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ABSTRACT This paper analyses the operator’s risk-based decision (RBD) company for slow steaming, and
creates a sailing speed optimization model for slow steaming (SSOM-SS), aiming to balance the expected
utility-based objectives (EUO) of fuel consumption, SOx emissions and delivery delay. Considering the
limitations of existing theoretical fuel consumption functions under uncertainties in voyages, the authors
applies big data analytics (BDA) techniques like data fusion and feature selection to provide the SSOM-
SS with accurate and suitable data on fuel consumption. In addition, a solver is built based on the genetic
algorithm (GA) to solve the SSOM-SS. The effectiveness of the SSOM-SS is verified through a case study
on the RBD for slow steaming of an Orient Overseas Container Line (OOCL) containership sailing across
the sulphur emission control areas (SECAs) in Chinese coastal regions. The results show that the SSOM-SS
can facilitate the RBD for slow steaming, and provide a novel tool for sailing speed optimization.

INDEX TERMS Big data analytics (BDA), slow steaming, sailing speed optimization, fuel consumption,
genetic algorithm (GA), risk aversion.

I. INTRODUCTION
The health of marine industry hinges on the environmentally
sustainable operations in maritime shipping [1]. To control
the air pollution from ships, the International Maritime Orga-
nization (IMO) issued the MARPOL Annex VI–prevention
of air pollution from ships in 2005, and delineated several
sulphur emission control areas (SECAs), such as the Baltic
Sea, the North Sea and the North American Area (coastal
areas of the United States and Canada) [2]. In these SECAs,
the sulfur content of fuel oil used must be reduced from 1%
to 0.1% by 2015. In addition to the SECAs, the IMO has
decided that the global fuel sulphur limit of 0.50% will enter
into force in 2020 [3]. Similarly, the Chinese Ministry of
Transport defined the Chinese coasts as an emission control
area (ECA) and required ships to burn marine fuels with
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a sulfur limit of 0.5%, which came into force in 2019 [4].
However, despite best efforts it may not always be possible to
obtain compliant fuel oil. The unavailability of low sulfur fuel
may happen if its production and logistics capability is hard to
meet the rising demand stimulated by the SECA regulations.
In such a situation, the ship operator is allowed to continue
using high sulfur fuel with a necessity to provide a Fuel Oil
Non-Availability Report (FONAR) [5]. Nevertheless, the ship
operator that has to use high sulfur fuel may still try to reduce
SOx emissions in order to prevent the use of high sulfur fuel
from damaging the public image. In addition, the efforts to
reduce SOx emissions may help the submission of FONAR
being accepted. Against this backdrop, it can be considered as
a risk control method for the ship operators in marine industry
to reduce SOx emissions.

An effective solution to SOx emissions reduction is an
environment-friendly strategy known as slow steaming. This
is because SOx emissions are proportional to the fuel burned,
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and its consumption ratio depends on the sailing speed
[6], [7]. Various types of commercial ships have adopted
this solution, including tankers, bulk carriers and contain-
erships [8]. For example, a Maersk Triple E-class contain-
ership emits only half the average amount of SOx on the
Asia-Europe trade lane, if it moves at a slower-than-normal
speed (17.8knots) [9]. Nevertheless, the slow sailing speed
of slow steaming may delay shipment delivery and increase
the round-trip time [10]. The inventory cost thus incurred
is essentially a kind of loss, which should be considered
in the pursuit of punctuality [11]. To optimize the sailing
speed, the shipping company must make a trade-off, or risk-
based decision (RBD), between different operational objec-
tives, namely, fuel consumption, SOx emissions, and
delivery delay.

Most studies on sailing speed optimization are based on a
theoretical fuel consumption function [12]–[15]. In addition
to the sailing speed, the fuel consumption is affected by such
factors as hydrology, weather, the time in the seas, as well as
the states of the sea and the ship. The effects of these factors
can be illustrated by the difference between theoretical and
actual fuel consumptions [16]. Figure 1 shows the relation-
ship between actual and theoretical fuel consumptions with
the growing number of days in the sea [17]. Despite that the
theoretical model fit very well when the time in the sea is
within 1 day, it is obvious that there are some points with large
deviation from the actual fuel consumption when the number
of days in the sea is longer.

FIGURE 1. The relationship between actual and theoretical fuel
consumptions with the growing number of days in the sea.

The fuel efficiency of ships can be effectively improved
based on big data [18]–[20]. The big data generally refers
to the extremely large datasets that may be analysed com-
putationally through big data analytics (BDA) to reveal pat-
terns, trends, and associations. Big data on fuel consumption
are available, because most ships today have an automatic
identification system (AIS), which continuously monitors the
operational performance [21]–[24]. Through the BDA, it is

possible to predict the fuel consumption accurately from the
AIS data, and compare it with the actual fuel consumption in
the captain’s log [25].

Nevertheless, the application of the BDA in sailing speed
optimization faces two challenges: First, the data from the
AIS and the log are not easy to use, because of the typi-
cal features of big data, namely, high variety, sheer volume
and fast velocity [26]. Second, it is difficult to describe the
relationship between fuel consumption and its influencing
factors with a single mathematical formula. To cope with
these challenges, this paper applies a data mining technique
to explore the fuel consumption based on the BDA.

This research makes the following contributions: First,
a sailing speed optimization model for slow steaming
(SSOM-SS) is established to examine the operator’s RBD for
slow steaming, aiming to balance the EUOs of fuel consump-
tion, SOx emissions and delivery delay. Second, the authors
develop a novel approach to estimate fuel consumption,
which can effectively use the AIS data and log data based
on BDA, and create a solver based on the genetic algorithm
(GA) for the SSOM-SS.

The remainder of this paper is organized as follows:
Section 2 reviews the relevant literature on slow steaming
and fuel consumption estimation; Section 3 presents the EUO
function that reflects the RBD for slow steaming and estab-
lishes the SSOM-SS; Section 4 details the BDA techniques of
data parser and data miner, and proposes a GA-based solver
for the SSOM-SS; Section 5 verifies the SSOM-SS through a
case study on the RBD for slow steaming of an Orient Over-
seas Container Line (OOCL) containership sailing between
Dalian and Kaohsiung across the SECAs in Chinese coastal
regions; Section 6 sums up the findings of this research.

II. LITERATURE REVIEW
A. SLOW STEAMING BASED ON RISK AVERSION
In maritime shipping, slow steaming is the most popular
and effective decision-making method for environmentally
sustainable operations [27]. Three operational objectives are
often addressed in existing slow steaming models, including
minimal fuel consumption, minimal SOx emissions and min-
imal delivery delay. However, there are few models that aims
to minimize the total cost of the conflicting objectives [28].

As mentioned before, the sailing speed is a key decision
variable in the expressions of fuel consumption, SOx emis-
sions and delivery delay. Psaraftis andKontovas [29] summed
up the existing optimization models for the sailing speed,
pointing out that most models take the sailing speed as a
decision variable in the decision-making problem [30], [31].
Wang et al. [32] and Wen et al. [33] adopted the sailing
speed as an implicit input to the decision-making problem,
and derived speed-related explicit inputs from this implicit
input.

The inner feeling of the operator, as a decision-maker,
is critical to slow steaming, yet has been largely neglected.
Before making the decision of slow steaming, the operator
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often needs to determine an empirical sailing speed. In real-
world RBDs, risk aversion is ubiquitous due to the various
uncertainties. This contradicts the rational agent hypothesis
in expected utility hypothesis and axioms of preference [34].
During the RBD process, the features of expected utility-
based objective (EUO) are obvious in the human nervous
system. It could be enlightening to include the risk aver-
sion features into the EUO function, before exploring the
operator’s RBD for slow steaming with different degrees
of personal preference [35]. However, there is little report
that considers the EUO of slow steaming in sailing speed
optimization.

B. FUEL CONSUMPTION ESTIMATION BASED ON THE BDA
The sailing speed is a main determinant of fuel consumption.
The relationship between sailing speed and fuel consump-
tion is traditionally described as a third-order exponential
curve. However, the fuel consumption thus obtained is a
rough estimate, and may deviate greatly from the actual fuel
consumption, if the ship has a large capacity or sails at a very
low speed [15], [29].

With the development of data collection systems, more
and more scholars started to estimate fuel consumption based
on various determinants [36]. Thanks to the advanced sen-
sors onboard, the fuel consumption can now be estimated
based on massive real-time data, using data-driven statistical
models [37]. The existing data-driven statistical models can
estimate the fuel consumption with a high precision, under
various operating conditions and environments [38]–[42].
Nonetheless, there is still ample room to improve their inter-
pretability and accuracy.

Besides the estimation of fuel consumption, the BDA also
facilitates many other aspects of shipping studies. For exam-
ple, the navigation safety, ship behaviour and shipping envi-
ronment can be evaluated accurately, using various types of
data (e.g. location, environment, and performance of antifoul-
ing coating) [18], [43]. Recently, the BDA techniques of data
parser and data miner were adopted to create data-driven
models on the decision support system for sailing speed.
These models could effectively learn the impact of weather
on fuel consumption based on the massive data on histori-
cal weather conditions [44]. Despite the above studies, few
researches have applied the BDA to guide the slow steaming
operations.

III. PROBLEM DESCRIPTION
The proposed SSOM-SS focuses on a single ship and applies
to the most common scenario in marine logistics, the fixed-
route scenario: a ship sails directly from port A to port B
carrying the same cargoes onboard, or sails along a multi-leg
route between the two ports visiting intermediate ports in a
pre-set sequence, with the cargoes onboard changing at each
intermediate port. In this scenario, the route is pre-set in route
design and fleet deployment.

Let N = {1,2,. . . ,n} be the set of all the ports on the
route, Dij(i∈N ,j∈N )(nautical mile) be the inter-port distances,

TABLE 1. The issues affecting the three risk factors.

Qij (ton) be the cargoes onboard from port i to port j(j 6= i),
and the Tij(day) be the agreed delivery schedule from port i to
port j. Under these conditions, the operator should determine
the proper range of sailing speed V (knots) for slow steaming.

A. THE EUO
In the RBD for slow steaming, the EUO is measured by three
risk factors: fuel consumption, SOx emissions and delivery
delay (Table 1). The type of gains or losses induced by
each risk factor is called the potential failure effect, while
the possible failure scenarios for each risk factor is known
as the potential failure mode. In this section, the EUO is
evaluated based on the three risk factors, as well as their
priority, importance and impact.

According to previous research, the RBD for slow steam-
ing can be characterized by the EUO, if it carries the features
of risk aversion. Considering its decreasing marginal utility,
the logarithmic function is adopted here to describe the EUO
for risk-averse decision-maker in different areas [45]–[47].
Sheng [48] proved that this utility function is suitable for
various problems, as well as the same problem with the risk-
averse decision-maker having different degrees of personal
preference. Our EUO function U (∗) can be defined as:

U = ln
(

x
xmin

)
, (1)

where xmin is the minimum value of risk factor x. Then,
the utility of the operator for the risk factor k can be described
as:

Uk (x) =
1

ln
(
2− xmin

xmax

) ln
(
2−

x
xmax

)
, (2)

where xmax and xmin are the maximum and minimum values
of the risk factor k , respectively. Obviously, Uk (xmin) = 1
and Uk (xmax) = 0 as the first term of Equation (2) is the
normalising factor.

Let F , E and S be the function of the variation in fuel con-
sumption (ton), SOx emissions (ton) and delivery delay (day)
through slow steaming, respectively. As mentioned before,
the sailing speed of slow steaming should be controlledwithin
a proper range. Then, the EUO functions of the three risk
factors are denoted as U1(F), U2(E) and U3(S), respectively.
Through optimization of the sailing speed, the RBD for

slow steaming aims to maximize the cost-effectiveness and
greenness in terms of EUO. Thus, the objective function of
the RBD process is the weighted average of U1(F), U2(E)
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and U3(S):

MaxU = w1U1 (F)+ w2U2 (E)+ w3U3 (S) , (3)

wherew1,w2 andw3 are the weights for the trade-off between
the three objective functions (w1 + w2 + w3 = 1).

B. SSOM-SS
1) FUEL CONSUMPTION FUNCTION
The fuel consumption function describes the cubic relation-
ship between fuel consumption and sailing speed [49]. The
daily fuel consumption of a ship considering the sailing
speed, Fd (V ), (ton/day) can be computed by:

Fd (V ) = FM

(
V
Vd

)3

+ FA, (4)

where FM is the daily fuel consumption of main engine at
design speed (ton), Vd represents the design speed (knot) and
FA is the daily fuel consumption of auxiliary engine (ton).
In the literature, the effects of several parameters (e.g.

displacement, cargoes onboard, wind, waves and currents)
on fuel consumption in slow steaming is widely ignored.
Let ∇ ={∇1,∇2. . . , ∇K} be the set of these parameters.
Then, the influence of sailing speed V and these parameters
are quantified, and used to improve the Equation (4) into
the function for the daily fuel consumption considering both
sailing speed and other parameters, Fd (V,∇). On this basis,
the total fuel consumption of a ship sailing at 24V nautical
miles per day across the route can be expressed as:

F (V ,∇) =
∑

i∈N ,j∈N

(
Fd (V ,∇)×

Dij
24V

)
, (5)

2) SOx EMISSIONS FUNCTION
There is linear proportionality between SOx emissions and
fuel consumption, which is measured by the actual sulfur
content σ (%). Here, for a ship using high sulfur fuel, the SOx
emissions that exceed the sulfur limit between ports i and j
can be expressed as:

Eij (V ,∇) = (σ −$)× Fd (V ,∇)×
DSECAij

24V
, (6)

where $ is the sulfur limit of SECA, DSECAij is the distance
within the SECA between the two ports. Then, the total SOx
emissions exceeding the sulfur limit of SECA across the route
E(V ) can be described as:

E (V ,∇) =
∑

i∈N ,j∈N

(
Eij (V ,∇)

)
. (7)

3) DELIVERY DELAY FUNCTION
Being an indicator of the service level, delivery delay equals
the total time delay (day) multiplying the cargoes onboard.
The time delay refers to the deviation of the actual sailing
time Dij/24V from the agreed delivery schedule Tij between

FIGURE 2. Big data-based solution framework for the SSOM-SS.

ports i and j. Therefore, the delivery delay function can be
expressed as:

S (V ) =
∑

i∈N ,j∈N

((
Dij
24V
− Tij

)
× Qij

)
. (8)

The time delay is obviously positive. Without considering
the port operation time and time delay, the agreed delivery
schedule Tij can be described as:

Dij
24V
≥ Tij =

Dij
24Vd

. (9)

Thus, the sailing speed V can be controlled as:

Vmin ≤ V ≤ Vmax = Vd . (10)

where Vmax is the maximum sailing speed (knots), i.e. the
designed sailing speed Vd (knots); Vmin is the minimum sail-
ing speed (knots).

4) MATHEMATICAL MODEL
The objective function of the RBD for slow steaming is
derived from the EUO functions to optimize the sailing speed.
Hence, the SSOM-SS can be formulated as the nonlinear
programming model below:

Max
V

U (V ) = w1U1 (F (V ,∇))+ w2U2 (E (V ,∇))

+w3U3 (S (V ))

s.t. Vmin < V ≤ Vmax. (11)

IV. BDA TECHNIQUES AND GA-BASED SOLVER
The framework in Lamba and Singh [50], the SSOM-SS is
solved based on big data through the procedure in Figure 2.
The dataset is generated in the light of the volume, variety
and velocity (3Vs) of big data.
To ensure the quality of data inputted to the SSOM-SS, the

authors develop a data reconciliation method. Hence, the first
and secondmodules of ourmodel-solving framework are data
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FIGURE 3. Data fusion model.

parser and data miner, respectively. After the input data have
been processed and analysed in these two modules, the fuel
consumption function is developed by BDA techniques.

The thirdmodule of our framework is the solving algorithm
of the nonlinear SSOM-SS. Since the exact algorithms are
unable to deal with the 3Vs of big data, a GA-based solver
is designed to generate the approximate optimal solutions,
which reflect the trade-off between fuel consumption, SOx
emissions and delivery delay for sailing speed.

A. DATA PARSER
Data parser is a vital BDA technique that screens out outliers
and thus eliminates the generation of misleading results. For
the quality of input and output data, the Data Parser is pro-
vided with data fusion and data cleaning functions [51].

1) DATA FUSION
The original data are varied in type and from multiple inter-
nal or external sources. For instance, the AIS data and log data
may differ in recording frequency, which could be an obstacle
for further analysis. This calls for data fusion in the coherent
data warehouse [51], [52]. The necessity of data fusion also
arises from the inevitable missing entries in the raw data. The
most direct way to fill the missing data is to look for the
corresponding entries in the database from other sources. Our
data fusion model is illustrated in Figure 3 below.

As shown in Figure 4, the 3Vs of the data linked with the
SSOM-SS show obvious heterogeneity:
Variety: The fuel consumption function involves multi-

ple variables like location, sailing distance/time and engine
speed, reflecting the variety of the collected data.
Volume: The fuel consumption function considers many

volume features of the collected data, such as the number of
ships, the number of available sailing speeds for each ship,
the number of ports visited by each ship, and the number of
legs.
Velocity: The velocity depends on the tendency of the data

to change in real time. The difference of our data sources
comes from the fact that the AIS data are updated hourly,
while the log data are reported daily.

FIGURE 4. The 3Vs of big data linked with SSOM-SS.

2) DATA CLEANING
There are still redundant features or outliers in the fused
dataset, which may suppress the solving efficiency or fitting
accuracy. High-dimensional databases usually contain sim-
ilar features, and inaccuracy is inevitable for the manually
collected log data. The redundant features and outliers must
be controlled on an acceptable level.

Drawing on Abbasian et al. [51], the correlation-based
feature selection (CFS) algorithm is introduced to the feature
selection process, aiming to create a subset of the features that
closely related to our objective. This algorithm is an efficient
tool to reduce the number of features in a dataset with weak
interactions [53]. In addition, the Spearman’s rank correlation
coeficient is selected to deal with the nonlinear relationship
in the features.

Furthermore, the standard deviation method, a classical
model-free nonparametric method, is employed to screen out
the outliers [51]. According to Chebyshev’s Theorem, at least
15/16 (94%) of the data lie within 4 standard deviations of the
mean; any number whose deviations from the average and
trend line greater than 4 standard deviations is an outlier.

B. DATA MINER
Data mining is a process to examine the collected database
and generate new information. In this paper, a data miner is
designed to evaluate the degree of impact from each influenc-
ing factor (e.g. sailing speed) on fuel consumption, based on
the data outputted by the data parser. These data are subjected
to multivariate nonlinear regression (Figure 5) before being
imported to the fuel consumption function [29].

C. GA-BASED SOLVER
The SSOM-SS is solved by a solver based on the GA, an algo-
rithmmimicking the natural selection process [54]. To ensure
its feasibility, the solution is generated through steps like
selection, crossover and mutation. Besides, the parameters
of the fitness function are finetuned through repeated tests.
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FIGURE 5. Multivariate nonlinear regression of the parsed data.

FIGURE 6. Flowchart of the GA-based solver.

As shown in Figure 6, the workflow of the GA-based solver
includes solution representation, fitness calculation, selec-
tion, crossover, mutation and infeasible solution adjustment.
Step 1 (Solution Representation): Based on the features

of the decision variable, binary representation is selected
for the chromosome of the SSOM-SS. First, the solution
is encoded as strings of zeros and ones; Next, each binary
string is converted into a decimal number and normalized to
a real number V in the specified interval, respectively by the
following equations:

(b1b2 · · · bCodeL)2 =

(
CodeL∑
s=1

2sbs

)
10

= yt , (12)

V = MinV + yt
(MaxV −MinV )

2CodeL − 1
. (13)

Step 2 (Fitness Calculation): Each solution satisfying the
constraints is treated as a chromosome. The selection operator
of the GA-based solver may be weakened, if the reciprocal of
the objective function is directly used as the fitness function.
If so, different chromosomes will have basically the same
chance of being selected. Since the SSOM-SS is a maxi-
mization problem, the fitness function is linearly calibrated
as follows to keep the fitness a positive number:

U ′ (V ) = U (V )−min (U (V ))+ ξ, (14)

where ξ = 1.

FIGURE 7. The containership service between Dalian and Kaohsiung.

Step 3 (Selection): Selection is the driving force of genetic
search. If fitness proportionate selection, a.k.a. roulette wheel
selection, is adopted, the fitness function must be trans-
formed. To avoid the transformation, the tournament selec-
tion is adopted to identify the best individuals in the current
population and keep them in the next generation.
Step 4 (Crossover): Crossover refers to the swap between

two individuals on different chromosomes. In this paper,
the crossover is implemented in three steps: First, the parent
population meeting the crossover probability Pc is identified;
second, the crossover segments are randomly selected from
in the parent population; third, the genes in these segments
are swapped by one-point crossover, creating the offspring
population.
Step 5 (Mutation): Mutation determines the local search

ability of the GA-based solver and ensures the diversity of the
population. Here, the simple inversion mutation is performed
to generate new individuals at the mutation probability Pm.
Step 6 (Infeasible Solution Adjustment): If the solution

(chromosome) is infeasible after crossover and mutation,
Steps 2∼5 should be repeated until the termination condition
is satisfied.

V. CASE STUDY AND RESULTS ANALYSIS
A. FUEL CONSUMPTION BASED ON BDA TECHNIQUES
In this section, the BDA-based fuel consumption estimation
approach and the SSOM-SS with GA-based solver are veri-
fied with the RBD for slow steaming of an OOCL container-
ship sailing between Dalian and Kaohsiung.

The fixed route of the containership includes the fol-
lowing ports: 1 Ningbo, 2 Dalian, 3 Tianjin, 4 Qingdao,
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TABLE 2. Agreed delivery schedule and cargoes onboard.

TABLE 3. The log data of the containership.

5 Lianyungang, 6 Kaohsiung, 7 Taichung and 8 Keelung. The
inter-port distances Dij and the distances within the China’s
SECA DSECAij for the ports are shown in Figure 7 below.
Assuming a possible situation where low sulfur fuel is

unavailable, the actual sulfur content σ has to be 3.50%. The
sulfur limit $ for the SECA in China is 0.5%. The agreed
delivery schedule Tij is calculated based on the Dij/24Vd and
cargoes onboard Qij from port i to port j (Table 2).
A comprehensive data warehouse is needed to set up the

fuel consumption function based on BDA techniques. Here,
the AIS data and log data of the containership in the full oper-
ation period (340 days) in 2016 are collected to construct the
data warehouse. In total, there are 248,200 records, covering
30 features for hourly AIS data, and 10 features of daily log
data. The hourly AIS data records features mostly regarding
geographic positions including latitude, longitude, date and
time. The daily log data includes features reflecting the ship’s
sailing behaviour, such as location, fuel consumption, sailing
speed and displacement and so on. The data fields of the daily
updated logs of the containership are displayed in Table 3.

The raw data are fused to reconcile their difference in
recording frequency: the daily log data are converted into
hourly format, the AIS data are integrated into the log data,
the frequency distribution of the features in the logs is com-
puted to fill the missing data (30% for fuel consumption and
10% for displacement). The fusion between log data and AIS
data is explained in Figure 8.

As mentioned in Subsection 4.1(2), the redundant features
are eliminated by the CFS algorithm, and the Spearman’s
rank correlation coefficient [55] are computed between the
fuel consumption and each influencing factor, e.g. sailing
speed, displacement, wave direction, and wave height. The
computed results (Table 4) show that three features are the
most significant ones: fuel consumption, sailing speed and
displacement. Hence, the daily fuel consumption per ship is
described as Fd (V, ∇1), where ∇1 is displacement.
The raw dataset contains some extreme outliers due to

incorrect recordings. The potential outliers are detected and

FIGURE 8. Fusion between log data and AIS data.

eliminated through a statistical hypothesis test, in which the
upper control limit (UCL) and lower control limit (LCL)
are set as ±4 times the standard deviation, respectively. The
volume of the cut-out data is within 6% of the raw dataset
[56], [57].

Figure 9 is the timeseries of sailing speed and displacement
of the containership throughout the operation period. The red
and blue lines are UCL and LCL, respectively. Any data point
not falling on the lines are regarded as outliers and deleted.

Based on the fused and cleaned dataset, the daily fuel
consumption per ship is obtained, Fd (V, ∇1). The data are
regressed by the following model:

Fd (V ,∇1) = c1V c2∇
c3
1 . (15)

The p-values of F-tests and t-tests are recorded in Table 5.
The p-value of c3 is smaller than 0.05, indicating the signifi-
cant impact of the actual displacement on fuel consumption;
the exponent of the sailing speed (c2) for is smaller than 3,
for the maximum sailing speed always fall between 8 and
16 knots.

B. SENSITIVITY ANALYSIS OF THE SSOM-SS
This subsection evaluates the SSOM-SS performance
through the sensitivity analysis of EUO functions U1(F),
U2(E) and U3(S) with their weights w1, w2, and w3.
The first step is to explore the SSOM-SS performance.

The EUO functions were solved by the GA-based solver on
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TABLE 4. Spearman’s rank correlation coefficients between fuel consumption and its influencing factors.

FIGURE 9. Timeseries of sailing speed and displacement.

TABLE 5. Regression results of model.

a personal computer (Hexa Core 3.7GHz Processor; 16 GB
RAM). The values of EUO functionsU1(F),U2(E) andU3(S)
at different sailing speeds V are shown in Figure 10.
As shown in Figure 10, the values of U1(F) and U2(E)

for fuel consumption and SOx emissions both increase, while
the value of U3(S) for delivery delay declines, with the sail-
ing speed V falling from the maximum Vmax = 22knots
to the minimum Vmin = 8knots. Meanwhile, the objective
function U (V ) increases to the maximum of 0.874 at the
sailing speedV =14.015knots, before entering the downward
phase. Hence, the optimal sailing speed is determined as
V∗ = 14.015 knots. If the containership operates at this
reduced sailing speed, the fuel consumption and the SO x
emissions will be reduced by 38.62% from the level at the
designed speed.

In the above analysis, w1 = w2 = 1/4 and w3 = 1/2.
In other words, delivery delay is treated as the most important
factor in order to reflect the realistic concerns of the ship oper-
ator. In actual operation, the operator can adjust the weights
based on factors like fuel price, limits on SOx emissions,

FIGURE 10. The values of U1(F ), U2(E) and U3(S) and U(V ).

TABLE 6. Sensitivity analysis on different weight combinations of the
EUO functions.

delivery schedule and cargoes onboard. Next, the objective
function U (V ) and the optimal sailing speed V∗ are deter-
mined at different combinations of w1, w2, and w3 for EUO
functions U1(F), U2(E) and U3(S). According to the results
in Table 6, the optimal sailing speed V∗ is 8 knots when w1
and w2 reach the maximum of 1, indicating that the operator
enjoyed the greatest EUO. Besides, whenw3 reaches themax-
imum of 1, the optimal sailing speed V∗ equals the maximum
speed Vmax , i.e. the design speed Vd = 22knots. Comparing
the objective function U (V ) values of the three weight sets
(1/2, 1/4, 1/4), (1/4, 1/2, 1/4), and (1/4, 1/4, 1/2), it is clear
that the optimal sailing speed is negatively correlated with the
weight of fuel consumption or SOx emissions, and positively
with the weight of delivery delay.

VI. CONCLUSION
Slow steaming is an effective way for ships to achieve envi-
ronmentally sustainable operations. It is essentially an RBD
under three risk factors: fuel consumption, SOx emissions
and delivery delay. To facilitate the EUO-based RBD for
slow steaming, this paper proposes the SSOM-SS model
to optimize the sailing speed, and applies a series of BDA
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techniques to process the big data from the AIS and logs
before estimating fuel consumption. In addition, a GA-based
solver is designed to solve the SSOM-SS, aiming to deter-
mine the optimal sailing speed based on fuel consumption,
SOx emissions and delivery delay.

This research mainly makes two contributions: First, the
BDA-based estimation of fuel consumption can effectively
fuse and analyse the AIS data and log data collected through
the operation period, providing SSOM-SS with precise and
suitable inputs. Second, the SSOM-SS helps the risk-averse
decision-maker, i.e. the operator, to clarify the relationship
between various decision elements.

A limitation of the research is that it doesn’t integrate the
weather factors into the regression of fuel consumptionmodel
due to their minor impacts on fuel consumption. However,
our research fully demonstrates how the cutting-edge BDA
techniques should be used flexibly and adaptively to achieve
meaningful results in different phases of the BDA, and enable
the operator to estimate fuel consumption in different routes
and complete the RBD for slow steaming. The methodology
of dealing with maritime big data can be used in the followed
research and applied in other cases with multi-objective con-
cerns. For example, although shipping pollutants such as NOx
and particle matters are not considered as objectives in this
paper because they are currently not limited by the SECA
regulations in China and thus not focused by most shipping
companies. Nevertheless, if there is a scenario where one
can regard NOx or particle matters as a practical objective,
the objective of SOx emissions and the related functions can
be easily substituted without changing the methodology too
much.
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