. [6]. Besides, Kinect v2 can obtain
location information directly from the depth images. This
can reduce computing time comparing with that using stereo
vision provided by two RGB cameras. Overall, on the basis
of maintaining rapid detection, the Image-Fusion mode can
achieve state-of-the-art detection performance.

Rapid and accurate kiwifruit detection is the basis of real-
izing kiwifruit automated harvesting. Improved methods with
RGB and NIR images fused in the input layer achieved a more
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efficient and accurate detection of kiwifruit. Therefore, this
research may provide not only the technique to align RGB and
NIR images and implement image fusion for deep learning,
but also the knowledge of the Image-Fusion mode performs
better.

IV. CONCLUSION

This work presents a novel methodology for kiwifruit image
detection using an RGB-D sensor, taking advantage of its
extended capabilities. Multi-modality images dataset was
built using images provided by Microsoft Kinect v2. A 2D
projection of 3D point cloud based on depth sensor was car-
ried out to obtain corresponding RGB images. Then, an align-
ment between different modalities was performed, obtain-
ing images with 3 modalities: RGB, depth, and NIR. The
Hayward-Kiwi RGB-NIR-D dataset and the corresponding
annotations is the first dataset for kiwifruit detection that
contains aligned RGB, depth, and NIR images which has
been made publicly available. Two methods with RGB and
NIR images fusion were used to evaluate the fusion modes:
Image-Fusion and Feature-Fusion. VGG16 is modified and
adapted to receive RGB and NIR information simultane-
ously in the Image-Fusion mode. The input RGB and NIR
images are fed to two VGG16 networks and combine the
feature map in the Feature-Fusion mode. Results showed
that an improvement of 2.1% AP in the Feature-Fusion
mode, and 2.3% AP in the Image-Fusion mode when fusing
RGB and NIR images. Besides, the detection speed of the
Image-Fusion mode is the fastest, which is 0.134 s/image.
The study proposes an improved method for achieving more
accurate and faster automated detection of kiwifruit, which
provide the knowledge of the Image-Fusion mode performs
better. In future research, the depth images in Hayward-Kiwi
RGB-NIR-D dataset or other spectral images of kiwifruit will
be considered to be fused with RGB and NIR images, thereby
further realizing the detection and localization of kiwifruit
simultaneously.
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