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ABSTRACT Data association is the foundation of state estimation in mobile robot simultaneous localization
andmapping. Aiming at the problems of false association, high computational complexity in joint compatible
branch and bound algorithm, we propose an optimized joint compatible branch and bound data association
algorithm based on Gaussian mixture clustering. Firstly, the local association strategy is adopted to limit
data association in local region, so as to reduce the number of features involved in data association at the
current moment. Secondly, the Gaussian mixture clustering algorithm is used in local areas to group the
observed values at the current moment, so as to get several groups that have little correlation with each
other. Finally, joint compatible branch and bound data association algorithm is used in each group for data
association, and the optimal solution is obtained according to mutual exclusion criteria and optimal criteria.
The experiment results verify that the algorithm improved the accuracy of data association, reduced the
computational complexity and improved the efficiency of data association.

INDEX TERMS Artificial intelligence, autonomous agents, clustering algorithms, intelligent robots, simul-
taneous localization and mapping.

I. INTRODUCTION
Simultaneous localization and mapping (SLAM) technol-
ogy is the key to realize the robot navigation. It means
of a mobile robot in an unknown environment con-
stantly sense the environment using its own sensor start-
ing from the starting point. According to the sensor data
to estimate its own position for achieving self-position-
ing [1]–[4]. Meanwhile, the environment map is built incre-
mentally on the basis of localization to achieve its positioning
and navigation. There are several solutions proposed to solve
SLAM problems, including laser SLAM like GMapping [5],
and LOAM [5], [6], visual SLAM like LSD-SLAM [7],
ORB-SLAM2 [8], and RTAB-MAP [6], [9], semantic SLAM
like DS-SLAM [7], [10], and DynaSLAM [11]. Data associ-
ation is a key problem of mobile robot SLAM, which is also
known as consistency problem.

Specifically, the purpose of data association is to determine
whether there is a correspondence between the measured
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values obtained by the mobile robot and the map features
in the existing environment map under different time and
environment region. And it determines whether the measured
values come from the same entity in the environment based
on the above correspondence. A few data association failures
will cause the algorithm to diverge. Therefore, it is vital to
study the algorithm of data association in order to ensure the
accuracy of SLAM state estimation [8], [9], [10], [12]–[14].

In the related research fields of mobile robot SLAM,
the data association methods that have been widely applied
are independent compatible nearest neighbor (ICNN) algo-
rithm [11], [15] and joint compatible branch and bound
(JCBB) algorithm. The advantage of the ICNN algorithm is
that the implementation process is relatively easy and it has
a strong real-time performance. However, due to not fully
consider the correlation of each eigenvalue, its performance
will be greatly affected when the environment changes. Com-
pared with the ICNN algorithm, the JCBB algorithm pro-
posed by Castellanos et al. [12], [16] improved the correlation
accuracy. However, it requires a large amount of compu-
tation in the process of algorithm implementation, and its
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real-time performance is poor. Researchers continually opti-
mize the data association algorithm, and then put forward the
probability data association algorithm, joint maximum like-
lihood association algorithm and multi-hypothesis tracking
algorithm [12], [16]. These algorithms improve the compu-
tational efficiency of mobile robot SLAM data association
algorithm and solve the data association problem of multi-
target tracking [13], [14], [17], [18].

Singer and Stein [15], [19] proposed multiple hypotheses
JCBB algorithm to solve the ambiguous data association
problem and improved map accuracy. Neira and Tardos [16],
[20] adopted mutual exclusion criteria and optimal criteria
to improve the accuracy of association. Blackman [17], [21]
introduce k-means clustering algorithm to SLAM data asso-
ciation algorithm (KJCBB) for further optimization, which is
based on k-means clustering algorithm to cluster the observed
values. The number of groups is determined according to
the region of the robot. So, it is likely that adjacent land-
marks that should be in the same observation group will be
misclassified into different observation groups, eventually
led to the error association results. Dallil et al. [18], [22]
proposed a fast JCBB for mobile robot SLAM based on
density-based spatial clustering of application with noise.
As a result, the association accuracy was improved and the
running time of the algorithm was significantly reduced.
Wang and Englot [19], [23] proposed a Gaussian mixture
model based JCBB data association algorithm (GEMJCBB)
grouping the measurement to reduce the computation
complexity.

The above studies have contributed to the optimization of
SLAM data association algorithm and provided theoretical
basis. A new optimized data association algorithm based
on Gaussian mixture model [20], [21], [24], [25] is pro-
posed to solve the problem of false association, complicated
calculation problem in the current SLAM data association
algorithm. Firstly, the local association strategy is adopted
to limit data association in local region, so as to reduce
the number of features involved in data association at the
current moment. Secondly, the Gaussian mixture clustering
algorithm is used in local areas to group the observed values at
the current moment, so as to get several groups that have little
correlation with each other. Finally, JCBB data association
algorithm is used in each group for data association, and the
optimal solution is obtained according to mutual exclusion
criteria and optimal criteria. The algorithm can group the
observed data using Gaussian mixture clustering algorithm.
Its advantage lies in: 1. Reduce the number of observations
andmap features participating in association at the same time,
thus greatly reducing the computational complexity of JCBB
algorithm; 2. The Gaussian mixture model is used to make a
reasonable grouping for the local association region, which
does not need to be obtained empirically according to the
environment, thus improving the accuracy of the algorithm.
In section 2, the SLAM data association problem is intro-
duced. In section 3 we introduce the proposed SLAM data
association algorithm. Experiment results and analysis are

given in section 4. In addition, the conclusions and the future
work are drawn in the last section.

II. SLAM DATA ASSOCIATION MODEL
A. SLAM DATA ASSOCIATION
The mobile robot SLAM technology is not only related to
the status of the robot itself, but also related to the infor-
mation of the external environment. The problem of SLAM
data association involves three kinds of correspondence. The
relationship between the observation obtained by its sen-
sors while the robot is in different time or different region;
The relationship between observations and existing envi-
ronmental map features; The relationship between existing
environment map features. Through comparative analysis of
the above three relationships, it is determined whether the
observations and eigenvalues come from the same entity in
the environment region. The above process can be regarded as
applying the observation-featurematching character to search
the environment state space. There are three possibilities for a
robot to get a new observation; One is the built environment
characteristics information; Second, the new environmental
characteristics; The third is the virtual set, that is, the observed
value is not a reflection of real physical road signs, but caused
by sensor noise or specular reflection.

Suppose there are n map features F = {F1,F2, · · · ,Fn} in
the environment area of the robot. The laser sensor measure
m observation Z = {Z1,Z2, · · · ,Zm}. The hypothesis needs
to be established by applying SLAM data association tech-
nology Hm = {j1, j2, · · · , jm}, Matching each observation Zi
with a feature Fji, When the sensor measurements Zi do not
match any of the features in the map,ji = 0. Where, the mea-
sured value Zi and the corresponding feature Fji are related
by themeasurement function fiji (x, y) = 0, indicating that the
relative position of the measured value and the corresponding
feature must be 0.

B. JOINT COMPATIBLE BRANCH AND
BOUND ALGORITHM
The JCBB algorithm is one of the independentmatching asso-
ciation algorithms based on single observation in the research
field of mobile robot SLAM. During the implementation of
the algorithm, the joint compatibility test method is used to
combine the observed features and map features acquired by
the mobile robot. While the branch and bound method is used
to search the associated solution space.

Under the associated hypothesis setHm = {j1, j2, · · · , jm},
the joint observation equation of map features is expressed as
follows:

ẐHm = hHm
(
X̂ k,k−1

)
+ nHm =


hj1
(
X̂ k,k−1

)
· · ·

hjm
(
X̂ k,k−1

)
 . (1)

Joint new information is expressed by the following
formula:

SHm = HHmPk,k−1H
T
Hm + RHm . (2)
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Then the covariance of joint new interest can be
expressed as:

νHm = ZHm − hHm
(
X̂ k,k−1

)
. (3)

In (2),ZHm =
[
Zk,1, · · · ,Zk,m

]
,HHm= ∂hHm/∂X

∣∣(
X̂ k,k−1

).
Then the joint compatible test criterion is as follows:

D2
Hm = vTHms

−1
HmvHm . (4)

If the above equation is true, all observed features and map
features are considered joint and compatible.

The main purpose of applying branch and bound criterion
in the data association problem of mobile robot SLAM is to
traverse the solution space and obtain the best solution vector.
The joint facultative condition in (4) is used as the criterion
for traversing the branch of the correlation interpretation tree.
The search order is determined according to its mahalanobis
distance, and the whole associated solution space is divided
into several subsets. Among the subsets, the monotonic non-
subtraction rule of the number of pairs is used as the condition
of delimitation. Finally, the largest association hypothesis in
the number of pairs is selected as the optimal association
solution.

III. OPTIMIZED DATA ASSOCIATION BASED ON
GAUSSIAN MIXTURE CLUSTERING
The observed value solution space in the traditional JCBB
SLAM data association algorithm is described according to
the interpretation tree model. For obtaining the best data asso-
ciation results, the incremental computational search com-
bining branch and bound with compatibility is adopted. This
process takes all sensors into account to obtain the relation-
ship between the observed value. Therefore, the accuracy
of data association is higher, and robustness is stronger.
But JCBB algorithm associates all of the observed value in
the current moment with the environmental characteristics
environmental characteristics that already exist on the map.
In large dense environments, the number of features increases
rapidly over time, resulting in high computational complexity
of the algorithm. The algorithm can be improved by reducing
the number of observations and map features participating
in association at the same time. Firstly, the local association
region is obtained to reduce the number of environmental
characteristics participating in association at the same time.
In addition, the Gaussian mixture clustering algorithm is
adopted grouping the observed values to reduce the number of
observed values. The specific implementation is as follows:

A. LOCAL ASSOCIATION STRATEGY
In the actual situation, the observation range of the robot
is limited. It is not necessary for observations to do data
association every known characteristics. So, the observed
feature that is far away from the robot can be ignored by
setting an association threshold in advance to set the features
falling within the association threshold as the objects that the
target may associate with. The association threshold is set to

FIGURE 1. Local Data association diagram.

r+d , in which r is the effective scanning distance of the laser
sensor, d is the distance for compensation. The introduction
of compensation distance enables the local map to contain
the environmental map features that match the observed val-
ues as comprehensively as possible. Local associated areas
represent as follows:√

(xi − xr )2 + (yi − yr )2 < r + d . (5)

where: (xf ,−yf ) represents the position of the feature point,
and (xr ,−yr ) represents the position coordinates of the robot.
As shown in Fig. 1, the associated local area is a dotted circle
with r + d as the radius and the robot as the center. Dots
represent existing features in the map, and asterisks represent
newly observed observations by the sensor. The preprocess-
ing procedure is used to obtain the local association region,
so that the number of environmental map features involved
in mobile robot SLAM data association can be effectively
reduced at a single moment.

B. GAUSSIAN MIXTURE CLUSTERING
The observed value generally presents the obvious distribu-
tion while mobile robot travel in the environment. In arti-
cle [21], the k-means clustering algorithm are applied to
group the observed data. It is easy to lead to local optimization
while the overall observed data is large. And meanwhile,
when dealing with practical problems, the algorithm is sen-
sitive to noise and outliers. K-means is only applicable to
numerical type data. However, non-convex data and irregular
shape of the cluster cannot be solved effectively. The arti-
cle [22] then use density-based method system to solve this
problem. This method can not only find any shape of clus-
tering, but also process the data with noise more accurately.
The results obtained by density-based clustering method are
related to the fixed parameters used to identify clustering.
The algorithm will still be affected by the sparsity even with
the same standard. In other words, it will be divided into
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FIGURE 2. The clustering grouping diagram of data association.

multiple classes if the data is relatively sparse and merged
to one if relatively dense. In recent years, we have witnessed
several researches on clustering algorithm related to GMM,
such as [22]–[31]. The probability density function in the
Gaussian mixture model (GMM) plays a very important role
in simplifying the processing steps of data and allocating
accurate processing results to each Gaussian mixture. In the
process of parameter estimation, GMM applies the maximum
expectation (EM) algorithm, which improves the operation
efficiency of data analysis [32], [33]. Therefore, we adopt
Gaussian mixture clustering algorithm to group the observed
values. The clustering grouping diagram of data association
is shown in Fig. 2.

Firstly, the observed eigenvalue set Z = {Z1,Z2, · · · ,Zm}
and Gaussian mixture number k were taken as the input, and
then the Gaussian mixture distribution model was initialized.
The selection of k value in the Gaussian mixture model is
determined according to the environment. According to the
range of observed values scanned by the laser, the number of
groups is generally 3 to 5. The Gaussian mixture distribution
(GMM) considers that data is generated from several single
Gaussian distribution models (GSM), sigma is the variance
of the model. The probability density function is

Pr (zi) =
k∑
i=1

πkN (zi; ui, σi).. (6)

where πk is the weight factor, represents the probability of
choosing the ith mixed ingredient, and

∑k
i=1 πi = 1. Single

Gaussian distribution N (z;µ, σ) represents a cluster group-
ing in the Gaussian mixture distribution, as follows:

N(z; u, σ ) =
1

√
2π |σ |

· e

[
−

1
2 (z−u)

T σ−1(z−u)
]
. (7)

The Gaussian mixture component of the generated sam-
ple zj (j = 1, · · · ,m) is expressed as a random variable qj,
and the prior probability P

(
qj = i

)
of qj corresponds to

zj (j = 1, · · · ,m). According to Bayes theorem, the poste-
rior probability density function of sample zj (j = 1, · · · ,m)
generated according to the ith GMM is now expressed as
zj (j = 1, · · · ,m):

γji =
πi · p

(
zj
∣∣µi, σi)

k∑
l=1
πl · p

(
zj
∣∣µl, σl) . (8)

Gaussian mixture clustering divides the observation fea-
ture set Z into k components, denoted by Group =

{Group1, · · · ,Groupk}, and the component mark of each
observation sample is denoted by:

λj = argmax
i∈{1,··· ,k}

γji. (9)

Gaussian mixture model is a clustering algorithm with k
clustering centers. The calculation performance of Gaussian
function is relatively good. If the classification of the samples
in the system is unknown, it is possible to calculate (π, µ, σ )
given only the sample points. For a given observation data
set Z, the model parameters can be solved by maximum
likelihood estimation.

The number of data information points observed by the
laser sensor is m, and it obeys a certain distribution Pr (zi; λ).
The goal of the algorithm is to get the parameter λ so that
the probability

∏m
i=1 Pr (zi; l) of the generated data point

is maximize, where
∏m

i=1 Pr (zi; λ) is called the likelihood
function. In general, the probability value of a single data
point is relatively small, and the product of the probability
values of m data points is smaller. So floating point underflow
is very easy to occur. Therefore, the logarithm of likelihood
function is normally taken as

∑m
i=1 ln Pr (zi; λ) known as log-

likelihood function. The log-likelihood function of GMM is
as follows:

LL (Z ) =
m∑
j=1

ln

(
k∑
i=1

πi · p
(
zj
∣∣µi, σi)). (10)

Therefore, the maximum expected value algorithm can be
applied to solve the iterative optimization of the observation
data set model, and then the classification of observation data
samples can be distinguished according to the model that
has completed training. The specific steps are expressed as
follows: Firstly, select one randomly from the groups of k
clusters; Then, the observed data samples were substituted
into the cluster selected in the previous step, and whether the
data samples belonged to this categorywas determined. If not,
the cluster group was re-selected.

Expectation step: assuming that model parameters are
known, calculate the Expectation of implicit variables taking
q1, q2, · · · respectively, that is, the probability of Q Taking
q1, q2, · · · respectively. This step in the Gaussian mixture
model is to calculate the probability γji of the observed sam-
ple data points generated by each cluster group.

Maximization step: maximum likelihood method is con-
sidered to calculate model parameters. Take the γji obtained
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FIGURE 3. GEOJCBB algorithm flow chart.

by the Expectation operation step as the probability that the
observed value sample data point Zi is generated by grouping
the kth cluster. If LL (Z ) is maximized by (πi, µi, σi) , then
we can let ∂LL (Z ) /∂µi = 0 to get

µi =
1

m∑
j=1
γji

·

m∑
j=1

γjizj. (11)

The sample weight is the posterior probability of each
sample belonging to the component, and let ∂LL (Z ) /∂σi =
0 to get

σi =
1

m∑
j=1
γji

·

m∑
j=1

γji
(
zj − µi

) (
zj − µi

)T
. (12)

πi > 0 and,
∑k

i=1 πi = 1, maximize LL (Z ) and get

πi =
1
m
·

m∑
j=1

γji. (13)

According to (11) to (13) to update the model parameters,
and according to (9) to determine the component zj, divide
zj into the corresponding component, namely Groupλj =
Groupλj ∪

{
zj
}
, and finally get the division result of compo-

nent Group = {Group1, · · · ,Groupk}.
Every step of the mobile robot motion, through the GMM

algorithm about all of the observed value is divided into
several small correlation grouping. Then for each grouping
JCBB data correlation method is used to get local association
results. Each Group represented as explained in the tree layer.
And Select the best pairings from the explanation tree as the
final result. In this paper, the abbreviation of the proposed
algorithm is GEOJCBB. The algorithm description is shown
in Fig. 3.

FIGURE 4. Simulation environment.

C. OPTIMIZED METHOD
In practice, JCBB data association have false association
problem. One is that different observed features match the
same features on the map. The other is that JCBB accepts
an associative solution that is not optimal when there are
multiple associative solutions with the maximum matched
logarithm. In order to address the problem, we introduce
mutual exclusion rule and optimal criterion.

Mutual exclusion rule: a map feature is allowed to be
associated with only one observed value. This means that
after a map feature is matched, another observation will be
rejected if it is matched with the map feature again, and the
observation can only look for the unmatched map feature to
be correlated or treated as a new feature.

Optimal criterion: if the pairing number of multiple asso-
ciative solutions is equal to the maximum pairing number,
the associative solution with the minimum joint mahalanobis
distance is selected as the final associative result.

H = H k
|(D2

(Hk )
≤D2

(Hi)
), i = 1, . . . , n. (14)

where,n,H i,H k represents the maximum pairing number,
represents the ith associative solution and the optimal asso-
ciative solution.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
The simulation environment shown in Fig. 4 was designed
on the simulation experiment platform developed by
Neira et al. [34] to verify the improvement in association
performance of the GEOJCBB data association algorithm
proposed in this paper. The "∗" in the figure represents the
existing features in the environmental space, and the solid line
represents the theoretical planning path of the robot. In order
to verify the high efficiency and accuracy of the algorithm in
the association results in this paper, the positioning accuracy,
association time complexity and correlation performance
were respectively compared and analyzed with JCBB data
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FIGURE 5. Path fitting of four data association methods in simulation environment.

association algorithm, KJCBB data association algorithm and
GEMJCBB data association algorithm.

A. PATH FITTING RESULT
The data association and path fitting results of JCBB data
association algorithm, KJCBB data association algorithm,
GEMJCBB data association algorithm, and GEOJCBB data
association algorithm are shown in Fig. 5. In Fig. 5, a, b,
c, and d correspond to JCBB data association algorithm,
KJCBB data association algorithm, GEMJCBB data associ-
ation algorithm, and GEOJCBB data association algorithm
respectively. The solid green line is the actual path of the
robot. The blue ‘‘∗’’ indicates the actual features in the envi-
ronment. The red ‘‘+’’ is the predictive feature; and the black
line is the estimated path.

As is shown in Fig. 5, the estimated path fits the true path
well in the four algorithms and have no obvious difference
visually.

The error curves of pose estimation in Fig. 6 and Fig. 7
describe the X-axis and Y-axis errors of the actual path
and the estimated path in simulation environment. The
mean estimation errors of SLAM in X-axis direction based
on JCBB, KJCBB, GEMJCBB, and GEOJCBB algorithms
were respectively 0.5184, 0.4352, 0.3895, and 0.3029. The
mean estimation errors in the Y-axis direction were 0.6306,
0.5450, 0.3951, and 0.2389. Simulation results show that the
GEOJCBB based SLAMdata association algorithm proposed
in this paper provides more reliable association results, which
improves the estimation accuracy of the pose of SLAM com-
pared with the other three algorithms.

B. ASSOCIATION EFFICIENCY
In the simulation environment, the robot moves counterclock-
wise and uniformly from the initial state. TwentyMonte Carlo
simulation experiments were conducted for SLAM based on
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FIGURE 6. Path fitting error of x-axis.

FIGURE 7. Path fitting error of y-axis.

TABLE 1. Comparison of algorithm association time in simulation
environment.

four association algorithms. Table. 1 shows the average asso-
ciation time of four association algorithms in 20 simulation
experiments.

According to Table. 1, the average association time of
the GEOJCBB SLAM data association algorithm proposed
in this paper in simulation environment is 135.0218seconds.
The average association time of the algorithm in The analysis
of the simulation results shows that the average associa-
tion time of the algorithm proposed in this paper are both
less than the other three algorithms. Specifically, KJCBB,
GEMJCBB, and GEOJCBB all grouped observations, reduc-
ing the dimension of observation measurement in the joint
compatible calculation, thus reducing the complexity of cal-
culation. Meanwhile, GEOJCBB adopts Gaussian mixture

model to cluster and group the observed values. The prob-
ability density function in GMM can accurately distribute the
observed sample data to each mixed component and simplify
the data processing steps. At the same time, GMM referred
to the idea of EM algorithm when evaluating parameters,
which significantly improved the data analysis speed of the
algorithm. In addition, the GEOJCBB algorithm proposed in
this paper delimits the local association area in the data pre-
processing operation, reducing the number of environmental
features participating in the data association at the same time,
so as to further improve the efficiency of the algorithm.

C. ASSOCIATION PERFORMANCE
The four indexes to evaluate the performance of data asso-
ciation are: the accuracy of association (TP rate, TPR),
the accuracy of new road signs added to the map (TN rate,
TNR), the error rate of association (FP rate, FPR) and the
missing rate of association (FN rate, FNR). Where, TP, TN,
FP and FN are defined as follows: TP: true positive, means
the correct measurement-characteristic matching logarithm
detected.TN: true negative, which represents the unmatched
logarithm of the correct rejection, namely the number of new
environment features detected. FP: false positive, indicat-
ing the measurement of detected errors-logarithm of feature
matching. FN: false negativemeans the correct measurement-
characteristic matching logarithm that was not detected.

The number of observations at the current moment is Total:

Total = TP+ TN + FP+ FN . (15)

Precision is the percentage of the samples with positive
prediction. It is calculated as follows:

Precision =
TP

TP+ FP
. (16)

Recall, True Positive Rate (TPR), represent the Positive
sample Rate in the judgment pair samples, that is, the propor-
tion of the detected correct observation-feature matching log-
arithm in the total observation-feature matching logarithm,
and the calculation formula is as follows:

Recall =
TP

TP+ FN
. (17)

In order to make a more comprehensive and scientific eval-
uation algorithm, the most common method is F-measure.
F-measure is the weighted harmonic average of Precision and
Recall:

F =

(
α2 + 1

)
∗ Precision ∗ Recall

Precision+ Recall
. (18)

In (19), α equals 1. Therefore, the F-measure in this
paper is:

F =
2 ∗ Precision ∗ Recall
Precision+ Recall

. (19)

Fig. 8 shows the data association performance of JCBB,
KJCBB, GEMJCBB, and GEOJCBB algorithms in simula-
tion environment.
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FIGURE 8. Data association performance.

TABLE 2. Comparison of algorithm F-measure in simulation environment.

Table. 2 shows the average F-measure of four association
algorithms. As shown in Table. 2, the F-measure of the pro-
posed algorithm in the simulation environment is improved
compared with the other three algorithms.

V. CONCLUSION
Data association is the foundation of state estimation in
mobile robot SLAM JCBB algorithm is currently a com-
mon SLAM data association algorithm that can be obtain
reliable results. But in a wide range of dense environment,
the number of map environment features and observed values
participating in the association increases rapidly with time,
leading to the increase of computation amount of the JCBB
algorithm. In practical application, a good data association
algorithm should not only have high accuracy, but also the
characteristics of superior real-time performance and low
computational complexity. This paper presents a SLAM data
association algorithm based on Gaussian mixture clustering.
The algorithm can be improved by reducing the number of
observations and map features participating in the association
at the same time. Firstly, the local association strategy is
adopted to limit data association in local region, so as to
reduce the number of features involved in data association
at the current moment. Secondly, the Gaussian mixture clus-
tering algorithm is used in local areas to group the observed
values at the current moment, so as to get several groups that

have little correlation with each other. Finally, JCBB data
association algorithm is used in each group for data associa-
tion, and the optimal solution is obtained according to mutual
exclusion criteria and optimal criteria. Experimental results
show that the proposed JCBB algorithm based on Gaussian
mixture clustering optimization can obtain accurate asso-
ciation results, reduce computational complexity, improve
algorithm efficiency, and provide a reliable guarantee for
localization of mobile robot SLAM.However, the experiment
was realized in simulation environment. In the future, we will
implement the experiment in the real word.
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