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ABSTRACT 3D spinal structures segmentation is crucial to reduce the time-consumption issue and provide
quantitative parameters for disease treatment and surgical operation. However, the most related studies
of spinal structures segmentation are based on 2D or 3D single structure segmentation. Due to the high
complexity of spinal structures, the segmentation of 3D multiple spinal structures with consistently reliable
and high accuracy is still a significant challenge. We developed and validated a relatively complete solution
for the simultaneous 3D semantic segmentation of multiple spinal structures at the voxel level named
as the S3egANet. Firstly, S3egANet explicitly solved the high variety and variability of complex 3D
spinal structures through a multi-modality autoencoder module that was capable of extracting fine-grained
structural information. Secondly, S3egANet adopted a cross-modality voxel fusion module to incorporate
comprehensive spatial information from multi-modality MRI images. Thirdly, we presented a multi-stage
adversarial learning strategy to achieve high accuracy and reliability segmentation of multiple spinal
structures simultaneously. Extensive experiments onMRI images of 90 patients demonstrated that S3egANet
achieved mean Dice coefficient of 88.3% and mean Sensitivity of 91.45%, which revealed its effectiveness
and potential as a clinical tool.

INDEX TERMS Adversarial nets, spine, segmentation, magnetic resonance imaging, multi-stage, multi-
modality, computer-aided detection and diagnosis.

I. INTRODUCTION
Spinal diseases and the associated pain are critical issues of
body health, such as: (1) disc degeneration [1] is a common
cause of back pain and stiffness for adults [2]; (2) patients
with neural foraminal stenosis may develop symptoms
include: pain in the back, muscle weakness, tingling, burning
sensations, etc [3], [4]; (3) vertebral fractures cause pain,
functional disability and decreased quality of life, which may
last for several years [5]. The clinical segmentation methods
on spinal diseases were mainly done by means of man-
ual annotation, which were rather tedious, time-consuming,
and often subject to inter- and intra- observer variabili-
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ties caused by the grading criterion and expertise [6]–[8].
In this regard, 3D spinal segmentation of multiple structures
can assist in the disease treatment by providing quantitative
parameters, which improves the efficiency and accuracy for
spine pathologies diagnosis.

Due to the superior ability to distinguishing soft tissue con-
trast, MRI images have emerged as the modality of choice for
some spinal diseases such as intervertebral disc degeneration
[9]. The existing work for MRI image segmentation of the
spine mostly uses 2D single structure segmentation method.
However, 3D multiple spinal structures segmentation has
more merits compared with 2D segmentation for single struc-
ture: (1) The value of simultaneous segmentation for multiple
structures has been shown in [10] in the scope of spinal
diseases diagnosis. Foraminal stenosis, intervertebral disc
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FIGURE 1. (a) The solution of 3D multiple spinal structures segmentation features advantages of 3D segmentation and simultaneously segmentation of
multiple spinal structures; (b)-(c) Feature extraction from multi-modality MRI images can combine the structural characteristics of different modalities.

degeneration, and lumbar vertebral deformities have strong
pathological correlations and automated semantic segmenta-
tion of the three structures can significantly promote clinical
pathogenesis-based diagnosis [8]. (2) Compared with 2D, 3D
spinal MRI image segmentation shows more details, such as
3D structures and the relative position between 3D structures,
as shown in Fig. 1(a). (3) 3D spinal MRI image segmentation
has wide application in image-guided surgery. Its segmenta-
tion results canmake the orthopedic surgeon real-time control
surgical instruments relative to the patient the precise location
of anatomical structures, and thus improve the accuracy of the
operation [2].

Segmentation of 3D multiple spinal structures with consis-
tently reliable and high accuracy is still a great challenge in
MRI images. Although a large amount of studies has been
focused on spinal segmentation, the solution of 3D multiple
spinal structures segmentation from MRI images lacks rele-
vant experience due to three primary challenges. Firstly, 3D
spinal structures are challenges to distinguish due to the high
complexity of spinal structures and pathologicalMRI images.
In addition to identifying complex spinal structures (For
example, the structure of L5 quite different from L1, L2, L3,
and L4), normal and abnormal structures have a high degree
of visual similarity and subtle differences. The segmentation
results of the intervertebral disc structure are often affected
by fat and degeneration. The fine-grained segmentation of
the spinal structures is a great challenge due to the tissue
synechia, which often appears in spinal MRI images. Sec-
ondly, structural information is not comprehensive on single
modality MRI images but the popular segmentation solutions
are difficult to apply in different MRI modalities images.
Fig. 1(b)-(c) shows that compared with T2WI slice, the edge
features of T1WI slice are more clearly presented. Specifi-
cally, for L3, L5, IVD L2-L3, and IVD L3-L4. But for L1 and
IVD L5-S1, the local structural features on T2WI are better
than that on T1WI. Finally, simultaneously segmentation for
multiple spinal structures with high accuracy and reliability

results must be satisfied. The spatial correlations between
intervertebral foramen (IVF), intervertebral discs (IVD), and
vertebrae increase the difficulty of multiple spinal structures
segmentation.

A. RELATED WORK
Themost common traditional approach are based on intensity
[11] and shape information [12]. Nevertheless, these models
do not explicitly cope with the individual differences of the
vertebrae anatomical structure and often suffer from seri-
ous boundary leaking problems when the objects have weak
boundaries.

Machine learning methods have gained increasing interest
in the field of spinal structures segmentation. For example,
marginal space learning (MSL) [13] was proposed to detect
the spine in CT and MRI images. Unified data-driven esti-
mation framework [14] was proposed to estimate the image
displacements to localize IVD and then segment IVD by pre-
dicting the foreground and the background probability of each
pixel in which the neighborhood intensity vector was used as
visual features. A sparse kernel machine [15] based regres-
sion method taking hand-crafted features including texture
and shape as input to segment disc and vertebral structures
from both MRI and CT modalities. However, these methods
do not completely solve the problems encountered in 3D
multiple spinal structure segmentation due to the difficulty of
design. While considering the segmentation accuracy, these
methods also need to consider the influence of different
modal data on equipment and environment in order to obtain
more feature information.

As existing deep learning methods, the representation
power of CNNs often leads to successful image prediction
results. But the expressive power of regular CNN is usually
limited, especially for 3D semantic segmentation. Kinds of
literature have proposed deep learning methods to segment
spinal structures [2], [16]. These methods indicate the poten-
tial for 3D CT or MRI images segmentation of one spine
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component solely. A common property across various types
of regular CNNs approaches is that all label variables are
predicted independently from each other. To assess the joint
configuration ofmany label variables, themethod of semantic
segmentation using adversarial networks (GAN) [17] was
proposed to produce label maps that cannot be distinguished
from ground-truth. The adversarial theory has extended to
prostate cancer detection [18], brain MRI segmentation [19],
and quantification of myocardial infarction [20]. All these
works have gained different levels of improvement, which
proves the effectiveness of adversarial learning. In addition,
GAN has been applied to achieve 2D multiple spinal struc-
tures segmentation [10].

Despite the improvements, the solution of 3D multiple
spinal structures segmentation with high accuracy and reli-
ability is still a challenge worth exploring. In this regard,
we proposed a relatively complete solution for the simulta-
neous 3D semantic segmentation of spinal structures at the
voxel level named as the S3egANet, which shows effective
performance for distinguishing of 3D multiple spinal struc-
tures.

B. OUR CONTRIBUTIONS
We propose a novel adversarial model based on multi-stage
learning approach to segment 3D multiple spinal structures
from multi-modality MRI images. Experimental results on
90 sets of 3D multi-modality MRI images demonstrated the
superiority of our proposed method.

Our primary contribution of this study include:

1) For the first time, a relatively complete solution was
achieved to implement the simultaneous 3D seman-
tic segmentation of multiple spinal structures from
multi-modality MRI images.

2) We proposed a novel adversarial model to distinguish
the high complexity of spinal structures.

3) We proposed a multi-stage learning strategy that
encourages the model to predict right voxel-wised class
labels and achieve high accuracy and reliability seg-
mentation simultaneously for multiple spinal struc-
tures.

4) We leverage a cross-modality voxel fusion mod-
ule (CMVF) to establish the relationship of multiple
modalities MRI images. The CMVFmodule can assign
different weights to each modality and fuse the feature
values in the feature maps.

The rest of this paper is organized as follows:
Section 2 describes in detail the proposed S3egANet, includ-
ing the segmentation network, the discriminative network,
the cross-modality voxel fusion module, the multi-stage
adversarial learning strategy (MSAL), and the global opti-
mization. Section 3 introduces the details about the dataset,
configuration, and experiments. In Section 4, we report our
results, conduct a comprehensive performance analysis of our
S3egANet on clinical data and discuss the significant influ-
ence of our work. Then, conclusions are given in Section 5.

II. METHODOLOGY
Our adversarial nets are implemented by two competing
networks: the segmentation network (Subsection A) and the
discriminative network (Subsection B). The segmentation
network generates predicted masks and then the discrimina-
tive network receives either the predicted masks or ground
truth masks. Finally, our model outputs a scalar of 0 or
1 for each voxel, which shows whether the segmentation
network can generate sufficiently accurate predicted masks
to cheat the discriminative network. After completing the
feature extraction encode (Subsubsection 1), we deployed
a cross-modality voxel fusion module (Subsubsection 2) to
combine the features from different modality MRI images.
In order to improve the expressivity of the model, our adver-
sarial nets were trained by a multi-stage adversarial learning
strategy (Subsection C), each of which is carefully designed
for the characteristics of 3D spinal structure segmentation.

A. SEGMENTATION NETWORK
The segmentation network consists of a multi-modality
autoencoder module (MMAE) and a cross-modality voxel
fusion module (CMVF), as shown in Fig. 2. The network
builds the spatial feature extraction layers firstly based on
stacks of 3D convolution [21], [22] to learn a compre-
hensive representation of the 3D data. And then builds a
CMVF module to share the representation of the feature
frommulti-modality MRI images. Finally, the expansive path
based on stacks of deconvolution (Deconv) [23] to propagate
context information to higher resolution layers. The detailed
configuration parameters of the segmentation network are
delicately design.

1) MULTI-MODALITY AUTOENCODER MODULE (MMAE)
The MMAE module consists of multiple contracting paths as
an encoder to receive different modalities input and an expan-
sive path as a decoder to generate the predicted results. Each
contracting path comprises nine convolutions with kernel size
3× 3× 3 to produce a set of feature maps, which are further
applied by a batch normalization layer [24] and a rectified lin-
ear unit (ReLU) [25]. After each three continuous convolution
+ batch normalization + ReLU operations, a 2× 2× 2 max
pooling layer with stride 2 for down-sampling is deployed.
The batch normalization operation causes the activation input
to fall in a region where the nonlinear function is sensitive to
the input, such that the input a small change will result in
a significant change in the loss function. The max pooling
can reduce the deviation of the estimated mean caused by the
convolutional layer parameter error and preserve more spinal
structures information.

Each contracting path comprises an up-sampling process
of the feature map with a 2× 2× 2 deconvolution that halves
the number of feature channels, each followed by a ReLU.
At the final two 1 × 1 × 1 convolutional layers are used to
map each component feature vector to the desired number of
classes. For one thing, compared to the single convolutional
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layer, the cascade of two layers reduce the number of input
channels and modify the algorithm complexity. For the other,
with the size of the featuremap is unchanged (Without change
the resolution), 1 × 1 × 1 convolutional layers making the
segmentation network deep and significantly increase the
non-linear characteristics.

2) CROSS-MODALITY VOXEL FUSION MODULE (CMVF)
In order to combine the imaging advantages ofmulti-modality
MRI images, a cross-modality voxel fusion module is
deployed after the feature extraction of different contracting
paths. Our cross-modality voxel fusion module consists of
a cross-modality convolution [26] and convolutional LSTM
layers.

After the contracting paths, each modality generates fea-
ture maps of size C × H × W × c, where C , W and H are
feature dimensions, and c is the number of channels.We stack
the features of the same channels from modalities number n
into one stack. After reshaping, we have c× n× H ×W 2D
feature maps. Our cross-modality convolution performs 3D
convolution with the kernel size n × 1 × 1, followed by a
n × 1 × 1 average pooling. The repeated application of two
convolutional LSTM (ConvLSTM) layers is deployed after
the cross-modality convolution to better exploit the spatial
and sequential correlations of consecutive slices. ConvLSTM
captures the sequential dependencies and further mixes struc-
tural features from multi-modality data. Given that it , ft , c̃t ,
ot , and ht represent the input gates, forget gates, cell, output
gates, and final state respectively, the ConvLSTM is defined
as following:

it = σ (xt ∗Wxi+ ht−1 ∗Whi + bi)
ft = σ (xt ∗Wxf + ht−1 ∗Whf + bf )
c̃t = tanh(xt ∗Wxc̃ + ht−1 ∗Whc̃ + bc̃)
ct = c̃t � it + ct−1 � ft
ot = σ (xt ∗Wxo+ ht−1 ∗Who+ bo)
ht = ot � tanh(ct )

(1)

where σ and tanh are the sigmoid and hyperbolic tangent
functions; ∗ and � represent the convolution operation and
Hadamard product respectively.

B. DISCRIMINATIVE NETWORK
The discriminative network learns the ground truth in the
adversarial training. During training, the adversarial nets
receive the predicted maps from the segmentation network
firstly and manual maps from ground truth, then output a
single scalar representing whether the inputs are from the
segmentation network or ground truth. When a strong con-
frontation occurs, the discriminative network prompts the
segmentation network to detectmismatches in awide range of
higher-order statistics between predicted segmentation maps
and ground truth.

We propose a practical and straightforward discrimina-
tive network. It consists of the repeated application of three
5×5×5 convolutions, each followed by a batch normalization

operation, a ReLU, and a 2×2×2 average pooling operation
with stride 2 for down-sampling. In order to ensure the com-
puting capacity of the neural network, we double the number
of feature channels at each down-sampling step. At the final
layer, a 1×1×1 convolution is used to map each component
feature vector to the desired number of classes. A dropout
function is set between the two 1 × 1 × 1 convolutional
layers to eliminates the joint adaptability and enhances the
generalization ability.

C. MULTI-STAGE ADVERSARIAL LEARNING STRATEGY
(MSAL)
The number of voxels from spinal MRI images in different
classes varies greatly. In particular, the ratio of the class
with the most voxels (background) to the class with the least
voxels (IVF) is about 850: 1. Besides, simultaneously seg-
mentation for multiple spinal structures with high accuracy
and reliability results is still not completely solved. To solve
these challenge and obtain highly reliable and accurate seg-
mentation result of multiple spinal structures, we design a
novel strategy of adversarial learning which empirically has
stable performance.

Let us consider the learning strategy of primary GAN.
The objective function of primary GAN adjusts parameters
for segmentation network G to minimize the probability of
the samples from G to be recognized and adjust parameters
for discriminative network D to maximize the probability
of assigning the correct label to both training examples and
samples from G, as if they are following the two-player min-
max game with value function V (G,D):

min
G
max
D

V (G,D) = Ex∼pdata(x)[logD(x)]

+Ez∼pz(z)[log(1− D(G(z)))], (2)

where x ∼ pdata(x) denotes the real data samples, D(x)
denotes the probability that x came from the real data. z ∼
pz(z) denotes the fake data samples. G(z) denotes the newly
generated data.

In connection with the characteristics of adversarial nets,
we design an high efficiency multi-stage mode to training
our adversarial network. Our learning strategy contains two
training stages for the segmentation network, correspond-
ing to solve the imbalance of different spinal structures and
high accuracy and reliability segmentation simultaneously for
multiple spinal structures respectively. The first stage aims at
distinguishing spinal major structure and building the spatial
relationship between different structures. Relatively, the sec-
ond stage deals explicitly with preserving accurate structural
information to segment the edge of the spinal structure.

1) MULTI-STAGE CROSS-ENTROPY LOSS OF
SEGMENTATION NETWORK
Our segmentation network S(x) is a function parametrized as
a network predicting the confidences for K classes of image
voxels and softmax is employed to obtain the probability
of sample x belonging to each class. After obtaining the
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segmentation result, the predicted map and ground truth map
are input to a discriminative network for further regularization
in the training. The S(x) is trained with a multi-stage learning
strategy. In the first stage, a weighted cross-entropy learning
strategy (WCEL) is designed and the segmentation lossL(S1)
is:

L(S1) = −
C×H×W∑

i=1

wkyi log pi, (3)

where y denotes real label and pi denotes the probability.
wk =

∑M
m=1(C×H×W )/Ak denotes the k-th class’s weight,

where Ak is the voxel amounts of the k-th class in training
dataset. Our S3egANet optimizes the network with different
weights. This method reduced the training difficulty of GAN
and improve the stability of our Seg3ANet.

During the second stage, the effect of imbalance in the
training samples has been greatly reduced due to the weighted
learning strategy which is balanced by the voxel amounts
of different classes. And corresponding to that, the predic-
tion accuracy of different classes would inevitably prohibit
the segmentation network to predict right voxel-wised class
labels. To solve this issue, we used a focal cross-entropy
learning strategy (FCEL) and adopt the focal loss [27] as
following:

L(S2) = −
C×H×W∑

i=1

(1− pi)γ yi log pi. (4)

The term (1 − pi)γ controls the contrast of loss value. The
larger γ become, the larger effect between loss value of easy
and hard classes become (we found γ = 1 to work best in our
experiments).

2) THE ADVERSARIAL LOSS OF DISCRIMINATIVE NETWORK
The discriminative network of S3egANetD(x) is an auxiliary
adversarial convolutional network. Themain function ofD(x)
is to distinguish whether the input data is from ground truth
or the prediction of the segmentation network.

We introduce the loss functions of adversarial network
starting from the cross-entropy loss for binary classification:

L(y, ŷ) = −y log(ŷ)− (1− y) log(1− ŷ), (5)

where y is the label and ŷ is the prediction. For the adversarial
network, y is marked as 1 or 0. If sample xr came from the
real ground truth, the value of y is marked as 1, as following:

L(Dr ) = −(1 ∗ logD(xr )+ (1− 1) ∗ log(1− D(xr )))

= − logD(xr ), (6)

where theD(xr ) denotes the predicted value of the discrimina-
tive network. If sample xf came from the fake data, the value
of y is marked as 0, as following:

L(Df ) = −(0 ∗ logD(xf )+ (1− 0) ∗ log(1− D(xf )))

= − logD(1− D(xf )), (7)

where the D(xf ) denotes the predicted value of the discrim-
inative network. For each i on the total number of batch M ,
the loss function of the adversarial network is:

L(D) = −
1
M

(
M∑
xr

log(D(xr ))+
M∑
xf

log(1− D(xf ))). (8)

D. GLOBAL OPTIMIZATION
The optimizer employed in our model is RMSProp algorithm
[28] to update our network with dynamic learning rate based
on exponential decay, as following:

E[g2]t = αE[g2]t−1 + (1− α)g2t , (9)

Wt+1 = Wt −
η√

E[g2]t + ε
� gt , (10)

where gt denotes the gradient of the cost function and E[g2]t
denotes the gradient’s mean value of t times square. α, η
and ε are the moving average parameter (good default value
0.9), learning rate and a parameter added to prevent division
by zero, respectively. The initial learning rates of the seg-
mentation network and the discriminative network are set to
0.001 and 0.0001, respectively.

Three types of updates are possible based on the above
settings during the training procedure, i.e., an update of
only the segmentation network, an update of only the dis-
criminative network, and an update of the whole network
(segmentation and discriminator network). The implementa-
tion of update the whole network is shown in Algorithm 1.
The updates based on segmentation loss (Cross-entropy of
multiple classes) and the updates based on discriminative
loss (Two cross-entropy functions of binary classification)
were performed by a separate optimizer using separate learn-
ing rates. Given an adversarial network, the training of the
segmentation network minimizes the cross-entropy loss and
reduces the performance of the discriminative model. This
encourages the segmentation network to generate accurate
predictions and these predictions are difficult to distinguish
from ground truth.

III. DATA AND EXPERIMENTS
A. DATA AND PRE-PROCESSING
We evaluated our proposed method on the dataset which
consists of 90 sets of clinical patients’ lumbar scans. Lum-
bar spine scan was performed in patients, and the neural
foramen, intervertebral disc and vertebral were presented
simultaneously in the sagittal direction. Due to these patients
are examined by different models of vendors, their MRI scans
have different parameters. The range of repetition time is
from 380 ms to 4,000 ms. Slice thickness from 0.879 mm
to 2.0 mm. Pixel spacing from 0.38 mm × 0.38 mm to
0.86 mm × 0.86 mm. We unified the scale of our data and
made the number of slices are 32 with and each slice is
256 × 256 pixels. Each set of data has two modalities MRI
images, i.e., T1 weighted images (T1WI) and T2 weighted
images (T2WI). Each set of multi-modality MRI images was
derived from two consecutive scans in a patient’s clinical
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Algorithm 1 The Training Procedure of the S3egANet
Require:

A dataset of P training MRI images x;
Ground truth maps y;
Minibatch size p;
Maximum epochs Q;
The discriminative network’s parameters ω;
The segmentation network’s parameters θ ;
The learning rate η.

Ensure:
1: Initialize all parameters {ω, θ, η};
2: for QP

p do
3: xp ⇐ fed minibatch p from training dataset
4: gθ ⇐ ∇θL(S)
5: Update the segmentation network:
6: θ ⇐ θ + η · RMSProp(θ, gθ )
7: xp, yp ⇐ fed minibatch p from training dataset
8: gω ⇐ ∇ωL(D)
9: Update the discriminative network:
10: ω⇐ ω + η · RMSProp(ω, gω)
11: end for

diagnosis and thus are aligned with each other. Through
the selection and repeated confirmation by two radiologists,
the spatial position differences of the spine structures of
the multi-modality MRI images we used reached an indis-
tinguishable level. Therefore, our segmentation results can
be applied to both modalities MRI images simultaneously.
According to the reports of spinal surgery, our data includes,
but is not limited to, disc degeneration disease, schmorl
snode, ankylosing spondylitis, osteoporosis, and spinal steno-
sis.

B. EXPERIMENTS
We use the standard five-fold cross-validation for perfor-
mance evaluation and comparison [29]. We divided the data
into five groups, each time selecting four groups as a training
dataset and one group as a test dataset. After the testing,
we calculated the average value as the model metrics. The
advantage of this method is that in the case of small amounts
of data, all observations are used for training and testing, and
each observation is used for testing once. We implemented
the proposed method with Python 3.6 based on TensorFlow
1.2 library [30] on a workstation equipped with GPUs of
NVIDIA TESLA P100.

C. PERFORMANCE EVALUATION
We employed the challenge evaluation metrics to evaluate the
performance of our S3egANet. Dice coefficient is adopted for
measuring the accuracy of segmentation results and standard
deviation (STD) quantifies the degree of variation. Let us
consider TPn andFPn are the true positives and false positives
of class n, while TN and FN are true negatives and false
negatives of background respectively. Dice coefficient and

Sensitivity of one class n are defined as:

Dicen =
2TPn

2TPn + FPn + FNn
, (11)

Sensitivityn =
TPn

TPn + FNn
, (12)

Dice coefficient and Sensitivity are standard metrics calcu-
lated on voxel-level confusion matrix.

IV. RESULTS AND ANALYSIS
The S3egANet is a novel adversarial method and achieves
3D semantic segmentation of multiple spinal structures.
S3egANet combines the advantages of adversarial nets and
multi-stage learning strategy for distinguishing the 3D multi-
ple spinal structures, and leverages the cross-modality voxel
fusion module to share the fine-grained representation from
multi-modality MRI images. Experimentation on 90 sets of
clinical patients’ lumbar scans, S3egANet achieved mean
Dice coefficient of 88.30%, which verified consistently reli-
able and high accuracy segmentation for 3D spinal structures.
S3egANet also achieved 91.45% mean Sensitivity on mul-
tiple spinal structures simultaneously, which demonstrated
that S3egANet held the potential to improve the diagnosis
efficiency.

A. EFFECTIVENESS OF MULTI-MODALITY INPUT IMAGES
In order to quantitatively analyze the effectiveness of
multi-modality input, we conducted comparative experi-
ments by using single modality images and training dif-
ferent networks respectively. All networks adopt identical
network architecture (Fig. 2) and single stage training strate-
gies (Equation 2). As shown in Table 1, the experimental
results produced by the network with multi-modality input
outperform the single modality input by approximately 2-4
percent in Dice coefficient. Compared to single modality
data, multi-modality can provide richer complementary infor-
mation. It is worthy pointing out that the segmentation results
generated from networks trained with T1WI image input
have higher segmentation accuracy than that with T1WI
image input. Table 1 presents the segmentation accuracy of
IVD, IVF, and vertebrae. Networks trained with T2WI image
improve the accuracy of IVF. One of the main reasons is
that the intensity contrast around the IVF and its neighboring
regions of the T2WI image is larger than the T1WI image,
which reduces the difficulty of IVD recognition.

For the sake of analysis, we use the 2D ground truth slice as
the background and color the 2D segmentation slice to cover
the background. Fig. 3 presents several examples of segmen-
tation results for different experimental settings, including
training with T1WI image, T2WI image, and multi-modality
images. It is observed that all the experimental settings
can segment vertebrae and IVD with reasonable accuracy.
However, different modalities have positive effects on the
extraction of local features. Specifically, for L3, L5, IVD
L2-L3 and IVD L3-L4 in Fig. 3(b), L1 and IVD L4-L5 in
Fig. 3(c). As shown in Fig. 3(d), the prediction boundaries

VOLUME 8, 2020 1897



T. Li et al.: S3egANet: 3D Spinal Structures Segmentation via Adversarial Nets

FIGURE 2. The architecture of S3egANet: the segmentation network combines multi-modality autoencoder module and cross-modality voxel fusion
module for multi-modality features extraction; the discriminative network determines the source of input and achieves adversarial learning.

TABLE 1. Comparison of segmentation results produced by the network with single modality data input and multi-modality images input.

FIGURE 3. The application of multi-modality input images has improved the segmentation performance.

generated from multi-modality MRI images can achieve rea-
sonable accuracy in these cases. These observations confirm
that training network with multi-modality images can achieve
better segmentation results than using the single modality
MRI images as input.

B. EFFECTIVENESS OF LEARNING TECHNIQUES
To investigate the effectiveness of our major technological
contributions including both MSAL and CMVF, we compare
the segmentation results achieved by different architectures.
The architecture of multi-channel input encoder is a tradi-
tional method to process the multi-modality data. This archi-
tecture places different modalities as initial inputs on different
channels for training.

1) MODULES ANALYSIS BY INTRA-COMPARISON
To investigate the effectiveness of a multi-stage learning
strategy, we compare the segmentation results achieved by

the WCEL, FCEL, and MSAL. Table 2 present the results
of these experimental configurations. MSAL can distinguish
spinal structures much better than directly employing the
single stage learning strategy, with the performance of our
S3egANet outperforms theMMAE+CMVF+WCEL struc-
ture by approximately 3% percent on the Dice coefficient.

By comparison to the segmentation accuracy of each
spine structure, the experimental results showed that a
multi-stage strategy mainly improves the segmentation accu-
racy of IVF and achieves simultaneous and efficient seg-
mentation of multiple classes. In addition, as is shown
in Fig. 4(a)-(c), although the FCEL mainly focuses on the
prediction accuracy of different classes, it still preserves
fine details which accurately delineate the spinal structures.
Moreover, S3egANet also achieves higher Sensitivity than
its ablated versions. As shown in Fig. 4(d), the segmentation
network corrected the voxels which are improperly identified
after training by using the MSAL. As a result, performance
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TABLE 2. Experimental results demonstrated that S3egANet has superior segmentation effectiveness on the Dice coefficient and Sensitivity from
inter-comparisons and intra-comparisons.

FIGURE 4. Multi-stage adversarial learning achieved reliable performance in the 3D semantic segmentation of intervertebral discs, vertebrae, and
intervertebral foramen.

evaluations are significantly improved after using a
multi-stage learning strategy.

The MMAE + CMVF architecture in our experiment
is superior to the traditional multi-channel input encoder,
as shown in Table 2. One possible reason is that extracting
features separately for different modalities data makes the
network adapt to the characteristics of each modality, and
is not easily disturbed by the differences between different
modalities. For example, the T2WI image may reduce the
segmentation accuracy of the IVD boundary. After extract-
ing the features of different modalities, the CMVF module
assigns different weights to each modality and sums the
feature values in the feature maps. This allows the features
of different modalities to be well integrated.

We also compared the performance of ConvLSTM.
As shown in Table 2, CMVF can distinguish spinal struc-
tures much better than directly employing the cross-modality
convolution layer without ConvLSTM, with the performance
outperforms the MMAE + CMVF - ConvLSTM + MSAL
3.01% percent on the Dice coefficient. Our experiments
demonstrate that the CMVF, which combines cross-modal
convolution and ConvLSTM to simultaneously mix struc-
tural features from multi-modality MRI data and extract the
sequential dependencies, is the best choice among similar
methods.

2) SUPERIOR ANALYSIS BY INTER-COMPARISON
In Table 2, we compare our S3egANet with 3D FCN, 3D
U-Net, and 3D Spine-GAN. S3egANet significantly outper-
forms the 3D FCN by approximately 7.37% percent on the
mean Dice coefficient. We also compare our method with
3D U-Net [31] for spinal structures segmentation, one of the
most known frameworks in the medical image community.
S3egANet outperforms the 3D U-Net network by 3.88%
mean Dice coefficient. Spine-GAN is the most related to our
work. We built its 3D version according to the structure of
Spine-GAN, which is the 3D Spine-GAN. It is observed that
the results achieved by S3egANet have higher segmentation
accuracy than 3D Spine-GAN, with mean Dice coefficient
of 2.65% improvement. Therefore, S3egANet enjoys a strong
superiority of segmentation performance of 3D spinal struc-
tures.

C. DISCUSSION
S3egANet is an integrated adversarial net with a multi-stage
learning strategy for 3D multiple spinal structures segmen-
tation. Extensive experimental results demonstrate that our
method is effective and achieves state-of-the-art Dice coeffi-
cient accuracy. Our solution provides a possibility for radiol-
ogists to solve the time-consuming, laborious and error-prone
problems of manual labeling in the current clinical routine.
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The limitation of S3egANet have mainly two aspects:
1) S3egANet not develops an effective method to acquire 3D
MRI data with a high resolution on the third dimension. More
detailed structure can be delineated on the third dimension
with more slices than we collect now available, which would
also help improve performance. In the future, we shall inves-
tigate how to utilize some image generation techniques to
acquire smoother MRI images and further improve the per-
formance. 2) S3egANet does not develop a reliable method
to achieve accurate registration between different modalities
data. Each set of multi-modality MRI images we used was
derived from two consecutive scans in a patient’s clinical
diagnosis. The visible misalignment images have been manu-
ally removed. The process of data selection affects the clinical
application of S3egANet. In the future, we can find more
available data by finding a reliable registration method and
achieve more accurate segmentation results.

V. CONCLUSION
In this study, S3egANet was developed and validated as a rel-
atively complete solution for the simultaneous 3D semantic
segmentation of multiple spinal structures at the voxel level.
It combines the advantages of the powerful multi-stage adver-
sarial learning strategy to achieve highly reliable and accurate
segmentation of multiple spinal structures and leverages the
cross-modality voxel fusion module to further effectively
integrate the multi-modality information and improve the
learning capability. Extensive experiments on MRI images
of 90 patients have demonstrated the effectiveness of our
S3egANet. S3egANet improves the existing work to the level
of 3D segmentation with high accuracy and reliability for
multiple spinal structures. S3egANet lays a good foundation
for computer-aided automatic diagnosis of spinal diseases
and can be applied to other organss’ semantic segmentation.
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