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ABSTRACT The matrix decomposition (MD) based finite impulse response (FIR) filter is a low-complexity
FIR filter. It has been tested the coefficients of the MD-FIR filter can be effectively optimized by the trust-
region-iterative-gradient-searching (TR-IGS) algorithm. This algorithm solves the convex-approximation-
problem of the original coefficients optimization problem. In this study, we deal with the relationship
between the theoretical termination point of the TR-IGS and the optimal solution of the original coefficients
optimization problem.

INDEX TERMS FIR, low-complexity, matrix decomposition, optimal design, trust-region-iterative-
gradient-searching.

I. INTRODUCTION
Finite impulse response (FIR) filters [1]–[25] can achieve
strict linear-phase (LP) and have guaranteed stability. They
are widely used in digital signal processing (e.g., filtering and
Hilbert transformer design [9]) and communication systems
(e.g., pulse shaping [10] and equalizer). Traditional meth-
ods of designing an FIR filter include window method, fre-
quency sampling method and direct optimal design method.
The hardware implementation complexity [11] of a tradi-
tional FIR filter is high due to the coefficient multiplications.
However, it has the advantage that it can be implemented
using the well developed direct implementation structure.
Particularly, for thewindowmethod, the filter coefficients can
be analytically obtained.

Various techniques have been developed to decrease the
hardware implementation complexity [9], [11]–[24] of a tra-
ditional FIR filter. The popular ones of these techniques
include sparse traditional FIR filter technique [12], [13],
[18], [20], frequency response mask technique [8], and the
matrix decomposition based technique [7]. For the sparse
traditional FIR filter technique, the designed FIR filter can be
implemented using the well developed direct implementation
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structure. For the other two techniques, the designed FIR
filters have to be implemented using different structures.

By utilizing a different FIR filter structure, matrix decom-
position (MD) based technique can synthesize any FIR filter
(including non-frequency-selective FIR filters), with much
lower hardware implementation complexity, affecting the fre-
quency performancemetrics very scarcely andwith no impact
on the group-delay performance metric [6], [7].

The optimal design of a MD-FIR filter is generally a
high-dimensional, non-convex and non-differential-able (for
mini-max design) optimization problem. Thus, it is not easy
to analyze and locate its local optimum. The trust-region
iterative-gradient-searching (TR-IGS) is an effective tech-
nique to optimize the coefficients of a MD-FIR filter [6].

In [7], a convergent implementation of TR-IGS is proposed
for the first time. It is pointed out in [7], the TR-IGS may
converge to a non-local-minimum.

A theoretical question regarding TR-IGS is: what is the
relationship between the optimal solution of TR-IGS and that
of the original filter coefficients optimization problem? In this
study, we address this issue for the first time. The theoretical
results provide insight into the TR-IGS algorithm. The chal-
lenge in addressing this theoretical issue is: the original filter
coefficients optimization problem is high-dimensional, non-
convex and and non-differential-able (for mini-max design).
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II. THE THEORETICAL QUESTION
The frequency response of a non-linear-phase MD-FIR filter
can be given as follows [7]:

H ′
(
x ω

)
= xrem (0)+

M∑
n=1

[
xrem (n) · exp

(
−
√
−1 · ω · n

)]
+

R∑
j=1

s1 (j)

·

d∑
i=1

[
r1 (i) · exp

(
−
√
−1 · ω · (M + (j− 1) · d + i)

)]
+

R∑
j=1

s2 (j)

·

d∑
i=1

[
r2 (i) · exp

(
−
√
−1 · ω · (M + (j− 1) · d + i)

)]
+ ......+

R∑
j=1

sM1+M2+q (j)

·

d∑
i=1

[
rM1+M2+q (i) · exp

(
−
√
−1 · ω · (M + (j− 1)

·d + i))
]
, (1)

where

x =
[
xTrem rT1 rT2 ... rTp sT1 sT2 ... sTp

]T
.

(2)

xrem, ri and si are the design parameters of a MD-FIR fil-
ter [7]. The frequency response of a linear-phase MD-FIR
filter has a similar expression to the above [6]. The optimal
design of a MD-FIR filter, in the minimax sense or the least
square sense, can be described as follows [6]:

minimize
xNZ

‖w ∗ (H (xNZ)−Hd )‖∞ or 2 (Problem 1)

wherew denotes the frequency weighting vector, xNZ denotes
the variable coefficients vector in x and ∗ denotes element-
wise multiplication of two vectors.

For some given initial solution xIntNZ = x(0)NZ (the super-
script ‘Int’ denotes the initial solution), (Problem 1) can be
approximately transformed into a convex optimization prob-
lem described as follows:

minimize
∇xNZ

∥∥∥w ∗ (H (xIntNZ

)
+G

(
xIntNZ

)
· ∇xNZ −Hd )

∥∥∥
∞ or 2

(Problem 2.a)

subject to : ‖∇xNZ‖∞ ≤ δ (Problem 2.b)

whereG (xNZ) is the Jacobeanmatrix of the functionH (xNZ)
with respect to xNZ, ∇xNZ(∇xNZ =

(
xNZ − xIntNZ

)
) denotes

the minor change of variable xNZ at some initial point and δ
is some prescribed bound. By solving (Problem 2), we could

obtain a better solution x(1)NZ than x(0)NZ. Thus, xNZ = x(0)NZ
can be improved iteratively until it cannot be improved
(Theoretically speaking, xNZ = x(0)NZ can be infinitely iter-
atively improved before reaching the theoretical termination
point [7] of TR-IGS (i.e., the optimal solution of TR-IGS).
Practically and generally speaking, however, xNZ = x(0)NZ
can only be finitely iteratively improved before reaching the
theoretical termination point.).

Note the objective function in Problem (2)/(2.a) is the con-
vex approximation of the objective function in Problem (1).
If the optimal solution of Problem (2) is ∇xNZ = 0 (i.e.,
xNZ = xIntNZ) for some initial solution xIntNZ, then the TR-
IGS algorithm terminates theoretically at this point xIntNZ, and
∇xNZ = 0 is the optimally solution of Problem (2)/(2.a).
And, this ∇xNZ = 0 is the optimal solution of TR-IGS.
A theoretical question intuitively arise as follows: what is
the relationship between the optimal solution of the TR-IGS
and that of the original problem? In this study, a complete
relationship between the optimal solution of TR-IGS and that
of the original problem is studied.

III. PRELIMINARY WORK
Firstly, we reformulate Problems (1) and (2) by expanding
each function in the `∞ norm or `2 norm using Taylor series.
Let 

f
(
xNZ ω1

)
f
(
xNZ ω2

)
...

f
(
xNZ ω0

)
 = w ∗ (H (xNZ)−Hd ) , (3)

∇f
(
xInitNZ ωi

)
and H

[
f
(
xInitNZ ωi

)]
denote the gra-

dient vector and Hessian matrix of f
(
xNZ ωi

)
for i =

1, 2, 3,...,0, and ωi are the frequency points of interest. For
some initial solution xInitNZ , (Problem 1) can be reformulated
equivalently in (Problem 3-Q), as shown at the bottom of the
next page, where 1xNZ =

(
xNZ − xInitNZ

)
. And (Problem 2)

can be reformulated equivalently in (Problem 3-L-a) and
(Problem 3-L-b), as shown at the bottom of the next page.

In this paper, ‘‘Q’’ and ‘‘L’’ are used to differentiate the
original problem and the convex-approximation problem.

Note the optimal design of the basic frequency response
masking (FRM) FIR filter and that of the separable 2-D FIR
filter can also be described by (Problem 3-Q).

Then, we consider the reformulated problems only in one
direction of∇xNZ. Let d =

∇xNZ
‖∇xNZ‖∞

be the direction of∇xNZ
and ∇xNZ = ‖∇xNZ‖∞ (1xNZ ≥ 0) be the length of ∇xNZ.
For any given direction d of ∇xNZ, (Problem 3-Q) can be
reformulated equivalently in (Problem 4-Q), as shown at the
bottom of the next page.

Let

g1i =
[
∇f

(
xInitNZ ωi

)]T
· d (4)

And

g2i = dT ·H
[
f
(
xInitNZ ωi

)]
· d. (5)
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We have (Problem 5-Q), (Problem 5-L-a), and
(Problem 5-L-b), as shown at the bottom of this page,

IV. RELATIONSHIP BETWEEN THE OPTIMAL SOLUTION
OF THE TR-IGS AND THAT OF THE ORIGINAL PROBLEM,
`∞ NORM
A. THE GENERAL CASE: f

(
xNZ ωi

)
ARE COMPLEX-

COEFFICIENT FUNCTIONS WITH REAL ARGUMENT xNZ
FOR i = 1, 2, 3, ...,0

Firstly, some sets of the indexes (i.e., i = 1, 2, 3,...,0) of
the functions f

(
xNZ ωi

)
are defined, which will be used

in simplifying the expressions of the objective functions of
Problems (5-Q) and (5-L). (6) and (7), as shown at the bottom
of the next page, for i = 1, 2, 3,...,0, where Real [] and
Imag [] denote the real and imaginary part of a complex
number.

Let 81 = arg maximize
i

∣∣f ( xNZ ωi
)∣∣2, 82 =

arg maximize
i∈81

c1i and 83−Q = arg maximize
i∈82

c2i. Let

FIGURE 1. 81, 82, 83−Q, 83−L, 84−Q, 85−Q and 8Q−L (case1).

83−L = arg maximize
i∈82

|g1i|2, 84−Q = arg maximize
i∈83−Q

c3i, and

85−Q = arg maximize
i∈84−Q

c4i. Let i−max−Qdenote an element

in set85−Q, and i−max−L denote an element in set83−L.
Let 8Q−L = 83−L ∩ 85−Q and i − max − Q − L denote
an element in 8Q−L (i.e., i − max − Q − L ∈ 8Q−L). The
relationship between81,82,83−Q,83−L,84−Q,85−Q and
8Q−L is illustrated in the following Figures 1-3.

minimize
1xNZ

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

f
(
xNZ ω1

)
= f

(
xInitNZ ω1

)
+
[
∇f

(
xInitNZ ω1

)]T
·1xNZ

+0.5 ·1xTNZ ·H
[
f
(
xInitNZ ω1

)]
·1xNZ

f
(
xNZ ω2

)
= f

(
xInitNZ ω2

)
+
[
∇f

(
xInitNZ ω2

)]T
·1xNZ

+0.5 ·1xTNZ ·H
[
f
(
xInitNZ ω2

)]
·1xNZ

...

f
(
xNZ ω0

)
= f

(
xInitNZ ω0

)
+
[
∇f

(
xInitNZ ω0

)]T
·1xNZ

+0.5 ·1xTNZ ·H
[
f
(
xInitNZ ωN

)]
·1xNZ

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
2 or ∞

(Problem 3-Q)

minimize
1xNZ

∥∥∥∥∥∥∥∥∥
fL
(
xNZ ω1

)
= f

(
xInitNZ ω1

)
+
[
∇f

(
xInitNZ ω1

)]T
·1xNZ

fL
(
xNZ ω2

)
= f

(
xInitNZ ω2

)
+
[
∇f

(
xInitNZ ω2

)]T
·1xNZ

...

fL
(
xNZ ω0

)
= f

(
xInitNZ ω0

)
+
[
∇f

(
xInitNZ ω0

)]T
·1xNZ

∥∥∥∥∥∥∥∥∥
2 or ∞

(Problem 3-L-a)

subject to ‖∇xNZ‖∞ ≤ δ (Problem 3-L-b)

minimize
1xNZ

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

f
(
xNZ ω1

)
= f

(
xInitNZ ω1

)
+
[
∇f

(
xInitNZ ω1

)]T
· d ·1xNZ

+0.5 ·1x2NZ · d
T
·H

[
f
(
xInitNZ ω1

)]
· d

f
(
xNZ ω2

)
= f

(
xInitNZ ω2

)
+
[
∇f

(
xInitNZ ω2

)]T
· d ·1xNZ

+0.5 ·1x2NZ · d
T
·H

[
f
(
xInitNZ ω2

)]
· d

...

f
(
xNZ ω0

)
= f

(
xInitNZ ω0

)
+
[
∇f

(
xInitNZ ω0

)]T
· d ·1xNZ

+0.5 ·1x2NZ · d
T
·H

[
f
(
xInitNZ ω0

)]
· d

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
2 or ∞

(Problem 4-Q)

minimize
1xNZ

∥∥∥∥∥∥∥∥
f
(
xNZ ω1

)
= f

(
xInitNZ ω1

)
+ g1i ·1xNZ + 0.5 ·1x2NZ · g2i

f
(
xNZ ω2

)
= f

(
xInitNZ ω2

)
+ g1i ·1xNZ + 0.5 ·1x2NZ · g2i

...

f
(
xNZ ω0

)
= f

(
xInitNZ ω0

)
+ g1i ·1xNZ + 0.5 ·1x2NZ · g2i

∥∥∥∥∥∥∥∥
2 or∞

(Problem 5-Q)

minimize
1xNZ

∥∥∥∥∥∥∥∥
fL
(
xNZ ω1

)
= f

(
xInitNZ ω1

)
+ g1i ·1xNZ

fL
(
xNZ ω2

)
= f

(
xInitNZ ω2

)
+ g1i ·1xNZ

...

fL
(
xNZ ω0

)
= f

(
xInitNZ ω0

)
+ g1i ·1xNZ

∥∥∥∥∥∥∥∥
2 or ∞

(Problem 5-L-a)

Subject to ∇xNZ ≤ δ (Problem 5-L-b)
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Secondly, the objective functions of Problems (5-Q) and
(5-L) are simplified. There always exists a positive number
λ � 0 such that the following Equations (8) and (9), as
shown at the bottom of this page, hold true for 1xNZ ∈[
0 λ

]
. This can be proved using the definition of infinity

norm. In brief words, the left-hand sides of Equations (8)
and (9) (i.e., the objective functions in Problems (5-Q) and
(5-L)) are only determined by functions f

(
xNZ ωi−max−Q

)
(i − max−Q ∈ 85) and f

(
xNZ ωi−max−L

)
(i − max−L ∈

83−L), respectively, as long as 1xNZ is sufficiently
small.

A special case: Suppose 8Q−L is not empty for some
direction d. Thus, the objective function in (Problem 5-Q)
can be determined by f

(
xNZ ωi−max−Q−L

)
and that in

(Problem 5-L) can be determined by fL
(
xNZ ωi−max−Q−L

)
for the direction d.
Finally, a series of remarks with respect to the optimums

of Problems (3-Q) and (3-L) are obtained:

∣∣∣f ( xInitNZ ωi
)
+ g1i ·1xNZ + 0.5 ·1x2NZ · g2i

∣∣∣2
=
∣∣f ( xInitNZ ωi

)∣∣2
+1xNZ ·

(
2 · Real

[
f
(
xInitNZ ωi

)]
· Real [g1i]+ 2 · Imag

[
f
(
xInitNZ ωi

)]
· Imag [g1i]

)︸ ︷︷ ︸
c1i

+1x2NZ ·
(
Real [g1i]2 + Imag [g1i]2

+Real
[
f
(
xInitNZ ωi

)]
· Real [g2i]+ Imag

[
f
(
xInitNZ ωi

)]
· Imag [g2i]

)
︸ ︷︷ ︸

c2i

+1x3NZ · (Real [g1i] · Real [g2i]+ Imag [g1i] · Imag [g2i])︸ ︷︷ ︸
c3i

+1x4NZ ·
(
0.25 · Real [g2i]2 + 0.25 · Imag [g2i]2

)
︸ ︷︷ ︸

c4i

(6)

∣∣∣f ( xInitNZ ωi
)
+ g1i ·1xNZ + 0.5 · g2i ·1x2NZ

∣∣∣2∣∣∣∣
g2i=0

=
∣∣f ( xInitNZ ωi

)
+ g1i ·1xNZ

∣∣2
=
∣∣f ( xInitNZ ωi

)∣∣2
+1xNZ ·

(
2 · Real

[
f
(
xInitNZ ωi

)]
· Real [g1i]+ 2 · Imag

[
f
(
xInitNZ ωi

)]
· Imag [g1i]

)︸ ︷︷ ︸
c1i

+1x2NZ ·
(
Real [g1i]2 + Imag [g1i]2

)
︸ ︷︷ ︸

c2i=|g1i|2

(7)

∥∥∥∥∥∥∥∥
f
(
xNZ ω1

)
= f

(
xInitNZ ω1

)
+ g1i ·1xNZ + 0.5 ·1x2NZ · g2i

f
(
xNZ ω2

)
= f

(
xInitNZ ω2

)
+ g1i ·1xNZ + 0.5 ·1x2NZ · g2i

...

f
(
xNZ ω0

)
= f

(
xInitNZ ω0

)
+ g1i ·1xNZ + 0.5 ·1x2NZ · g2i

∥∥∥∥∥∥∥∥
∞

=

√∣∣f ( xNZ ωi−max−Q
)∣∣2+

1xNZ · c1i−max−Q +1x2NZ · c2i−max−Q +1x3NZ · c3i−max−Q +1x4NZ · c4i−max−Q

=

∥∥∥∥ f ( xNZ ωi−max−Q
)
= f

(
xInitNZ ωi−max−Q

)
+ g1i−max−Q ·1xNZ

+0.5 ·1x2NZ · g2i−max−Q

∥∥∥∥
∞

(8)∥∥∥∥∥∥∥∥
fL
(
xNZ ω1

)
= f

(
xInitNZ ω1

)
+ g1i ·1xNZ

fL
(
xNZ ω2

)
= f

(
xInitNZ ω2

)
+ g1i ·1xNZ

...

fL
(
xNZ ω0

)
= f

(
xInitNZ ω0

)
+ g1i ·1xNZ

∥∥∥∥∥∥∥∥
∞

=

√∣∣f ( xNZ ωi−max−L
)∣∣2 +1xNZ · c1i−max−L +1x2NZ · |g1i−max−L|

2

=
∥∥f ( xNZ ωi−max−L

)
= f

(
xInitNZ ωi−max−L

)
+ g1i−max−L ·1xNZ

∥∥
∞

(9)
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FIGURE 2. 81, 82, 83−Q, 83−L, 84−Q, 85−Q and 8Q−L (case2).

FIGURE 3. 81, 82, 83−Q, 83−L, 84−Q, 85−Q and 8Q−L (case3).

Remark 1: If 1xNZ = 0 is the strictly globally/locally
optimal solution of (Problem 3-L), it may be/not be the
strictly locally optimal solution of (Problem 3-Q).

Proof: Two examples such that the strictly globally/
locally optimal solution 1xNZ = 0 of (Problem 3-L) is not
the (strictly) locally optimal solution of (Problem 3-Q) are
provided as follows:

The strictly globally/locally optimal solution 1x = 0
of the TR-IGS-convex-approximation-problem is not the
(strictly) locally optimal solution of the original problem

minimize
1x
∥∥∥∥∥∥∥∥
(1+2 · j)+(−2+j) ·1x+0.5 ·1x2 · (−7− 3 · j)
(1+2 · j)+(−2+j) ·1x+0.5 ·1x2 · (−8− 3 · j)
(1+2 · j)+(−2− j) ·1x+0.5 ·1x2 · (−7− 3 · j)
(1+j)+(−2+j) ·1x+0.5 ·1x2 · (−7− 3 · j)

∥∥∥∥∥∥∥∥
∞


(e.g.-L∞-Complex-1)

The following Figure 4 describes the curves of the objective
functions of the above two problems.

FIGURE 4. The curves of the objective functions of the original problem
and its convex approximation. (e.g.-L∞-Complex-1).

The strictly locally optimal solution 1x = 0 of the
TR-IGS-convex-approximation-problem is not the (strictly)
locally optimal solution of the original problem

minimize
1x∥∥∥∥∥∥∥∥
(2− j)+1xT · grad1 + 0.5 ·1xT ·Hess1 ·1x
(2− j)+1xT · grad2 + 0.5 ·1xT ·Hess2 ·1x
(2− j)+1xT · grad3 + 0.5 ·1xT ·Hess3 ·1x
(2− j)+1xT · grad4 + 0.5 ·1xT ·Hess4 ·1x

∥∥∥∥∥∥∥∥
∞

(e.g.−L∞-Complex-3D-1)

where

grad1 = grad2 =
[
1+ 2 · j −1− 2 · j 1+ 2 · j

]T
,

grad3 =
[
1+ 2 · j 1+ 2 · j 0

]T
,

grad4 =
[
0 1+ 2 · j 1+ 2 · j

]T
,

Hess1 = Hess2 = Hess3 = Hess4

=

−18− 18 · j 0 0
0 −18− 18 · j 0
0 0 −18− 18 · j

.
The strictly globally/locally optimal solution 1xNZ = 0

of (Problem 3-L) may also be the strictly locally optimal
solution of (Problem 3-Q). Four examples are provided as
follows:

The strictly globally/locally optimal solution 1x = 0
of the TR-IGS-convex-approximation-problem is also the
strictly globally/locally optimal solution of the original
problem

minimize
1x
∥∥∥∥∥∥∥∥
(1+ 2 · j)+ (−2+ j) ·1x + 0.5 ·1x2 · (3+ 4 · j)
(1+ 2 · j)+ (−2+ j) ·1x + 0.5 ·1x2 · (5+ 6 · j)
(1+ 2 · j)+ (−2− j) ·1x + 0.5 ·1x2 · (3+ j)
(1+ j)+ (−2+ j) ·1x + 0.5 ·1x2 · (−7− 3 · j)

∥∥∥∥∥∥∥∥
∞


(e.g.−L∞-Complex-2).

The following Figure 5 describes the curves of the objec-
tive functions of the above two problems.

FIGURE 5. The curves of the objective functions of the original problem
and its convex approximation. (e.g.-L∞-Complex-3).

The strictly globally/locally optimal solution 1x = 0
of the TR-IGS-convex-approximation-problem is also the
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strictly globally/locally optimal solution of the original
problem

minimize
1x


∥∥∥∥∥∥∥∥

1− 2 ·1x + 0.5 ·1x2 · 3
1+ 0 ·1x + 0.5 ·1x2 · 5
0.1− 2 ·1x + 0.5 ·1x2 · 5
1+ 2 ·1x + 0.5 ·1x2 · 2

∥∥∥∥∥∥∥∥
∞


(e.g.-L∞-Real-1)

The following Figure 6 describes the curves of the objec-
tive functions of the above two problems.

FIGURE 6. The curves of the objective functions of the original problem
and its convex approximation. (e.g.-L∞-Real-1).

The strictly locally optimal solution 1x = 0 of the
TR-IGS-convex-approximation-problem is also the strictly
locally optimal solution of the original problem

minimize
1x

∥∥∥∥∥∥∥∥∥∥∥∥

2+1xT · grad1 + 0.5 ·1xT ·Hess1 ·1x
2+1xT · grad2 + 0.5 ·1xT ·Hess2 ·1x
2+1xT · grad3 + 0.5 ·1xT ·Hess3 ·1x
2+1xT · grad4 + 0.5 ·1xT ·Hess4 ·1x
2+1xT · grad5 + 0.5 ·1xT ·Hess5 ·1x
2+1xT · grad6 + 0.5 ·1xT ·Hess6 ·1x

∥∥∥∥∥∥∥∥∥∥∥∥
∞

(e.g.-L∞-Real-3D-1)

where

grad1 =
[
1 −1 1

]T
, grad2 =

[
−1 1 −1

]T
,

grad3 =
[
1 1 0

]T
, grad4 =

[
−1 −1 0

]T
,

grad5 =
[
−1 1 2

]T
, grad6 =

[
1 −1 −2

]T
and Hessi (3 × 3) can be any matrix of real elements for
i = 1, 2, 3,..., 6.
The strictly locally optimal solution 1x = 0 of the

TR-IGS-convex-approximation-problem is also the strictly
locally optimal solution of the original problem

minimize
1x

∥∥∥∥∥∥∥∥
(2− j)+1xT ·grad1 + 0.5·1xT ·Hess1 ·1x
(2− j)+1xT ·grad2 + 0.5·1xT ·Hess2 ·1x
(2− j)+1xT ·grad3 + 0.5·1xT ·Hess3 ·1x
(2− j)+1xT ·grad4 + 0.5·1xT ·Hess4 ·1x

∥∥∥∥∥∥∥∥
∞

(e.g.−L∞-Complex-3D-2)

where

grad1 = grad2 =
[
1+ 2 · j −1− 2 · j 1+ 2 · j

]T
,

grad3 =
[
1+ 2 · j 1+ 2 · j 0

]T
,

grad4 =
[
0 1+ 2 · j 1+ 2 · j

]T
,

Hess1 = Hess2 = Hess3 = Hess4

=

 18− 18 · j 0 0
0 18− 18 · j 0
0 0 18− 18 · j

.
The strictly globally/locally optimal solution 1xNZ = 0

of (Problem 3-L) may also be the non-strictly locally opti-
mal solution of (Problem 3-Q). One example is provided as
follows:

The strictly locally optimal solution 1x = 0 of the
TR-IGS-convex-approximation-problem is the non-strictly
locally optimal solution of the original problem

minimize
1x

∥∥∥∥∥∥∥∥∥∥
(2− j)+1xT ·grad1+0.5·1xT ·Hess1 ·1x
(2− j)+1xT ·grad2+0.5·1xT ·Hess2 ·1x
(2− j)+1xT ·grad3+0.5·1xT ·Hess3 ·1x
(2− j)+1xT ·grad4+0.5·1xT ·Hess4 ·1x
(2− j)+1xT ·grad5+0.5·1xT ·Hess5 ·1x

∥∥∥∥∥∥∥∥∥∥
∞

(e.g.-L∞-Complex-3D-3)

where

grad1 = grad2 =
[
1+ 2 · j −1− 2 · j 1+ 2 · j

]T
,

grad3 =
[
1+ 2 · j 1+ 2 · j 0

]T
,

grad4 = grad5 =
[
0 1+ 2 · j 1+ 2 · j

]T
, ,

Hess1 = Hess2 = Hess3 = Hess4

=

−18− 18 · j 0 0
0 −18− 18 · j 0
0 0 −18− 18 · j


and

Hess5 =

 0 0 0
0 10− 10 · j 0
0 0 10− 10 · j

.
Remark 2: The strictly globally/locally optimal solution

1xNZ = 0 of (Problem 3-L) may be/not be the non-strictly
locally optimal solution of (Problem 3-Q).

Proof: Please see the examples of Remark 1.
Remark 3: The strictly globally/locally optimal solution

1xNZ = 0 of (Problem 3-L)may be/not be the locally optimal
solution of (Problem 3-Q).

Proof: Please see the examples of Remark 1:
Remark 4: The non-strictly globally/locally optimal solu-

tion 1xNZ = 0 of (Problem 3-L) may be/not be the strictly
locally optimal solution of (Problem 3-Q).

Proof: The non-strictly globally/locally optimal solution
1x = 0 of the TR-IGS-convex-approximation-problem is not
the (strictly) locally optimal solution of the original problem

minimize
1x


∥∥∥∥∥∥∥∥

1+ 0 ·1x + 0.5 ·1x2 · (−3)
1+ 0 ·1x + 0.5 ·1x2 · (−5)
0.1+ 2 ·1x + 0.5 ·1x2 · (−5)
1+ (−2) ·1x + 0.5 ·1x2 · (−2)

∥∥∥∥∥∥∥∥
∞


(e.g.-L∞-Real-1)
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The following Figure 7 describes the curves of the objec-
tive functions of the above two problems.

FIGURE 7. The curves of the objective functions of the original problem
and its convex approximation. (e.g.-L∞-Real-1).

The non-strictly globally/locally optimal solution
1x = 0 of the TR-IGS-convex-approximation-problem is not
the (strictly) locally optimal solution of the original problem
in the following two examples: (e.g.-L∞-Real-3D-2) and
(e.g.-L∞-Complex-3D-4)

minimize
1x

∥∥∥∥∥∥∥∥
2+1xT · grad1 + 0.5 ·1xT ·Hess1 ·1x
2+1xT · grad2 + 0.5 ·1xT ·Hess2 ·1x
2+1xT · grad3 + 0.5 ·1xT ·Hess3 ·1x
2+1xT · grad4 + 0.5 ·1xT ·Hess4 ·1x

∥∥∥∥∥∥∥∥
∞

(e.g.-L∞-Real-3D-2)

where

grad1 =
[
1 −1 1

]T
, grad2 =

[
−1 1 −1

]T
,

grad3 =
[
1 1 0

]T
, grad4 =

[
−1 −1 0

]T
,

Hess1 = Hess2 = Hess3 = Hess4 =

−1 0 0
0 −1 0
0 0 −1



·minimize
1x

∥∥∥∥∥∥∥∥
(2− j)+1xT ·grad1+0.5·1xT ·Hess1 ·1x
(2− j)+1xT ·grad2+0.5·1xT ·Hess2 ·1x
(2− j)+1xT ·grad3+0.5·1xT ·Hess3 ·1x
(1− j)+1xT ·grad4+0.5·1xT ·Hess4 ·1x

∥∥∥∥∥∥∥∥
∞

(e.g.-L∞-Complex-3D-4)

where

grad1 = grad2 =
[
1+ 2 · j −1− 2 · j 1+ 2 · j

]T
,

grad3 =
[
1+ 2 · j 1+ 2 · j 0

]T
,

grad4 =
[
0 1+ 2 · j 1+ 2 · j

]T
,

Hess1 = Hess2 = Hess3 = Hess4

=

−10+ j 0 0
0 −10+ j 0
0 0 −10+ j

 .
The non-strictly globally/locally optimal solution of

the TR-IGS-convex-approximation-problem is the strictly
locally optimal solution of the original problem

minimize
1x

{∥∥∥∥ (1+2·j)+0·1x+0.5·1x2 ·(3+3·j)(1+j)+0·1x+0.5·1x2 ·(3+3·j)

∥∥∥∥
∞

}
(e.g.-L∞-Complex-3)

The following Figure 8 describes the curves of the objec-
tive functions of the above two problems.

FIGURE 8. The curves of the objective functions of the original problem
and its convex approximation. (e.g.-L∞-Complex-3).

The non-strictly locally optimal solution 1x = 0 of
the TR-IGS-convex-approximation-problem is the strictly
globally/locally optimal solution of the original problem

minimize
1x


∥∥∥∥∥∥∥∥

1+ 0 ·1x + 0.5 ·1x2 · 3
1+ 0 ·1x + 0.5 ·1x2 · 5
0.1+ 2 ·1x + 0.5 ·1x2 · 5
1+ (−2) ·1x + 0.5 ·1x2 · 2

∥∥∥∥∥∥∥∥
∞


(e.g.-L∞-Real-2)

The following Figure 9 describes the curves of the objective
functions of the above two problems.

FIGURE 9. The curves of the objective functions of the original problem
and its convex approximation. (e.g.-L∞-Real-2).

The non-strictly globally/locally optimal solution 1x =
0 of the TR-IGS-convex-approximation-problem is the
strictly locally optimal solution of the original problem
in the following two examples: ((e.g.-L∞-Real-3D-3) and
(e.g.-L∞-Complex-3D-5))

minimize
1x

∥∥∥∥∥∥∥∥
2+1xT · grad1 + 0.5 ·1xT ·Hess1 ·1x
2+1xT · grad2 + 0.5 ·1xT ·Hess2 ·1x
2+1xT · grad3 + 0.5 ·1xT ·Hess3 ·1x
2+1xT · grad4 + 0.5 ·1xT ·Hess4 ·1x

∥∥∥∥∥∥∥∥
∞

(e.g.-L∞-Real-3D-3)

where

grad1 =
[
1 −1 1

]T
, grad2 =

[
−1 1 −1

]T
,

grad3 =
[
1 1 0

]T
, grad4 =

[
−1 −1 0

]T
,
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Hess1 = Hess2 = Hess3 = Hess4 =

 1 0 0
0 2 0
0 0 3



minimize
1x

∥∥∥∥∥∥∥∥
(2− j)+1xT ·grad1+0.5·1xT ·Hess1 ·1x
(2− j)+1xT ·grad2+0.5·1xT ·Hess2 ·1x
(2− j)+1xT ·grad3+0.5·1xT ·Hess3 ·1x
(1− j)+1xT ·grad4+0.5·1xT ·Hess4 ·1x

∥∥∥∥∥∥∥∥
∞

(e.g.-L∞-Complex-3D-5)

where

grad1 = grad2 =
[
1+ 2 · j −1− 2 · j 1+ 2 · j

]T
,

grad3 =
[
1+ 2 · j 1+ 2 · j 0

]T
,

grad4 =
[
0 1+ 2 · j 1+ 2 · j

]T
,

Hess1 = Hess2 =

 1+ j 0 0
0 1+ j 0
0 0 1+ j

 ,
Hess3 = Hess4 =

 2+ j 0 0
0 2+ j 0
0 0 2+ j

 .
Remark 5: The non-strictly globally/locally optimal solu-

tion 1xNZ = 0 of (Problem 3-L) may be/not be the non-
strictly locally optimal solution of (Problem 3-Q).

Proof: The non-strictly globally/locally optimal solu-
tion 1xNZ = 0 of (Problem 3-L) may not be the non-
strictly locally optimal solution of (Problem 3-Q). Please see
(e.g.-L∞-Real-1), (e.g.-L∞-Real-3D-2), (e.g.-L∞-Complex-
3D-4), (e.g.-L∞-Complex-3), (e.g.-L∞-Real-2), (e.g.-L∞-
Real-3D-3) and (e.g.-L∞-Complex-3D-5).
The non-strictly globally/locally optimal solution

1x = 0 of the TR-IGS-convex-approximation-problem is the
non-strictly locally optimal solution of the original problem
in the following two examples ((e.g.-L∞-Real-3D-4) and
(e.g.-L∞-Complex-3D-6))

minimize
1x

∥∥∥∥∥∥∥∥
2+1xT · grad1 + 0.5 ·1xT ·Hess1 ·1x
2+1xT · grad2 + 0.5 ·1xT ·Hess2 ·1x
2+1xT · grad3 + 0.5 ·1xT ·Hess3 ·1x
2+1xT · grad4 + 0.5 ·1xT ·Hess4 ·1x

∥∥∥∥∥∥∥∥
∞

(e.g.-L∞-Real-3D-4)

where

grad1 = grad3 =
[
1 1 0

]T
,

grad2 = grad4 =
[
−1 −1 0

]T
,

and

Hess1 = Hess2 = Hess3 = Hess4 =

 2 0 0
0 2 0
0 0 0



minimize
1x

∥∥∥∥∥∥∥∥
(2− j)+1xT ·grad1+0.5·1xT ·Hess1 ·1x
(2− j)+1xT ·grad2+0.5·1xT ·Hess2 ·1x
(2− j)+1xT ·grad3+0.5·1xT ·Hess3 ·1x
(1− j)+1xT ·grad4+0.5·1xT ·Hess4 ·1x

∥∥∥∥∥∥∥∥
∞

(e.g.-L∞-Complex-3D-6)

where

grad1 = grad2 =
[
1+ 2 · j −1− 2 · j 1+ 2 · j

]T
,

grad3 =
[
1+ 2 · j 1+ 2 · j 0

]T
,

grad4 =
[
0 1+ 2 · j 1+ 2 · j

]T
and

Hess1 = Hess2 = Hess3 = Hess4 =

 10− j 0 0
0 10− j 0
0 0 0

 .
Remark 6: The non-strictly globally/locally optimal solu-

tion 1xNZ = 0 of (Problem 3-L) may be/not be the locally
optimal solution of (Problem 3-Q).

Proof: Please see the examples of Remarks (4) and (5).
Remark 7: The globally/locally optimal solution

1xNZ = 0 of (Problem 3-L)may be/not be the locally optimal
solution of (Problem 3-Q).

Proof: Please see the examples of Remarks (1)-(5).
Remark 8: The locally optimal solution 1xNZ = 0 of

(Problem 3-Q) must also be the globally/locally optimal solu-
tion of (Problem 3-L). (If (Problem 3-L) is a linear program-
ming problem (please see Part B of this section), a useful
necessary condition for the locally optimal solution of the
original problem can be obtained.) [7]

Proof: If 1xNZ = 0 is the locally optimal solution
of (Problem 3-Q), then c1i−max−Q ≥ 0 holds true for any
direction d. Because i − max−Q ∈ 82, i − max−L ∈ 82
and 82 = arg maximize

i∈81

c1i,
(
c1i−max−L = c1i−max−Q

)
≥ 0

holds true for any direction d. This remark is thus proved.
Remark 9: If 1xNZ = 0 is the strictly optimal solution of

the following linear programming problem

minimize
1xNZ

∥∥∥∥∥∥∥∥∥

∣∣f ( xInitNZ ω1
)∣∣2 + cT1 ·1xNZ∣∣f ( xInitNZ ω2
)∣∣2 + cT2 ·1xNZ
...∣∣f ( xInitNZ ω0
)∣∣2 + cT0 ·1xNZ

∥∥∥∥∥∥∥∥∥
∞

(Problem 6)

where maximize
i

∣∣f ( xNZ ωi )∣∣2 � 0 and

cTi

=

Real
[
f
(
xInitNZ ωi

)]
· Real

[[
∇f

(
xInitNZ ωi

)]T]
+Imag

[
f
(
xInitNZ ωi

)]
· Imag

[[
∇f

(
xInitNZ ωi

)]T]


(10)

for i = 1, 2, 3,...,0. Then, 1xNZ = 0 is also the
strictly locally optimal solution of the original problem
(Problem 3-Q). (A sufficient condition for the strictly locally
optimal solution of the original problem can be obtained. This
condition is of theoretical and practical value in viewing that
(Problem 6) is a linear programming problem.) [7]

Proof: If 1xNZ = 0 is the strictly optimal solution of
Problem (6), then it is strictly optimal in any direction d.
So, maximize

i∈81
cTi · d � 0 holds true for any direction d
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TABLE 1. The relationship between the optimal solutions of the original problem (Q) and the convex approximation problem (L), L∞.

(Note maximize
i

∣∣f ( xNZ ωi )∣∣2 � 0.). Then, maximize
i∈81

c1i (in

the corresponding (Problem 5-Q)) is a positive number for
any direction d. Thus, 1xNZ = 0 is also the strictly optimal
solution of the original problem (Problem 3-Q).
Remark 10: If 1xNZ = 0 is the locally optimal solution of

(Problem 3-Q), then it must be the locally optimal solution of
(Problem 6). (A necessary condition for the locally optimal
solution of the original problem can be obtained, which is of
theoretical and practical value in viewing that (Problem 6) is
a linear programming problem.) [7]
Tip for the Proof: Please see the proof of Remark (8).

B. SPECIAL CASE: f
(
xNZ ωi

)
ARE REAL-COEFFICIENT

FUNCTIONS WITH REAL ARGUMENT xNZ FOR
i = 1, 2, 3,...,0
In this case, (Problem 3-L) is a linear programming problem.
Remarks (4)-(10) in Part A still hold true in Part B. However,
Remarks (1)-(3) in Part A should be modified in Part B as
follows:
Remark 11: If 1xNZ = 0 is the strictly globally/locally

optimal solution of (Problem 3-L), it must also be the strictly
locally optimal solution of (Problem 3-Q). (A useful sufficient
condition for the strictly locally optimal solution of the orig-
inal problem can be obtained.) [7]

Proof: Firstly, some sets of the indexes (i.e.,
i = 1, 2, 3,...,0) of the functions f

(
xNZ ωi

)
are

defined.sign (X) is utilized to denote the sign of X
(1 for positive number and -1 for negative number.).
Let 81−real = arg maximize

i

∣∣f ( xNZ ωi )∣∣, 82−real =

arg maximize
i∈81−real

[
g1i · sign

(
f
(
xNZ ωi

))]
, and 83−Q−real =

arg maximize
i∈82−real

[
g2i · sign

(
f
(
xNZ ωi

))]
. Let i − max−Q −

real denote an element in set83−Q−real, and i−max−L−real

denote an element in set 82−real. The relationship between
81−real, 82−real and 83−Q−real is illustrated in the following
Figure 10

FIGURE 10. 81−real , 82−real and 83−Q−real .

Afterwards, the objective functions of Problems (5-Q) and
(5-L) are simplified. There always exists a positive number
λ � 0 such that the following Equations (3-Q) and (3-L) hold
true for 1xNZ ∈

[
0 λ

]
. This can be proved by the definition

of infinity norm (11) and (12), as shown at the bottom of the
next page.

Then, according to the assumption that 1xNZ = 0 is the
strictly optimal solution of (Problem 3-L) (i.e., it is strictly
optimal in any direction d), the following inequality must
hold true{{ [

g1i−max−L−real · sign
(
f
(
xNZ ωi−max−L−real

))]
= maximize

i∈81−real

[
g1i · sign

(
f
(
xNZ ωi

))] }
�0

(13)

for any direction d. Because i−max−Q− real ∈ 83−Q−real
and 83−Q−real ⊆ 82−real, i − max−Q − real ∈ 82−real;
please also see Figure 12. As i − max − L − real denotes
any element in 82−real and i − max−Q − real ∈ 82−real,
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TABLE 2. The relationship between the optimal solutions of the original problem (Q) and the convex approximation problem (L), L2.

the following inequality must hold true{{ [
g1i−max−Q−real · sign

(
f
(
xNZ ωi−max−Q−real

))]
= maximize

i∈81−real

[
g1i · sign

(
f
(
xNZ ωi

))] }
�0

(14)

for any direction d. So, 1xNZ = 0 is also the strictly
globally/locally optimal solution of (Problem 3-Q).

According to Remarks (8) and (11), the following
Remark (12) can be obtained.
Remark 12: If 1xNZ = 0 is the non-strictly globally/

locally optimal solution of (Problem 3-Q), it must also be the
non-strictly locally optimal solution of (Problem 3-L).

V. RELATIONSHIP BETWEEN THE OPTIMAL SOLUTION
OF THE TR-IGS AND THAT OF THE ORIGINAL PROBLEM,
`2 NORM
The relationship between the optimal solution of the
TR-IGS and that of the original problem for the `2 norm case
is provided in the supporting material.

Finally, a complete relationship between the optimal
solution of the TR-IGS and that of the original prob-
lem is listed in the following Tables 1 (L∞) and 2 (L2),
which can be obtained based on all the above Remarks (in
Sections III and IV). Note for each relationship, the corre-
sponding examples are also provided in these two tables. And,
the proofs or tips for the proofs of all the examples in this
paper are provided in the supporting material.

VI. CONCLUSION
The MD-FIR filter has been tested to be an effective low-
complexity FIR filter [7]. The optimal design of a MD-FIR
filter is a high-dimensional non-convex optimization prob-
lem. It has been experimentally tested that the coefficients
of the MD-FIR filter can be effectively optimized by the
TR-IGS algorithm [6], [7]. This algorithm solves a series of
the convex-approximation-problems (Problem 2) of the orig-
inal problem (Problem 1). The relationship between the
optimal solution (i.e., theoretical termination point) of the

∥∥∥∥∥∥∥∥
f
(
xNZ ω1

)
= f

(
xInitNZ ω1

)
+ g1i ·1xNZ + 0.5 ·1x2NZ · g2i

f
(
xNZ ω2

)
= f

(
xInitNZ ω2

)
+ g1i ·1xNZ + 0.5 ·1x2NZ · g2i

...

f
(
xNZ ω0

)
= f

(
xInitNZ ω0

)
+ g1i ·1xNZ + 0.5 ·1x2NZ · g2i

∥∥∥∥∥∥∥∥
∞

=

∥∥∥∥ f ( xNZ ωi−max−Q−real
)

= f
(
xInitNZ ωi−max−Q−real

)
+ g1i−max−Q−real ·1xNZ + 0.5 ·1x2NZ · g2i−max−Q−real

∥∥∥∥
∞

(11)∥∥∥∥∥∥∥∥
f
(
xNZ ω1

)
= f

(
xInitNZ ω1

)
+ g1i ·1xNZ

f
(
xNZ ω2

)
= f

(
xInitNZ ω2

)
+ g1i ·1xNZ

...

f
(
xNZ ω0

)
= f

(
xInitNZ ω0

)
+ g1i ·1xNZ

∥∥∥∥∥∥∥∥
∞

=
∥∥f ( xNZ ωi−max−L−real

)
= f

(
xInitNZ ωi−max−L−real

)
+ g1i−max−L−real ·1xNZ

∥∥
∞

(12)
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TR-IGS and that of the original problem is theoretically
investigated in this study. A practical issue with respect to
TR-IGS is practical TR-IGS generally terminates at a point
that is not a theoretical termination point. It will be our
future research work to investigate the distance between the
practical termination point and a local minimum point.
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