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ABSTRACT The camera shake and high-speed motion of objects often produce a blurry video. However,
it is hard to recover sharp videos using existing single or multiple image deblurring methods, as the blur
artifacts in blurry videos are both temporally and spatially varying. In this paper, we propose a temporally
and spatially variant recurrent neural network for video deblurring, in which both temporally and spatially
variants employ ConvGRU blocks and a weight generator to capture spatio-temporal features. Meanwhile,
the proposed model is trained in an end-to-end manner, where the model input and output are set to the same
number. Thus, our model does not reduce the number of frames both in training and testing stages, which is
important in practical applications. Quantitative and qualitative evaluations on standard benchmark datasets
demonstrate that the proposed method outperforms the current state-of-the-art methods.

INDEX TERMS Spatio-temporal features, video deblurring, variant recurrent neural network.

I. INTRODUCTION
Motion blur is a common phenomenon in videos. In low-
light conditions, camera shake and object movement often
produce blurs at the time of exposure. In addition, even when
the light is satisfied, the fast movement of the objects also
causes blur artifacts in a video. This problem triggers lots of
works on video deblurring, which aims at recovering sharp
frames from the input blurred frames. The video deblurring
methods are widely used in many areas of computer vision,
such as denoising [1], tracking [2] and classification [3].

Early works mainly focus on single image deblurring,
which recovers a sharp image given a single blurred image.
Compared with the single image deblurring, video deblur-
ring is more challenging, because it involves modeling joint
spatial and temporal information in several frames. Some
existing video deblurring methods [4]–[6] take a large batch
of frames as input to model their long term dependence, and
estimate the short term temporal relationship by gradually
scanning these frames. However, we note that the short term
consistency of temporal information within the frames is not
fully captured, since it is labile in continuous frames. In addi-
tion, as their methods directly capture the long term informa-
tion from all inputs, the captured temporal information often
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FIGURE 1. An example of deblurring results. Our model generates a
sharper frame which looks more realistic compared with SRN [7].

lacks the variable short term information, which may cause
the discontinuity between generated frames. Moreover, these
methods use multiple blurred frames to generate one sharp
frame. This reduces the number of frames in the newly syn-
thesized video. The missing frames may contain important
information, which is essential for applications.

In order to handle the aforementioned problems, a spatially
and temporally variant recurrent neural network is proposed
in this paper. The proposed network contains three parts:

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 7587

https://orcid.org/0000-0003-2402-8684
https://orcid.org/0000-0001-5787-2705
https://orcid.org/0000-0002-0202-0174
https://orcid.org/0000-0003-3972-4949
https://orcid.org/0000-0003-0958-7285
https://orcid.org/0000-0002-5048-4141


R. Jiang et al.: Video Deblurring via Temporally and Spatially Variant RNN

the temporally variant block, the spatially variant block and
the frame reconstruction block. The first two blocks are
embedded with ConvGRU [8] blocks and a weight generator
separately, which guides each module to work effectively.
Together with the weight generators and ConvGRU blocks,
the two blocks estimate information about the variant blur
kernels and restore feature maps about sharp frames. Finally,
the frame reconstruction block uses the outputs of the first
two blocks to reconstruct the deblurred frames. In this way,
our model can effectively learn the temporal information with
different lengths and spatial information, which are important
for video deblurring. Fig. 1 shows the visual results of the
proposed video deblurring method. Compared with SRN [7],
our model can produce more realistic deblurring effects.

The main contributions of this work are summarized as
follows:
• We propose a model with the temporal and spatial
blocks, which applies ConvGRU blocks in a deep recur-
rent neural network to capture joint long term and short
term spatio-temporal features for video deblurring.

• Our proposed model is trained together with the two
weight generators, in which the temporal and spatial
information of the model input and output is hardly lost.
Thus, our model does not reduce the number of frames
both in training and testing stage, which is important in
practical applications.

The rest of this paper is structured as follows. Section II
briefly reviews related works on image deblurring, video
deblurring and recurrent neural networks. The proposed
method and experiments are presented in Section III and
Section IV. Section V concludes this paper.

II. RELATED WORK
Our work is closely related to three topics: image deblurring,
video deblurring and recurrent neural networks. These topics
are discussed in the following subsections.

A. IMAGE DEBLURRING
Image deblurring aims at restoring a sharp image from a
blurred one. Most successful approaches to image deblurring
[9], [10] are based on the uniform blur model as follows:

B = k ∗ S + N , (1)

where B represents a blurred image, k refers to the unknown
blur kernel, and S is the sharp image. The operation of ∗ is
the convolution, and N is a noise term.
There are two kinds of image deblurring methods: non-

blind image deblurring [10]–[14], and blind image deblurring
[15]–[19]. The solutions of the non-blind deblurring depend
on an assumption that the blur kernels are known in advance.
In order to acquire the S, early non-blind deblurring meth-
ods [11]–[13] use the classical Lucy-Richardson algorithm,
which is an iterative algorithm based on Bayesian analysis.
In most cases, blind deblurring is an ill-posed problem where
S is not uniquely determined by B and k . Therefore, many

blind deblurring methods rely on heuristics, image statistics
and hypothetical blur kernels. For example, [9], [10], [20],
[21] are based on an iterative method. Both of them use
parametric prior models to estimate the motion kernel and the
sharp image at each iteration.

Recently, data fitting term is also used for image deblurring
[6], [22]–[25]. Pan et al. [22] propose a data-driven approach
to learn a data fitting function, which is used to estimate the
blur kernels for blind image deblurring. Whyte et al. [23]
describe a novel method for non-uniform blind deblurring
depended on a parametrized geometric model of the blurring
process. Sun et al. [24] use a convolution neural network
(CNN) to estimate the blur kernels.

B. VIDEO DEBLURRING
Compared with image deblurring, video deblurring is more
challenging as it needs consider the problem of modeling
temporal information. Generally, there are two main methods
for video deblurring: deconvolution based methods, multi-
frame aggregation and fusion based methods. For exam-
ple, [26]–[28] are typical representatives of deconvolution
based methods. Specially, Li et al. [27] first put temporal
information into consideration for video deblurring. It solves
the deblurring problem by minimizing an energy function
defined on a multi-image deconvolution. However, previous
deconvolution-based methods may not work well when fac-
ing various motions from dynamic blur scenarios. To handle
this problem, the authors in [28] propose a novel energy
method which uses pixel-wise kernel estimation and [26]
takes the effect of depth variations on blur into consideration.

Multi-frame aggregation and fusion methods use the fact
that not all video frames have the same amount of blurs. Pixel
values can be sharpened using the values in nearby frames.
Cho et al. [29] propose a patch-based alignment algorithm
to recover sharp frames. Klose et al. [30] project pixel values
into a single reference frame for pixel fusion. Recently, multi-
frame aggregation and fusion approaches based on deep
learning have been widely used in video deblurring. In [31],
a recurrent neural network is used to learn spatio-temporal
information between multiple consecutive frames to fuse a
central sharp frame. Ren et al. [32] solve the video deblur-
ring problem with the help of the semantic segmentation of
multiple frames. Tan et al. [33] put forward a kernel-free
method to restore sharp frames by using the same contents
among continuous frames. DBN [4] takes multiple continu-
ous frames as input to produce the middle sharp frame. It uses
2D convolution tomodel spatio-temporal information. Differ-
ent from the DBN, Tae et al. [34] propose a network layer that
enforces temporal consistency between consecutive frames,
and a recurrent network to reconstruct the deblurred frames.

C. RECURRENT NEURAL NETWORKS
Benefiting from the rapid requirement of sequential infor-
mation processing tasks (e.g., natural language processing,
video super-resolution, video deblurring), recurrent neural
networks have made great progress. Current methods usually
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FIGURE 2. The architecture of the proposed network. The block enclosed in red is the temporally variant block. The block enclosed in
green is the spatially variant block. The block enclosed in purple is the frame reconstruction block. There are five input frames and five
output frames during training and testing.

follow the standard Recurrent Neural Network (RNN) [35].
However, ordinary RNN is difficult to train, because it
is easy to cause the vanish or explode gradient prob-
lem during training stage [36], [37]. After finding the
problem of ordinary RNN, the Long Short Term Mem-
ory (LSTM) [38] architecture is proposed to address it.
Although LSTM solves the above problem by designing
a long-short term dependence mechanism, it requires large
training datasets to obtain a better generalization ability
due to its huge number of parameters. In order to han-
dle this problem, Cho et al. [39] propose a GRU architec-
ture to improve the LSTM. Although the GRU inherits the
strengths of both RNN and LSTM, it still lacks the ability
of considering spatial coherence across images [8], [35].
To tackle this drawback, authors in [8] propose a long-term
recurrent convolutional network that takes convolutions as
the basis of ConvGRU. Moreover, Liu et al. [40] propose the
spatially variant RNN, where spatially-variant weights of the
RNN are learned by a deep CNN. By utilizing the deep CNN,
the spatially variant RNN does not need to use a large number
of parameters since spatial information of an image can be
propagated by the RNN.

III. PROPOSED APPROACH
In this section, the overall architecture of the proposed net-
work is presented. After that, each component of the proposed
network is introduced in detail.

A. OVERALL ARCHITECTURE
Architecture of the proposed network is shown in Fig. 2.
It consists of three components: the temporally variant block,
the spatially variant block, and the frame reconstruction
block. The temporally variant block models the temporal
information in a set of five blurry frames. Then, the spa-
tially variant block uses four ConvGRU blocks and a series
of convolutional layers for deblurring. Finally, the frame

TABLE 1. The detailed architecture of the temporal weight generator and
the spatial weight generator.

reconstruction block restores sharp frames by using features
produced by the spatially variant block. In order to accelerate
the network convergence, two skip connections from the
spatially variant block to the reconstruction block are used.
In addition, as the input and output of the proposed network
are five frames, the loss function is the Mean Square Error of
five frames. Formally, it can be represented as following:

LMSE =
1

KWH

K∑
k=1

W∑
x=1

H∑
y=1

(I sharpk,x,y − G(I
blurry)k,x,y)2. (2)

In Eq. (2), K , W and H are the number of frames, the width
and height of a frame. The I sharp and G(Iblurry) represent the
sharp frame and the corresponding deblurred frame.

B. TEMPORALLY VARIANT BLOCK
The main difference between image deblurring and video
deblurring is that video deblurring takes many consecu-
tive frames as inputs, while image deblurring takes only
one. Previous methods such as [29], [41], [42] directly
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FIGURE 3. The structure of the temporally variant block. Detailed
components of the temporal weight generator are presented in Table 1.

exploit patches across frames to restore sharp patches.
However, these methods require the alignment of the blurred
frames or the computation of optical flow [41]. All of them
cause high computation consume. In this paper, the tempo-
rally variant block is proposed to capture temporal infor-
mation more efficiently. As shown in Fig. 2, the proposed
temporally variant block contains three ConvGRU blocks and
a temporal weight generator. The temporally variant block is
illustrated in more detail in Fig. 3.
Formally, one ConvGRU block is designed as follows:

zt = σ (Wz ∗ xt + Uz ∗ ht−1), (3)

rt = σ (Wr ∗ xt + Ur ∗ ht−1), (4)

ĥt = tanh(W ∗ xt + U ∗ (rt � ht−1)), (5)

ht = (1− zt )ht−1 + zt ĥt , (6)

where ∗ denotes convolution, � is the dot product operation.
W ,Wz,Wr and U ,Uz,Ur are convolution kernels, xt and
ht are the input and output of ConvGRU block at time t .
By taking Eq. (3−6), ht is computed from ht−1 and ĥt , which
are the output at time t − 1 and the new output generated
at time t . However, temporal relationship captured by trans-
forming ht−1 cannot represent global relationship among all
inputs. As discussed in the literature [43], deep CNN is able
to extract high-level information from amounts of images and
often show strong ability of generalization. Therefore, in this
work, a deep CNN (i.e., the temporal weight generator) is
adopted to generate the global relationship and provide ht−1.
In addition, as discussed in the literature [8], [44], motion of
video patches is usually restricted to a local neighborhood,
and ConvGRU is able to extract temporal patterns from differ-
ent time scales. Therefore, we empirically take three frames
sequentially chosen from five inputs (see Fig. 3) as xt .

As can be seen from Table 1, the temporal weight generator
contains fifteen convolution layers, three maxpooling layers,
three upsample layers, and one Tanh layer. Different from
[4], it takes several convolution layers to estimate temporal
relationship among all input frames. For better presentation,
feature maps generated by the temporal weight generator are
visualized in Fig. 4. To be specific, three consecutive frames

FIGURE 4. Visualizations of feature maps generated by temporal weight
generator. From left to right, there are three consecutive frames. Among
the three frames, only toys grasped by the child and background are
moving.

and corresponding feature maps are presented. Among the
three consecutive frames, only toys grasped by the child and
background are moving. It can be find that among the three
visualizations, the moving background and the toy are more
salient than the non-moving child.

C. SPATIALLY VARIANT BLOCK
As proposed in [45], recurrent neural networks can be used to
deblur single image with the assistance of pixel-wise weight
generator. The motivation of [45] can be summarized as
following:

y[n] =
M∑
m=0

k[m]x[n− m], (7)

where y represents the blurred signal, M refers to the size of
the kernel k and m is the position of 1D signal x. The input x
can be restored by following:

x[n]

=
y[n]
k[0]
−

M∑
m=1

k[m]
k[0]

(
y[n−m]
k[0]

−

∑M
l=1 k[l]x[n−m−l]

k[0]
)

=
y[n]
k[0]
−

M∑
m=1

k[m]y[n−m]
k[0]2

+

M ,M∑
m=1,l=1

k[m]k[l]y[n−m−l]
k[0]2

= · · · (8)

The existing study [45] uses four RNN layers and four con-
volution layers to approximate Eq. (8). However, this method
may not effectively solve the problem of video deblur-
ring because blurs in blurred videos have more dramatic
changes [5]. In this work, the ConvGRU block is adopted to
formulate the spatially variant block for following reasons.
First, ConvGRU blocks are able to preserve spatial topology
and temporal relationship among consecutive frames, while
RNN can only preserve the temporal relationship [8]. Second,
compared with RNN, ConvGRU blocks can better tackle
these drastic blurs through various gates. Third, compared
with other convolutional recurrent blocks (e.g., convolutional
RNN, convolutional LSTM), ConvGRU blocks have less
parameters. In addition, the proposed spatially variant block
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FIGURE 5. The structure of the spatially variant block. Green cube in
upper-left is feature maps generated by the temporally variant block.
Detailed components of the temporal weight generator are presented
in Table 1.

takes features generated by the temporally variant block and
consecutive frames as inputs, while [45] takes a single image.

The proposed spatially variant block has a weight gen-
erator, four ConvGRU blocks and six convolution layers as
Fig. 5 illustrates. The kernel size of the first convolution
layer in Fig. 5 is set to 3, the stride and padding are set
to 1. The corresponding parameters of the second convolution
layer are 4, 2 and 1, and the corresponding parameters of
other convolution layers are 1, 1 and 0. Two LeakyReLU
layers with slope equals to −0.1 are used after the first two
convolution layers. Detailed architecture of spatial weight
generator is presented at Table 1.
During deblurring, the spatial wight generator first

estimates spatial topology of all frames. Then, four ConvGRU
blocks (i.e., ConvGRU 4, ConvGRU 5, ConvGRU 6,
ConvGRU 7) and convolution layers conduct the deblur-
ring process. However, during going through the proposed
network, spatio-temporal features extracted by the temporal
weight generator are easy to loss due to the message passing
inefficiency [46]. Inspired by [47], the spatial weight genera-
tor is adopted to extract spatio-temporal features and embed
them into the latent feature space of the proposed model.
Thus, the spatial topology and temporal relationship among
consecutive frames are hardly lost. For better presentation,
we also visualize featuremaps generated by the spatial weight
generator in Fig. 6. In the above figure, the left two images are
taken from real-world blurry videos, and the right images are
visualizations. It can be seen that the right images show blurry
regions of left images. In addition, by observing the right two
images, it is easy to find that they are able to indicate motions
among consecutive frames.

D. FRAME RECONSTRUCTION BLOCK
The frame reconstruction block contains two convolution
layers. The kernel size in the first of these convolution layers
is set to 9, padding and stride are set to 4 and 1 respectively.
The kernel in the second convolution layer is set to 3, while
padding and stride are both set to 1.

FIGURE 6. Visualizations of feature maps generated by the spatial weight
generator. The left images are real-world blurry images, and the right
images are feature maps generated by the spatial weight generator.

The first convolution layer takes deblurred features pro-
duced by the spatially variant block as inputs. After the first
convolution layer, bilinear interpolation is used to magnify
the feature size by a factor of 2. At the second convolution
layer, the feature channel is reduced from 32 to 5. As illus-
trated in Fig. 2, there are two skip connections from the first
two convolution layers of spatially variant block to the frame
reconstruction block.

By combining the temporally variant block and the spa-
tially variant block into a unified reconstruction framework,
the information in the blurry frames can be almost trans-
formed from inputs to outputs in the proposed networks,
therefore it can obtain a same number of deblurred image
frames.

IV. EXPERIMENTS
In this section, experiments are presented to show the effec-
tiveness of proposed network. Firstly, we introduce the public
benchmark dataset used in this paper. Secondly, we discuss
the training details of the proposed network. Then, the effec-
tiveness of different parts of the model is analysed. Finally,
we compare the proposed network with some state-of-the-art
methods.

A. DATASET
Su et al. [4] propose a benchmark dataset (i.e., VideoDe-
blurring dataset) for video deblurring. These videos which
contain about 100 frames of 1280 × 720 size are cap-
tured via iPhone 6s, GoPro Hero 4 black, and Canon 7D
at 240 FPS. After capturing these videos, blurry videos are
generated by averaging consecutive seven frames. To be
specific, the VideoDeblurring dataset consists of two sub-
sets: a quantitative subset and a qualitative subset. The first
subset contains 6,708 synthetic blurry frames with corre-
sponding 71 ground truth videos. Videos in the second subset
are obtained from 22 different scenes without ground truth
data. Therefore, we split the quantitative subset to a training
set and a testing set. The training set contains 61 videos
(e.g., IMG-0019, IMG-0036 and 720p-240fps-1), while the
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FIGURE 7. Visual comparisons by removing different components from the proposed model. (a) is the input blurry frame. (b) presents images that
are generated without the spatial weight generator, while images in (c) are generated without the temporal weight generator. During generating
images in (d) and (e), ConvGRU blocks in the spatially variant block and temporally variant block are removed, respectively. (f) presents deblurred
images.

testing set contains other 10 videos (e.g., IMG-0021, IMG-
0030 and 720p-240fps-2). In total, there are 5,708 blurry-
sharp pairs are used for training, and 300 pairs for testing.
More details about the training set and testing set are avail-
able at https://github.com/shuochsu/DeepVideoDeblurring.
We compare the proposed method with many state-of-the-
art methods in the testing set. Moreover, we make a visual
comparison using the qualitative subset.

B. IMPLEMENTATION DETAILS
Durring training stage, in order to augment training data,
we crop 128×128 patches from any location of input frames.
At least 712,193 samples are obtained in this way [4]. The
batch size is set to 4 in training stage. All the frames are
transformed into YCbCr space. The Y channel is used as
inputs of the proposed model, and the corresponding Cb,
Cr channels are used to restore the generated frame to RGB
space. All the weights of the proposed network are initialized
via a Gaussion distribution N (0, 0.01).

In this paper, we use Eq. (2) as the loss function to train
our network. Empirically, we set the learning rate as 1e-5.
Adamwithmomentum to 0.9 is used to optimize our network.
We implement our model with the PyTorch framework and a
NVIDIA GTX 1080ti GPU.

C. MODEL ANALYSIS
To better validate the effectiveness of the proposed blocks,
we define four sub-networks which contain different compo-
nents to make quantitative and qualitative comparisons.

1) EFFECTIVENESS OF TEMPORALLY VARIANT BLOCK
The proposed temporally variant block is designed to cap-
ture temporal information among frames. Similarly, [5] pro-

TABLE 2. Performance comparison between sub-networks with different
components.

poses the 3D convolution to model temporal information.
Therefore, a sub-network is proposed in which the temporally
variant block is replaced by 3D convolution layers. This sub-
network is referred to as 3D-sub. In addition, RNNs, which is
proposed in [45], is taken as a special sub-network that does
not have the temporally variant block. Therefore, by compar-
ing the RNNs and the proposed network, effectiveness of the
temporally variant block can be verified. Moreover, its effec-
tiveness can be further verified by comparing 3D-sub, which
takes 3D convolutions to capture temporal information.

As illustrated in Table 2, performance of the 3D-sub and
RNNs are worse than the proposed network. PSNR of the
proposed network is about 1.01 higher than the PSNR for
3D-sub, and 1.08 higher than RNNs. In addition, qualita-
tive comparisons are made by removing ConvGRU blocks
and temporal weight generator in this block. To be specific,
as can be seen from Fig. 7, images generated without the
temporal weight generator tend to be unrealistic. For exam-
ple, images in the first row is the sharpest frame. Trans-
forming information from this frame to others is beneficial
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FIGURE 8. Visual comparison with the state-of-the-art deblurring methods in the quantitative subset.

to overall deblurring process. However, since the temporal
weight generator is removed, the proposed model cannot
effectivelymodel long-term temporal relationship. Thus, with
time sequence, deblurring effects in the (c) column become
worse. In the (e) column, almost all image content are lost
as ConvGRU blocks in the temporally variant block are
removed. To be more specific, these ConvGRU blocks aim
at extracting short-term spatio-temporal information from
adjacent frames, which is essential for preserving image
content. Both of the quantitative and qualitative experiments
demonstrate effectiveness of the proposed temporallly variant
block.

2) EFFECTIVENESS OF SPATIALLY VARIANT BLOCK
There are many convolutional recurrent neural networks such
as ConvRNN, ConvLSTM. For verifying effectiveness of
ConvGRU blocks used in the spatially variant block, we con-
struct a sub-network which is named as LSTM-sub. In order
to avoid the influence of temporally variant block, the LSTM-
sub also takes a 3D convolution layer to model temporal
information as 3D-sub does. Therefore, the only difference
between 3D-sub and LSTM-sub is that the later one uses four
ConvLSTM layers to form the spatially variant block.

As presented in Table 2, both PSNR and SSIM of 3D-sub
outperform LSTM-sub. By comparing their components,
we find the ConvGRU blocks which are used in 3D-sub
improve the PSNR by about 1.7%. In addition, as can be seen
from the (d) column of Fig. 7, local regions in same blurry
frames cannot be effectively recovered (e.g., the image in the
3-rd row) as the ConvGRU block is removed. By comparing
images in (b) and (f), it can be find that heavily blurred images

TABLE 3. Performance comparisons of the proposed method by varying
the number of input frames.

are almost unrestored in the (b) column (e.g., images in the
4-th and 5-th row), while images in (f) column achieve the
best visual performance. Thus, effectiveness of the proposed
spatially variant block is demonstrated.

3) EFFECTIVENESS OF WEIGHT GENERATORS
In the proposed network, two weight generators are adopted
to capture spatio-temporal information for video deblurring.
Therefore, effectiveness of the two generators is important to
the overall performance. In order to verify the influence of
the two weight generators, we also propose two sub networks
which lack one of the two weight generators. The two sub
networks are named as Spatial-sub and Temporal-sub. In the
Spatial-sub, the spatial weight generator is deleted. In the
Temporal-sub, we delete the temporal weight generator.

As presented in Table 2, the Spatial-sub achieves 30.31 dB
in terms of PSNR, and Temporal-sub achieves 30.27 dB.
Compared with the proposed network, PSNR of the two
sub network is about 0.86 dB lower. Even these met-
rics indicate that removing the two generators will weaken
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TABLE 4. Quantitative comparison with state-of-the-art methods on the VideoDeblurring dataset [4].

the overall performance, qualitative experiments are still
needed for demonstrating their effectiveness. Therefore,
during generating images in the (b) and (c) column of
Fig. 7, the two generators are removed from the proposed
model. It is easy to find that without the spatially weight
generator, heavily blurred frames are not well restored.
On the other hand, without the temporally weight gen-
erator, deblurring performance becomes worse with time
sequence.

4) DIFFERENT FRAMES
We are curious about how the number of input frames influ-
ences the performance of the proposed network. Therefore,
we vary the number of input frames in the proposed model.
Comparison results are shown in Table 3. In the above table,
numbers of input frames in the temporally variant block and
the spatially variant block are denoted with prefix I1, I3,
I5 and I7. Also, we put a suffix Twith number of input frames
in ConvGRU1, ConvGRU2 and ConvGRU3. For example,
I5T3 denotes that both temporally variant block and spatially
variant block take five consecutive frames as inputs. Mean-
while, the ConvGRU1, ConvGRU2 and ConvGRU3 take
three frames sequentially chosen from the five frames as
inputs.

By comparing the I1T1, I3T1, I7T1, and I5T1, it is easy
to find with the increase of input frames, PSNR of the I1T1,
I3T1, and I5T1 become higher. However, PSNR of the I7T1 is
lower than I5T1. This demonstrates that the proposed model
can utilize long-term spatio-temporal relationship among
consecutive frames to achieve better performance. In addi-
tion, for demonstrating the ability of capturing short-term
features, inputs of ConvGRU 1, ConvGRU 2 and ConvGRU
3 are changed to 1, 3 and 5 frames (i.e., I5T1, I5T3 and
I5T5). As the I5T3 achieves the highest PSNR, it is easy to
find that the proposed network can also utilize the short-term
features.

D. COMPARISON
In order to demonstrate the effectiveness of our proposed
network, we compare it to some state-of-the-art methods such
as PSDEBLUR, DeblurGAN [48], MSCNN [6], WFA [49],
DBN [4], STAN(M/A_A) [50], DMPHN [51], RNNs [45]
and IFI-RNN [52]. In Table 4, PSDEBLUR is the deblurred
results of PHOTOSHOP, and INPUT represents the blurry
images. For fair comparison, four image deblurring methods
and four video deblurring methods are taken. Specifically,
DeblurGAN [48] is an end-to-end model for image deblur-
ring, which is based on the adversarial learning. DMPHN [51]
utilizes feature maps at different scales to tackle the image
deblurring problem. Zhang et al. [45] propose a spatially
variant recurrent network to deblur a single image. WFA [49]
uses multiple frames as inputs to produce a deblurred frame.
DBN (single), DBN (noalign), DBN (flow) are three variants
of the DBN [4], which stacks 5 copies of one single frame
as input. STAN [50] uses a motion estimation and motion
compensation module to warp the previous deblurred frame
to restore the current frame. The method IFI-RNN [52] is
also a recurrent neural network aims at video deblurring.
However, the most difference between the IFI-RNN and our
method is that hidden states of our model is provided by the
twoweight generators rather than transformation from former
recurrent cells.

Table 4 shows the PSNR values of the generated frames
on the test datasets. The proposed method achieves the best
result of video deblurring in terms of the PSNR. Compared
with DeblurGAN [48] and MSCNN, our method improves
the average values of PSNR to 31.13 dB, which proves that
our proposed model is better at deblurring blurry videos.
For the newest image deblurring methods DMPHN [51] and
RNNs [45], their ability of video deblurring are also worse
than the proposedmodel.When compared to video deblurring
methods such as MSCNN and WFA, our model outperforms
them by about 9.8%. Variations of DBN [4] (DBN (single),
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FIGURE 9. Visual comparison with the state-of-the-art deblurring methods in the qualitative subset.

DBN (noalign), DBN (flow)) are all worse than our proposed
method. In addition, PSNR of the proposed method is also
higher than the newest video deblurring method IFI-RNN.
The above results show that our model has better performance
for video deblurring. In addition, we make a visual compari-
son with many state-of-the-art methods using the quantitative
subset and the qualitative subset. As shown in Fig. 8 and
Fig. 9, the generated frames of our model achieve state-of-
the-art visual appearance. This shows that our network can
remove motion blur effectively in real scenes.

V. CONCLUSION
In this paper, we propose a novel recurrent neural network
with spatially variant and temporally variant blocks, which
model long-short term temporal information and spatial infor-
mation for video deblurring. Our experiments demonstrate
that each module in the proposed network can capture the
corresponding features effectively. At the same time, our
method solves the problem of frame loss in previousmethods.

Both quantitative and qualitative experiments on standard
dataset demonstrate that the proposed method achieves state-
of-the-art performance.
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