SPECIAL SECTION ON INNOVATION AND APPLICATION OF INTERNET OF
THINGS AND EMERGING TECHNOLOGIES IN SMART SENSING

IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received December 12, 2019, accepted December 22, 2019, date of publication December 26, 2019,

date of current version January 6, 2020.

Digital Object Identifier 10.1109/ACCESS.2019.2962393

Enabling Ordinary Users Mobile Development

With Web Components

ZHAONING WANG ~, BO CHENG ™, AND JUNLIANG CHEN

State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China

Corresponding author: Bo Cheng (chengbo@bupt.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61772479, and in part by the
National Key Research and Development Program of China under Grant 2017YFB140.

ABSTRACT The rapid progress of the mobile internet has been promoting the popularity of mobile devices,
and mobile application development is getting more pervasive. However, the state of the art development
environments has a high learning barrier for users’ lack of programming experience. In this paper, instead of
traditional programming environments, we take consideration of ordinary users’ requirements and propose
a WYSIWYG cross-platform web-component-based mobile application creation environment for ordinary
users. This environment has a visual editor with a drag-and-drop web component. A web component library
model is proposed to standardize customized libraries. A cross-platform application model based on web
components is implemented to build applications rapidly. It helps ordinary users generate installing packages
within simple operations for multiple platforms. A native plugin model is proposed to assist web components
to invoke native functionalities. The experiment result shows that ordinary users could quickly start to create

mobile applications in our environment.

INDEX TERMS Mobile service, web components, cross-platform, ordinary users, visual development.

I. INTRODUCTION

Along with the global popularity of smartphones, mobile
technologies have been advancing at full speed these years.
A large number of mobile devices were designed and
produced in a few years. Following the trend of portable,
tradition devices, such as laptops and tablets, have become
thinner and smaller. Smartphones have become an irreplace-
able part of ordinary people’s daily lives [6], [7], [11],
[15], [17], [20], [28], [31]. Meanwhile, the requirements
of mobile applications have been increasing continuously.
Nowadays, smart mobile devices provide abundant hardware
tools, multiple sensors, Bluetooth, HD cameras, etc. They
cooperating, several imaginative mobile applications are gen-
erated by developers to change the lives of human beings
[21]-[23], [27].

Historically, application development is professional pro-
grammers’ responsibility, namely rare people have program-
ming expertise or get involved in an application development
process. In this paper, we call those people that have no or lit-
tle programming skills ordinary users. Due to the dominant
position which the programmers have, most development
tools are designed following their habits and knowledge

The associate editor coordinating the review of this manuscript and

approving it for publication was Honghao Gao

VOLUME 8, 2020

structure. Based on the assumption that only professional pro-
grammers can create applications, traditional development
tools designed and optimized surrounding the programming
experience. Programming is a complicated and challenging
work that demands programming skills, logic capability, pro-
fessional knowledge, and long-term training. In this tradi-
tional perspective, it seems that applications creation equals
to programming. However, this point of view is not real in
every circumstance. Although software development ability
is has existed in limited groups, creating capacity does not
exist. On the contrary, a significant number of ordinary people
who have experienced mobile applications might have their
own opinion creating. However, the difficulties of obtaining
programming skills hold them back. Ordinary users’ require-
ments are different from the programmers. First, due to their
knowledge, they prefer easy-operating and integrated GUI
other than complicated functionalities. Second, they are not
sensitive of the applications’ performance, since their prod-
ucts are prototypes that are used to test functionalities and
primary learning.

Ordinary users requirements could be represented by a typ-
ical situation we have considered. A designer is a typical kind
of ordinary users and developers. In traditional software engi-
neering, designers could get involved in the process of design
prototypes. The method of Designing and implementation

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 1767

https://orcid.org/0000-0003-4178-0413
https://orcid.org/0000-0002-1078-6444
https://orcid.org/0000-0002-7147-2625
https://orcid.org/0000-0001-6861-9684

IEEE Access

Z. Wang et al.: Enabling Ordinary Users Mobile Development With Web Components

process is arranged for different staff. Designers or prod-
uct managers are responsible for designing work, and they
usually do not have development skills. They use designing
software like Photoshop and deliver prototypes to developers.

As a consequence, these people may design the applica-
tions which are impossible to implement, or the final products
are worse than expectations. The gap between designing and
implementing has been preventing some creative ideas into
actual applications. These problems are have not been fresh
in recent years [17]. Far earlier, before the mobile internet is
popular around the world, tools are generated to solve this
kind of problem. FrontPage of Microsoft and Dreamweaver
of Macromedia are two standard solutions aiming at users
who do not code. They provide convenient and visual envi-
ronments to help users get rid of complicated codes and
create good-looking web pages. As the mobile internet times
come, old features of these tools could not satisfy the new
requirements due to the continual progress.

One of the most crucial challenges in mobile development
is the fragmentation of platforms [25]. In the current situ-
ation of the mobile internet, unlike the Windows system,
which has a leading role without a doubt in the desktop
OS market, there does not exist an absolute winner in the
mobile OS market. According to the latest statistics of net-
marketshare.com [4], in the report of desktop operating sys-
tem market share, Android accounts for the most significant
proportion (70.24%) in the report of mobile operating system
market share pie chart. Next comes i0S, which makes up
28.34%. Windows Phone, Java ME, BlackBerry, Symbian,
and others take up less than 2%, respectively. These statistics
respect the reality that creating applications one time cov-
ering all mobile devices is a complicated project. Different
platforms require different development frameworks that are
incompatible with each other. Even for professional program-
mers, it is nearly impossible to handle all the development
frameworks at the same time.

Consequently, the development tools field shows the frag-
mentation situation as mobile platforms do. To address these
issues, researchers have proposed several solutions. The most
popular one recently is based on modern web technologies
aiming at professional programmers and not friendly enough
for ordinary users to learn and use. Cross-platform is a non-
negligible requirement for an ordinary users’ development
environment [29].

In this paper, we study the preferences of the ordinary users
and propose a WYSIWYG web-component-based cross-
platform mobile application development environment. The
main contributions of us are:

1) We identify the present problems of mobile development
for ordinary users and specify requirements, which are graph-
ical development, automatic tools, and cross-platform.

2) We propose the cross-platform mobile development
environment based on web component assemble and rela-
tive models to address these issues. The visual editor helps
users assemble and configure web components visually.
A novel component library model is included to standardize

1768

customized libraries. The native plugin model, as a functional
extension of web components, supports invoking native func-
tionalities of operating systems. The automatic application
creation approach supports users rapidly building applica-
tions for multiple platforms.

3)We conduct practical experiments in a group of ordinary
users, and the results show the outperforming usability and
convenience of our environments.

Il. RELATED WORK

A. PROGRAMMING-BASED DEVELOPMENT
ENVIRONMENT

Traditional development environments have been histori-
cally designing aiming at professional developers based on
programming. The programming-based development envi-
ronment follows the developer-centered designing princi-
ples on the base of which a series of measures have been
taken to optimize the user experience. Mobile platforms’
mainstream development environments are typical developer-
centered designed. Android development environments have
two optional choices, which are Eclipse and Android Studio,
which are both inherited from traditional JAVA develop-
ment environments and embedded with Android SDK rela-
tive tools [1]. Moreover, the iOS development environment
directly continues the macOS development environment,
XCode, with relative tools and compilers integrated. These
continuous design above ensures that developers with rela-
tive languages’ coding experiences could rapidly handle the
mobile applications development, at the same time, keeps the
limitations of desktop development environments [36].

The limitation is that programming skill and development
operations are too complex to cultivate for ordinary users.
Programming is a systematic ability that requires not only
expertly handling corresponding programming language but
abundant knowledge of data structure and operating system,
while ordinary users do not have enough relevant experiences
to understand the concepts. Traditional development Envi-
ronments are not appropriate for ordinary users to use since
their operation processes do not conform to ordinary users’
operating habits and knowledge structure. Code template,
project generators, configuration forms, and other automatic
code generation have been proposed to facilitate and speed up
the application development process. These approaches lower
the level of development difficulty to some degree by helping
developers reduce repetitive work and automatically generat-
ing code blocks; however, they can not solve the fundamental
problems.

B. VISUAL DEVELOPMENT ENVIRONMENT

To address these issues, several solutions are proposed to
improve traditional development environments [32]. Visual
designer, a graphical drag-and-drop tool or plugin, has been
widely used in multiple mobile development environments to
facilitate designing the GUI process. Based on the prototype
of the visual designer, some products have gone further in

VOLUME 8, 2020

Z. Wang et al.: Enabling Ordinary Users Mobile Development With Web Components

IEEE Access

the graphical programming field. Current graphical program-
ming tools use the visual component as a basic designing
unit in typical [16]. Current graphical development products
use a visual component as a basic designing unit to make
up an application. A visual component is an ordinary users’
conceptualization of an interactive single purpose application
with one or more functionalities for displaying and updating
local or remote data, packaged in a way to allow discovery,
instantiation, and combination in a unified runtime environ-
ment. In order to support the application development via
components, a component could not only run as a stand-alone
application but has a communication interface to compose
together and operate with each other.

In practical research, visual components are widely applied
to composite services and applications [18]. Reference [8]
implements MashMaker, which is a visual service orches-
tration tool. Reference [13] proposed a semantic-based com-
position platform for various services and applications.
Reference [12] proposed a visual components compo-
sition environment to development composite service.
Reference [10] implements a service creation environment
on mobile devices named MicroApp. MIT App Inventor [14]
is an intuitive, visual programming environment that allows
everyone, even children, to build fully functional applica-
tions for Android smartphones and tablets. These products
have common problems unsolved. Firstly, only single specific
platforms are supported. Secondly, functionalities of visual
components are limited in GUI designing.

C. WEB COMPONENTS

As mentioned below, development environments only sup-
port a single specified operating system. This situation leads
to a result of adapting to all the platforms; repeated works are
required even for applications with the same appearances and
functionalities. Different mobile platforms demand an utterly
different SDK and developing framework. This work is far
beyond ordinary users’ abilities. Cross-platform is proposed
to address the fragmentation issue of mobile platforms. Itis a
development concept indicating a rapidly developing process
without considering platform differences [30]. Web compo-
nents are custom, reusable, encapsulated as HTML tags to
use in web pages and web applications. Custom components
will work across modern browsers and can be used with
any JavaScript library or framework that works with HTML.
A web application is a kind of mobile application based
on pure web technologies running in a browser to simulate
native application known as native development following
the traditional framework. The web application is a popular
solution to cross-platform [26].

AppGyver Composer [2] is an online cross-platform
mobile development tool that combines graphical program-
ming and with the web-based cross-platform solution. It pro-
vides users visual development editor for GUI and its logic.
Draggable components are supported, and users could custom
their HTML tags and JavaScript. While it has solved the avail-
able issue, it exposes a critical negative point of Web App,

VOLUME 8, 2020

which is, lacks support for native APIs invocation. Native
APIs are a series of service interfaces providing hardware
functionalities of the mobile platforms, such as camera,
sensors, Wi-fi, Bluetooth, and so on, with-out which would
severely limit the development of diverse mobile applica-
tions. Since the limitation of the browser interface, Web Apps
could not invoke all the functionalities of native APIs.

PhoneGap is a solution to bridge the gap between
JavaScript interface and native functionalities of the mobile
application platforms by proposing a hybrid application
framework to enable web technologies supporting enable we
techniques developing cross-platform mobile applications.
By using PhoneGap, developers can create an application
for each of the platforms using a single code base. It allows
developers to focus on creating a great experience instead of
authoring complex platform compatibility layers. Based on
this framework, several integrated development environments
are proposed to support web-based cross-platform mobile
application development. DCloud HBuilder [3] is a mobile
hybrid application development tool aiming at program-
mers. It integrated various functionalities to accelerate the
development process and simplify the programming work
with cross-platform application creation supported. Same as
other development environments, it does not go further of
supporting ordinary users’ development.

Ill. PROPOSED ENVIRONMENT AND MODELS

In this section, we introduce the overall architecture and
the detailed principle of our proposed models including the
web component library model, native plugin model, cross-
platform application model.

A. ARCHITECTURE OVERVIEW

The proposed environment is developed as a web applica-
tion that could be accessed on any device with browsers.
Figure 1 shows the overview architecture, which is divided
into three functional components: library repository, visual
editor, and server module. These components are based on
the OSGi framework, a dynamic module system for Java,
enabling a model where an application is composed of several
components packaged in bundles, communicating with each
other through service interfaces of the framework, reducing
system complexity and achieving loose coupling.

1) LIBRARY REPOSITORY

The library repository is characterized as a series of web
component libraries. A library is a web component container
encapsulated in an independent bundle of the OSGi frame-
work maintaining the essential data that defines a web com-
ponent collection. As shown in figure 2, all available libraries
are dynamically loaded and registered to the service registry
by the OSGi framework. The library manager in the server
module discovers libraries from the service registry during
the execution time. The component palette in the visual editor
determines web components’ descriptions and renders them
on GUI. An API library provides a service interface for other

1769

IEEE Access

Z. Wang et al.: Enabling Ordinary Users Mobile Development With Web Components

= z "
/ Library repository \
I
[1 1
‘ - 1 — |
. ABllibraryibundle Web component library bundles Customized library 1
Service = bundl |
. | 8 [Web componenl] (REqueIs J _bundles |
registry e model = WA HiGHCHARTS] 1
H |
[}

te E [Life cycle] [DOM operalions] % :
b sl |
E\ppeamncc Lhcmc) [AJAX j EEE] :
. l Component list l |
Life 9 oo !
\. //

cycle e e R, -
g \\I I," ‘\I
{ | Component discovery [|
|]|] :
| -] I
| App container — |
| D drop | > Upload files |
i @ P— - '{ |
| e | !
Module ! palette DOM Node s X : I
i Application =i | = (g S i
L ot L) (s F L E |
e o i :
wo || i — I
container ! Palette File operation Pt e ! manager S Dscrinanages i
| Visual editor — i i
| - I L |
\ Visual IDE)\ Server module J

OSGi Framework

FIGURE 1. The architecture overview of the environment.

libraries, such as web component model generating new web
components, life cycle management, Require]S importing
extended modules, DOM operation interface, AJAX inter-
face, appearance theme, etc.

2) VISUAL IDE

The visual IDE component provides a drag-and-drop devel-
opment environment where web components assemble. The
significant component is visual editor, which includes three
sub-components, app container, palette, and le operation. The
component discovery module collects web component infor-
mation. XMLHttpRequest provides interface communicating
with the server module. The visual editor provides a WYSI-
WYG working area. Each time users create a new project,
the visual editor generates an app container to establish an
execution environment for a user’s application. Users drag
web components to the app container and visually modify
their position and size to design their applications’ GUI The
app container real-time resolves them in real-time and shows
users the previews. Web components communicate through
an event-driven model. The app container has an event engine
provide a set of pub/sub interface to send or monitor events.
The palette offers a toolkit that helps assemble and config-
ure web components. The palette is composed of three sub-
components, component palette, property palette, and event
palette. The component palette shows users’ available web
components’ icons and brief descriptions. When users drag
an icon to the visual editor, it accesses the implementation’s
location from metadata and generates an instance. The prop-
erty palette provides a visual configuration for appearance
properties. The event palette allows users to configure node

1770

event functions, including native plugins, which provide
interfaces to invoke native functionalities, such as Bluetooth,
camera, gyroscope, and so on. The file operation module
offers a series of visual tools to operate users’ projects,
including le uploading, native plugin upload, and applica-
tion build. File up-load provides a simple approach to add
resources like image and multi-media to applications. Native
plugin upload allows users to customize functionalities with
native interface following the native plugin model, which will
be described in detail below. Application build is the core
component to realize the last step of the fast development
process, creating installing package, and cross-platform com-
patibility. It allows end-users to generate installing packages
of multiple mobile platforms for one user project via simple
visual operations.

3) SERVER MODULE

The server module includes a series of bundles that imple-
ment the back-end business logic including server manager,
user manager, library manager, request router and resource
manager. The server manager reads server configurations in
order to start a web container and instantiates other managers.
The user manager is responsible for user authentication and
modification. The library manager discovers registered web
component libraries from the OSGi service registry and loads
them into the web container. The request router accepts the
requests from the visual IDE and distributes them to corre-
sponding handlers. The resource manager stores user data,
native plugin data, application template data, and server con-
figuration. User data records the metadata and project les of
every user. Plugin les are resource les and basic information,

VOLUME 8, 2020

IEEE Access

Z. Wang et al.: Enabling Ordinary Users Mobile Development With Web Components

7 <plugin> { .
@ Do il <extension id="" point="" 1id":
name": ="~ polnt="">
", e " N name 5
version": "0.0.0", <resource alias="" base-name="" /> “spec "9°9.0"
directories”: { <resource alias="" base-name=""/> "version": "9.0.0",
b= ../ </extension> “library": {

"aependencies": { “componentlibrary”: {
"baselibrary": "0.0" <extension point="ajaxLibrary">) src": [ood
lt’)ver‘lays": (<ajaxLibrary name="" id="" version="1.8"> "i)as‘elibr‘ar‘y": {

5
"components": [

“name": "
“types
"category
“collec

<meta content="text/html; charset=utf-8" http-

v <libraryPath location="" source="" name=""></ L5 et o By e e £
oagir.‘eétories SELTC e
"metadata” : <metadata location="" /> S
</ajaxLibrary> require”: [
5 . <ajaxLibrary name="" id="" version="" required=""> “type savascript-module”
"cgmpor_\ent}.lst": { <libraryPath location="" name="/"></ '%Ema "amd", ? ’
Sﬁxr:‘;r'?ut:zn.ent metadata": "./ SO shet &
componints.json" ! </ex<t/ear?:iﬂ'nl>brary> } $library": "widgetlibrary
} </plugin> “Content": "<divy</div> ",
) 7 “title®: {
} | "type": "text/html",
i N “value": "<p>widget</p>"
'Web component library } }
“"collections": { panie Resources A
"llblr:ar‘y"‘:‘ {“" . manifest === Web components:
name": — icon 6pena_|ax
lerary = metadata
% i package e
"categories": { ementati define
"lib.r:ary"i {"" font Implem: nulu@ "(d[eclar'e",
“name": ", ., Component lib § ~ "componentBase"
componentClass": list \ HTML template |1, function(declare, componentBase){
74 return declare("",
} [componentBase], {

postCreate : function(){

this.inherited(arguments);
this.domNode =
this.srcNodeRef;
var node =
this.domNode;
startup: function() {

b
s

:ggi equiv="Content-Type"/>
"iconBase6d": "*, <div></div>
“resizable": <div></div>
"both",
“forceAbsolute":
true,
"inlineEdit
“iconLarge"
Y
1
}

FIGURE 2. The web component library model.

including plugin name and function list of users’ plugins.
Particularly, for native plugins, some other resources are
required. Application template data is the essential resources
of building installing packages. The major resources of build-
ing resource include execution script, template project, and
log les. For native plugins data and template project data,
Android version and iOS version are separately stored, which
is available adapting to users’ different choices.

B. WEB COMPONENT LIBRARY MODEL

A web component is implemented via web technologies
instantiated as a customized reusable DOM node, namely
an HTML tag, running in the web browser environment
standardized by W3C through all platforms, from desktops
to mobile devices, so it is the foundation of cross-platform
development. A web component could be a functional con-
trol or a page template that could make up a mobile appli-
cation. Figure 2 shows a standard web component library
model.

A typical web component consists of an OpenAjax meta-
data (OAM) file [5], and implementation le, and HTML
templates. The OAM represents a set of industry-standard
metadata defined by the OpenAjax Alliance that enhances
the interoperability across AJAX toolkits and AJAX prod-
ucts [19]. Each web component corresponds to an individual

VOLUME 8, 2020

1s

OAM file that describes the metadata, including a unique
ID, library name, requiring libraries, context, and other
optional properties, to instantiate a web component on the
visual editor. The implementation le is associated with its
metadata le that defines AMD(Asynchronous Module Def-
inition) module inherited the web component model in the
API library, providing the base interface. It asynchronously
imports remote module via RequireJS interface and accesses
web resources through XMLHttpRequest. The HTML tem-
plate offers a frame in the rendering phase.

A standard library is implemented as an OSGi bundle
consisting of metadata, resources, and owned web com-
ponents. The metadata part maintains three primary com-
ponents, bundle manifest, library package, and component
list. The bundle manifest file records the configuration data,
including library location, identifier, etc., to define an OSGi
bundle that is registered to the service registry. The OSGi
service registry loads libraries to the server according to
this le. The component lists le records all available web
components in this library, declaring the essential information
to identify and locate them, including corresponding name,
type, icon, properties, and a brief description that would be
rendered in the component palette. The library package le
describes the essential information of the library, including
library name, version, dependencies, overlays, and relative

1771

IEEE Access

Z. Wang et al.: Enabling Ordinary Users Mobile Development With Web Components

Web component libraries

Web component A Web component B Web component C

Impl i | [Impl i | | Impl ion

Instantiate

App container

Node B Node C

Web
Request

Topic
subscriber

| Node A

Native
plugin

Topic
publisher

Topic
subscriber

I

\ 4
Topic list Listener list Dispatcher
Topicl Topicl, Callback1 Callback1
Topic2 Topicl, Callback2 Callback2
Event engine

iOS/Android application template

[ApPllCall?n j [Dependenciesj [Source code j
configuration

i 1ol AJAX |#
interface

Webview interface

e v
\
\
I
i eb serve
1
/

FIGURE 3. The cross-platform application model.

directories. Resources of the library offer all the necessary
dependencies, images, media files, and font libraries used for
instantiating web components.

C. NATIVE PLUGIN MODEL

Native plugins provide interfaces to web components while
having a channel accessing OS service interfaces, which set
up a bridge between web components and native function-
alities. A typical native plugin consists of the following five
essential components:

- An identifier represents a platform this plugin supports,
such as 10S or Android;

- A function list indicating the available interfaces for web
components to invoke;

- A configuration le for the package template project:
It varies according to different platform standards. For the
Android platform, it represents the properties of the permis-
sion and project plugin. For iOS, it represents the configura-
tion of the source class.

- Resource files including essential JavaScript libraries,
images, CSS files and other necessary JavaScript files
executing in the Webview end;

1772

- Prime class source files running in the OS end. JavaScript
libraries in the resource files communicate with class and pro-
vide interfaces via JSBridge protocol [9] for web components
that implement the data exchange between web components
and OS.

Native plugins could be configured via binding corre-
sponding JavaScirpt inter-face to specified web components
and triggered by the event engine. The native plugin data
is stored in the server layer managed by the resource mod-
ule. When rendering environment GUI, the view layer sends
requests to get the plugin list and show it in the visual edi-
tor. When building a mobile application, the corresponding
native plugins are copied to the application package template
according to users’ configurations.

D. CROSS-PLATFORM APPLICATION MODEL
In this section, we introduce our proposed cross-platform
application model (CAM) and its internal principle.

1) CAM OVERVIEW

As figure 2 shows, a CAM consists of an app container
and an application template corresponding to free platforms.
The app container provides an instantiation and execution
environment for web components. An app container has an
HTML file where web components’ instantiations reside,
an event engine and resource files including a configuration
le, recording a native plugin list and application properties
and runtime dependencies.

The application template is a native application wrapper for
app containers. According to different platforms, templates
are divided into multiple versions, but there are common parts
for each template. It provides a WebView environment with
page parser and the web interface for executing app contain-
ers. It maintains a configuration le ruling application prop-
erties and permissions. A native plugin library is included
to provide web components with interfaces invoking native
functionalities.

2) WEB COMPONENT COMMUNICATION MECHANISM

In this section, we describe the web component communi-
cation mechanism in the cross-platform application frame-
work in detail. The communication mechanism defines data
transmission approaches to web components’ instantiations.
Figure 2 shows the primary communication mechanism dur-
ing runtime. Web components’ implementations generate
instantiations via creating HTML nodes in the app contain-
ers, and multi-data channels are available to obtain data
from other components, web service, or operating systems.
Communication mainly includes the following three
categories:

Component-to-Component: Web components could com-
municate with each other through a pub/sub interface embed-
ded in the corresponding app container and provides a
pub/sub interface to exchange data.

Component-to-OS: Web components could access OS
interfaces via native plugins, as mentioned above.

VOLUME 8, 2020

Z. Wang et al.: Enabling Ordinary Users Mobile Development With Web Components

IEEE Access

g

#

L
¥ »
—— R R R R

for _extemalSenvice/smartshoe
class.
D

onciick: bluetoothPiugin for android|
ondblclick: |capturePhoto for android |
onmousedown: scanCode for android |-
onmouseup: [SWitchPlugin for android &
onmouseover. (switchPlugin for ios

inyingyin@bupt.

L e
348

BiFgE
=

ERE

4$a348% 147

onmousemove:
onmouseout:
onkeypress
onkeydown:
onkeyup:
onfocus
onblur.

AERHER
147 %

iR
158

RS
0%

(c)Main page

o

(b)Native plugin
configuration

FIGURE 4. Implementation and demonstration.

Through this channel providing by native plugins, the OS
end could receive, resolve and respond to the data from the
WebVeiw end.

Component-to-Web: Web components could send RESTful
requests to remote servers for data via AJAX interface provid-
ing by the dependent libraries and the WebView interface.

Event-Driven Composition Web component composition
is a process of assembling instantiations and transforming
them into mobile applications [24]. The composition process
has two steps.: The First first one is the GUI assemble, namely
to place the individual web components together via the
drag-and-drop operations according to the conventional logic
and users’ requirements; The second one is the connection
establishing, building connections among web components
to make mobile applications working properly using web
component communication mechanisms [33]-[35].

Connection establishing is according to an event-driven
model based on the event engine. It provides a pub/sub com-
munication channel. An event is a message with a topic name
produced by a web component’s instances and other instances
could monitor this topic to handle it. A standard event could
de ne as a tuple:

< Target; Topic; Object >

Target is a web component instance, the publisher, which
generates an event. The topic is a string to describe the event
type according to which subscriber’s monitor the event and
the event engine dispatch message. The object is a JavaScript
object carrying data that Target supposes to transmit.

VOLUME 8, 2020

educn

(d)Data page

(b)Widget assemble

—

SEBEN
66

(e)Install on the Android phone

The event engine is a JavaScript object with the pub/sub
interface in charge of message transmission and management.
The interface allows web components to generate topics and
dispatch to subscribers or establish listeners to subscribe
to specific topics and create corresponding handler func-
tions. These two interfaces could describe as two JavaScript
functions:

Publish(topic; object); subscribe(topic; callback)

The event engine maintains a topic list and a listener list.
When the specific event comes up, that is, the target web com-
ponent invokes publish interface to trigger a topic, the event
engine checks the topic list, then traverses the listener list
and invokes the callback functions successively, so the web
components which subscribe it could receive the message and
trigger the corresponding handlers.

3) APPLICATION BUILD APPROACH

The application build service is encapsulated in the server
module transparent for users. We define an application tem-
plate as a collection of essential files to assist application
creation. The resource manager on the server side maintains
application templates and corresponding package scripts for
different platforms. Users send requests via GUI controls in
the le operation area. When a package request is submitted,
the create package handler in the server-side receives param-
eters of the platform option, and the app container is copied
from the user’s directory to the corresponding application
template. Meanwhile, a native plugin list maintained by the

1773

IEEE Access

Z. Wang et al.: Enabling Ordinary Users Mobile Development With Web Components

250

200

0 . . I

Task 1 Task 2 Task 3
u MIT App Inventor ™ EasyApp

W
o

Completion time(second)
=)
[=

w
(=]

(a)Task Completion Time

Task 1 Task 2 Task3
MIT App Inventor

Incomplete number
“© w s

= EasyApp
(c)Incomplete User Number

FIGURE 5. Evaluation results.

app container recording applied native plugins in the project
is read, and the corresponding resources of native plugins are
copied to the native plugin library maintained by the template.
Configuration le and dependencies of the app container is
imported into the application template. The corresponding
package script is executed to generate the apk or ipa that
responds to the client.

IV. IMPLEMENTATION

We implement our proposed environment based on an imple-
mentation of the OSGi framework, Eclipse Equinox. Web
components are implemented based on DOJO mobile toolkit.
Native plugins and application creation approaches are imple-
mented based on Apache Cordova. The environment supports
running on different desktop OS, such as Windows, Mac OS,
and Linux. Besides, it could be deployed on remote servers
and accessed by local browsers. In this paper, we demonstrate
the functionalities on a Lenovo laptop. Figure 2 shows the
visual editor page. In the central position of the page is the
app container. This part is the area where users assemble
applications’ page elements and layout. It supports two

1774

Percentage

100%

90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Task 1 Task 2 Task 3

g

3

3

=3

3

® Missed ® Incorrect ™ Correct

(b)Task Correctness Persentage

4 I
| I
0

overall GUI operation
m EasyApp MIT App Inventor

(d)Users’ Score

[%)

Average score
8]

display mode, graphics mode, and source code mode. On the
right of the page is the palette tab bar. On the left of the page
is the le operation area.

V. DEMONSTRATION
In this section, we demonstrate the process of customizing
web components and native plugins and create an application
using them. We create Bluetooth relative web components
and create a Bluetooth application through the following
procedures. The main requirements of it are controlling Blue-
tooth switch, counting step numbers on smartphones, and
discovering nearby smart devices such as smart shoes.
Customize Web Components and Native Plugins: This step
is transparent for ordinary users in normal circumstance.
We demonstrate this process brie y to show how to import
the extended web component libraries and the native plugins.
First, we create a new web component library, namely an
OSGi bundle with a service activator and essential configura-
tion les, in the root directory of EasyApp. Second, we add
a web component to the library, including its meta-data,
resources and implementation le. At last, we complete the

VOLUME 8, 2020

Z. Wang et al.: Enabling Ordinary Users Mobile Development With Web Components

IEEE Access

GUI in the visual editor. The component palette information
is recorded in a configuration le in JSON. In this case, we add
a library tab with a component item to the palette definition
le. We create a new JSON object to de ne a new tab and item
to show in the palette.

To implement the native function, we need a Bluetooth
native plugin. We create a new directory to save native plu-
gin’s resource les. We implement Bluetooth functionalities in
Java and encapsulate JavaScript interface for each of them.
We place JavaScript les and Java les in separated folders and
three configure les in the directory. Finally, we compress the
directory as a zip le and upload it to the environment.

Component Assemble and Application Build As is shown
in figure 4(a) and 4(b), create a new project in the visual
editor and drag the new web component to the app container
modifying size and position, then configure its native plugin
in the palette. Finally, click android package button to get the
installer and send it to an Android phone to test as is shown
in figure 4(c) to 4(e).

VI. EVALUATION

The goal of this evaluation is to demonstrate the effectivity for
ordinary users of our environment compared to other propos-
als. Since the special requirements of ordinary users, we did
not add performance the objective of the cross-platform appli-
cations. Therefore, we use the development speed and users’
experience score as the major objectives.

To evaluate the usability of EasyApp, we have an exper-
iment compared with two tools, MIT App Inventor and
EasyApp. We organized 22 users without programming
expertise from Beijing University of Posts and Telecommu-
nications to watch a video tutorial and complete three tasks
about developing similar applications in two environments,
then fill a questionnaire to score their experience for each
tool. The result of accuracy and efficiency is shown in
figure 5(a) and 5(b). For four tasks, participants all complete
faster in EasyApp than in MIT App Inventor. In the end,
participants completed 64 tasks correctly in EasyApp while
60 tasks correctly in MIT App Inventor. We computed the
average score and the result is shown in figure 5(c). After
the development process, every participant filled a question-
naire with three categories questions about the overall, GUI
and operation of the development experience which include
five possible answers: 1 (strongly disagree), 2 (disagree),
3 (neutral), 4 (agree), and 5 (strongly agree). Figure 5(d)
shows the average scores of each category. The overall and the
operation have an obvious superiority over MIT AppInventor
and the GUI score obtains the same score.

From the result, we can see that EasyApp is a friendly
enough for end-users and perform better in some fields com-
pared to other tools.

VIi. CONCLUSION

This paper proposes a WYSIWYG cross-platform mobile
applications development environment for ordinary users.
We describe the architecture and implementation in detail.

VOLUME 8, 2020

It provides users an easy-operating visual editor, abundant
web component libraries and native plugins, and an automatic
application creation approach. Summarizing the above, our
proposed environment has learned from traditional develop-
ment environments and improved the functionalities to be
friendlier to ordinary users.

Future work mainly includes three aspects. First is aiming
at the functionalities of the environment, which is expanding
the web component libraries to meet various requirements.
JavaScript has been growing mature with the progress of web
techniques, and a significant number of excellent frameworks
have been released. We are expecting to import more frame-
works and libraries to enrich the diversity of the web compo-
nent libraries to give end-user more options. The second is to
increase the cross-platform applications’ execution efficiency
and support more mobile platforms. We are expecting to
adapt to mobile cloud application development. The third is
to make the creation process more automatic via planning and
learning technologies.

REFERENCES

[1]1 (2019). Android Developers. Accessed: Oct. 24,2019. [Online]. Available:
https://developer.android.com

[2] (2019). AppArchitect. Accessed: Oct. 24, 2019. [Online]. Available:
http://www.apparchitect.com/

[3] (2019). DCloud. Accessed: Oct. 24, 2019. [Online]. Available:
http://www.dcloud.io/

[4] (2019). Market Share for Mobile, Browsers, Operating Systems and Search
Engines | NetMarketShare. Accessed: Oct. 24, 2019. [Online]. Available:
http://www.netmarketshare.com/

[5] Openajax.org. (2019). OpenAjax Alliance. Accessed: Oct. 24, 2019.
[Online]. Available: http://www.openajax.org/

[6] H. Artail, K. Fawaz, and A. Ghandour, “A proxy-based architecture for
dynamic discovery and invocation of Web services from mobile devices,”
IEEE Trans. Serv. Comput., vol. 5, no. 1, pp. 99-115, Jan. 2012.

[71 G. Cabri, L. Leonardi, M. Mamei, and F. Zambonelli, ‘“Location-
dependent services for mobile users,” IEEE Trans. Syst., Man, Cybern.
C, Appl. Rev., vol. 33, no. 6, pp. 667-681, Nov. 2003.

[8] R. J. Ennals and M. N. Garofalakis, ‘“MashMaker: Mashups for the
masses,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2007,
pp. 1116-1118.

[9] R. Francese, M. Risi, G. Tortora, and G. Scanniello, “Supporting the
development of multi-platform mobile applications,” in Proc. 15th IEEE
Int. Symp. Web Syst. Evol. (WSE), Sep. 2013, pp. 87-90.

[10] R.Francese, M. Risi, G. Tortora, and M. Tucci, ““Visual mobile computing
for mobile end-users,” IEEE Trans. Mobile Comput., vol. 15, no. 4,
pp. 1033-1046, Apr. 2016.

[11] L. He, G. Meng, Y. Gu, C. Liu, J. Sun, T. Zhu, Y. Liu, and
K. G. Shin, “Battery—aware mobile data service,” IEEE Trans. Mobile
Comput., vol. 16, no. 6, pp. 1544—1558, Jun. 2017.

[12] N. Laga, E. Bertin, R. Glitho, and N. Crespi, “Widgets and composition
mechanism for service creation by ordinary users,” IEEE Commun. Mag.,
vol. 50, no. 3, pp. 52-60, Mar. 2012.

[13] A.H.Ngu, M. P. Carlson, Q. Z. Sheng, and H.-Y. Paik, “Semantic-based
mashup of composite applications,” IEEE Trans. Serv. Comput., vol. 3,
no. 1, pp. 2-15, Jan. 2010.

[14] S. C. Pokress and J. J. D. Veiga, “MIT app inventor: Enabling per-
sonal mobile computing,” 2013, arXiv:1310.2830. [Online]. Available:
https://arxiv.org/abs/1310.2830

[15] Z. Tang, S. Guo, P. Li, T. Miyazhaki, H. Jin, and X. Liao, “Energy-
efficient transmission scheduling in mobile phones using machine learning
and participatory sensing,” IEEE Trans. Veh. Technol., vol. 64, no. 7,
pp. 3167-3176, Jul. 2015.

[16] R. N. Taylor, N. Medvidovic, K. M. Anderson, E. J. Whitehead,
J. E. Robbins, K. A. Nies, P. Oreizy, and D. L. Dubrow, “A component-and
message-based architectural style for GUI software,” IEEE Trans. Softw.
Eng., vol. 22, no. 6, pp. 390-406, Jun. 1996.

1775

IEEE Access

Z. Wang et al.: Enabling Ordinary Users Mobile Development With Web Components

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

1776

P. Wang, F. Ye, and X. Chen, “A smart home gateway platform for
data collection and awareness,” IEEE Commun. Mag., vol. 56, no. 9,
pp- 87-93, Sep. 2018.

Z. Zhai, B. Cheng, Z. Wang, X. Liu, M. Liu, and J. Chen, “Design and
implementation: The end user development ecosystem for cross-platform
mobile applications,” in Proc. 25th Int. Conf. Companion World Wide
Web (WWW), 2016, pp. 143-144.

Y. Maezawa, K. Nishiura, H. Washizaki, and S. Honiden, ‘“Validating
ajax applications using a delay-based mutation technique,” in Proc. 29th
ACM/IEEE Int. Conf. Automated Softw. Eng. (ASE), 2014.

D. Liu, L. Khoukhi, and A. Hafid, “Prediction—based mobile data offload-
ing in mobile cloud computing,” IEEE Trans. Wireless Commun., vol. 17,
no. 7, pp. 4660-4673, Jul. 2018.

B. Zhou, A. V. Dastjerdi, R. N. Calheiros, S. N. Srirama, and R. Buyya,
“MCloud: A context—aware offloading framework for heterogeneous
mobile cloud,” IEEE Trans. Serv. Comput., vol. 10, no. 5, pp. 797-810,
Sep. 2017.

R. T. Tiburski, C. R. Moratelli, S. F. Johann, M. V. Neves, E. D. Matos,
L. A. Amaral, and F. Hessel, “Lightweight security architecture based
on embedded virtualization and trust mechanisms for IoT edge devices,”
IEEE Commun. Mag., vol. 57, no. 2, pp. 67-73, Feb. 2019.

B. Cao, L. Zhang, Y. Li, D. Feng, and W. Cao, “Intelligent offloading in
multi—access edge computing: A state-of-the-art review and framework,”
IEEE Commun. Mag., vol. 57, no. 3, pp. 56-62, Mar. 2019.

'W. Gaaloul, S. Bhiri, and M. Rouached, “Event-based design and runtime
verification of composite service transactional behavior,” IEEE Trans.
Serv. Comput., vol. 3, no. 1, pp. 32-45, Jan. 2010.

M. Fiedler, K. Wac, R. Bults, and P. Arlos, “Estimating performance
of mobile services from comparative output—input analysis of end-to-end
throughput,” IEEE Trans. Mobile Comput., vol. 12, no. 9, pp. 1761-1773,
Sep. 2013.

W. S. El-Kassas, B. A. Abdullah, A. H. Yousef, and A. M. Wahba,
“Enhanced code conversion approach for the integrated cross—platform
mobile development ICPMD),” IEEE Trans. Softw. Eng., vol. 42, no. 11,
pp. 1036-1053, Nov. 2016.

S. Guo, J. Liu, Y. Yang, B. Xiao, and Z. Li, “Energy—efficient dynamic
computation offloading and cooperative task scheduling in mobile cloud
computing,” IEEE Trans. Mobile Comput., vol. 18, no. 2, pp. 319-333,
Feb. 2019.

A. Mehrabi, M. Siekkinen, and A. Yla-Jaaski, “Edge computing assisted
adaptive mobile video streaming,” IEEE Trans. Mobile Comput., vol. 18,
no. 4, pp. 787-800, Apr. 2019.

K. W. Choi, D. T. Wiriaatmadja, and E. Hossain, ‘“Discovering mobile
applications in cellular device-to-device communications: Hash function
and Bloom filter—based approach,” IEEE Trans. Mobile Comput., vol. 15,
no. 2, pp. 336-349, Feb. 2016.

C.-Y. Shen, D.-N. Yang, and M.-S. Chen, “Collaborative and distributed
search system with mobile devices,” IEEE Trans. Mobile Comput., vol. 11,
no. 10, pp. 1478-1493, Oct. 2012.

J. Ruan, Y. Wang, F. T. S. Chan, X. Hu, M. Zhao, F. Zhu, B. Shi, Y. Shi,
and F. Lin, “A life cycle framework of green loT-based agriculture and
its finance, operation, and management issues,” IEEE Commun. Mag.,
vol. 57, no. 3, pp. 90-96, Mar. 2019.

B. Cheng, S. Zhao, J. Qian, Z. Zhai, and J. Chen, “Lightweight service
mashup middleware with REST style architecture for IoT applications,”
IEEE Trans. Netw. Serv. Manage., vol. 15, no. 3, pp. 1063-1075, Sep. 2018.

[33] Y.Zhang, J.-L. Chen, and B. Cheng, “‘Integrating events into SOA for IoT

services,” IEEE Commun. Mag., vol. 55, no. 9, pp. 180-186, Sep. 2017.

[34] Y.Cheng, S.Zhao, B. Cheng, S. Hou, X. Zhang, and J. Chen, “A distributed

event—centric collaborative workflows development system for IoT appli-
cation,” in Proc. IEEE 37th Int. Conf. Distrib. Comput. Syst. (ICDCS),
Jun. 2017.

[35] S. Zhao, L. Yu, and B. Cheng, “An event—driven service provisioning

mechanism for IoT (Internet of Things) system interaction,” IEEE Access,
vol. 4, pp. 5038-5051, 2016.

[36] B. Cheng, D. Zhu, S. Zhao, and J. Chen, “Situation—aware [oT service

coordination using the event—driven SOA paradigm,” IEEE Trans. Netw.
Serv. Manage., vol. 13, no. 2, pp. 349-361, Jun. 2016.

ZHAONING WANG is currently pursuing the
Ph.D. degree in computer science and technology
with the State Key Laboratory of Networking and

o~ Switching Technology, Beijing University of Posts

and Telecommunications. His current research

vl interests include service composition, end-user
::./ programming, and mobile service.

BO CHENG received the Ph.D. degree in com-
puter science from the University of Electronics
Science and Technology of China, in 2006. He is
currently a Professor with the State Key Labo-
ratory of Networking and Switching Technology,
Beijing University of Posts and Telecommuni-
cations. His research interests include the Inter-
net of Things, the mobile Internet, and services
computing.

JUNLIANG CHEN is currently a Professor with
the Beijing University of Posts and Telecommu-
nications. His research interest includes service
creation technology. He was elected as a member
of the Chinese Academy of Science, in 1991, and
the Chinese Academy of Engineering, in 1994.

VOLUME 8, 2020

