
Received December 8, 2019, accepted December 20, 2019, date of publication December 25, 2019, date of current version January 6, 2020.

Digital Object Identifier 10.1109/ACCESS.2019.2962198

Semi-Supervised Malware Clustering Based
on the Weight of Bytecode and API
YONG FANG , WENJIE ZHANG , BEIBEI LI , FAN JING , AND LEI ZHANG
College of Cybersecurity, Sichuan University, Chengdu 610065, China

Corresponding author: Lei Zhang (zhanglei2018@scu.edu.cn)

This work was supported by the National Key Technology Research and Development Program of China under Grant 2017YFB0802900.

ABSTRACT With the rapid advances of anti-virus and anti-tracking technologies, three aspects in malware
clustering need to be improved for effective clustering, i.e., the robustness of features, the accuracy of
similarity measurements, and the effectiveness of clustering algorithms. In this paper, we propose a novel
malware family clustering approach based on dynamic and static features with their weights. In this approach,
we employ a new similarity measurement method based on EMD to improve the accuracy of feature
similarities. In addition, to reduce convergence time and improve clustering purity, we design a novel
semi-supervised clustering algorithm, termed as S-DBSCAN by involving supervision information into the
original algorithm known as Density-Based Spatial Clustering of Applications with Noise (DBSCAN). The
experimental results demonstrate that the proposed approach can correctly and accurately distinguish the
samples among various families and achieve outperformed purity with 98.7%.

INDEX TERMS EMD, hybrid features, semi-supervised clustering, weight.

I. INTRODUCTION
An increasingly important problem of malware analysis is
the large number of new malware samples. This number
has exponentially increased throughout the years. According
to the 2019 Symantec Network Security Threat Report [1],
there were over 624 million new malware variants produced
in 2019, an average of 673,000 each day. New malware vari-
ants are emerging at a rate that far exceeds the capability of
manual analysis. An efficient way to cluster new variants is to
clustermalware samples automatically and assign them labels
according to their similarity. Then, malware researchers can
pay more attention to new unknown malware instances.

Three main aspects need to be improved in malware clus-
tering research. These three aspects are feature selection, sim-
ilarity measurements, and clustering algorithms. For feature
selection, some research performedmalware clustering based
on static analysis for fast malware clustering [2]–[9]. Static
analysis is simple and fast, but it can be easily evaded if
malware is packed or obfuscated. Hence, more researchers
focused on the clustering approaches based on dynamic anal-
ysis [10]–[13]. These approaches are less vulnerable to muta-
tion schemes, such as run-time packers or binary obfuscation.
However, approaches based on dynamic features also suffer

The associate editor coordinating the review of this manuscript and

approving it for publication was Mohamed Elhoseny .

from several limitations. First, these approaches only cover
part of the behaviors of the samples. Second, malware often
includes triggers and performs malicious behaviors when
certain conditions are met. Third, some malware has the
functions of anti-sandbox and anti-virtual machines, which
evades the dynamic analysis. For the similarity measure-
ment, most similarity measurements are based on traditional
methods, such as Euclidean distance [4], [14], [15], edit
distance [16], cosine similarity [17]. However, these simi-
larity measurements are not accurate as before and cannot
handle similarities between features in different dimensions.
Therefore, it is necessary to try new similarity measurement
methods, with excellent performance in other fields for clus-
tering. For the clustering algorithm, there are many clustering
algorithms applied for malware detection, such as hierar-
chical clustering algorithms [10], [11], density-based clus-
tering algorithms [5], [18], and prototype-based clustering
algorithms [4], [19]. However, these hierarchical clustering
algorithms are sensitive to noise and outliers, and they cannot
handle clusters of different sizes and convex shaped clusters,
either. These situations are common in malware clustering.
These Prototype-based clustering algorithms need to specify
the number of clusters artificially that is unknown in practical
malware clustering conditions. These Density-based cluster-
ing algorithms do not apply to the case of uneven sample
density and a large difference in clustering spacing.

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 2313

https://orcid.org/0000-0003-0708-1686
https://orcid.org/0000-0002-4033-0253
https://orcid.org/0000-0002-0485-1975
https://orcid.org/0000-0001-9133-1742
https://orcid.org/0000-0001-8074-906X
https://orcid.org/0000-0001-6347-8368

Y. Fang et al.: Semi-Supervised Malware Clustering Based on the Weight of Bytecode and API

In this paper, we propose a semi-supervised clustering
approach based on the hybrid features to further increase the
purity and efficiency of clustering. The main contributions of
this paper are as follows:

Feature selection: We propose a novel feature expression
method that includes hybrid features and their weights. Com-
bining the advantages of dynamic and static features with
their weights can obtain more complete behaviors of a sample
by complementing the drawbacks of each single category of
feature.

Similarity measurement: We propose a new similarity
measurement based on EMD for malware similarity calcu-
lation. This approach employs dynamic programming to cal-
culate the minimal distance of the features, which is more
accurate than traditional methods. Besides, the similarity
between different dimensional features can be calculated by
the proposed similarity measurement.

Clustering algorithm:We propose a new semi-supervised
clustering algorithm based on the unsupervised DBSCAN
algorithm by involving a small amount of supervised infor-
mation. The proposed clustering algorithm significantly
improves the efficiency of the clustering process.

The proposed approach is improved in three aspects. In fea-
ture selection, different from the traditional single static
features or dynamic features [20], [21], we combine static
features with dynamic features and involve weight to further
enhance the robustness. In similarity measurement, we pro-
pose a new method for the similarity calculation of malware
features which can calculate the similarity of features of dif-
ferent dimensions. Compared with the traditional similarity
measurements such as Euclidean distance [15], the proposed
method obtains more accurate results. In clustering algo-
rithm, we propose a new semi-supervised clustering algo-
rithm based on DBSCAN algorithm, which outperforms the
DBSCAN algorithm’s poor effect on sparse datasets and
reduces the convergence time. Improvements in these three
areas are reflected in the final clustering results, achieving
purity of 0.987.

The organization of the remaining paper is as follows:
Section II discusses the related work of our proposed
approach. Section III presents the architecture of the proposed
clustering process and describes the overview and details
of our method. Section IV shows the experimental results
and Section V gives our conclusion and outlines the future
research directions.

II. RELATED WORK AND BACKGROUND
A. MALWARE CLUSTERING APPROACHES BASED ON
STATIC ANALYSIS
The specific signature of each malware is used to
perform static analysis, such as disassembling Opcode
sequences [4]–[7], control flow graphs [8], function call
graphs [2], PE headers [9] and API calls [22]. These features
are extracted by static analysis tools, such as Interactive
Disassembler Professional (IDA Pro [23]), PE Explorer [24].
The advantages of static analysis are high code coverage

rate and the relatively high speed in extracting features.
There is a lot of work based on static methods for malware
clustering. In [6], C. Wang et al. proposed a method to extract
Opcode sequence features by comparing the characteristics of
different malware families, which mitigates the inaccuracy
and instability caused by comparing malware with normal
software. They used a fast density clustering algorithm to
conduct malware family clustering. Awad and Sayre et al. [8]
proposed a malware family clustering algorithm based on
control flow graphs. The control flow graphs are represented
by the strings and the edit distance is used to measure the
similarity of the strings. The QT clustering algorithm is used
for clustering. N. Singh et al. [25] proposed a clustering
approach, called ByteFreq that can cluster numerous samples
using the byte frequency. The Byte frequency is represented
as time series and SAX (Symbolic Aggregation approXi-
mation) is used to convert the time series in symbolic rep-
resentation. Ahmadi et al. [20] extracted multi-dimensional
features from the hexadecimal bytecode and disassembly
opcode based on Microsoft Kaggle dataset [26] and then
fused the features to classify malware.

The methods above extract features from different levels
of PE file, such as Bytecode, disassembly sequence, opcode,
and call graph. These methods perform well in different sce-
narios. However, these methods based on static analysis are
easily evaded by encryption, polymorphism and code obfus-
cation. While the methods based on dynamic analysis are
less vulnerable by these mutation schemes. Therefore, static
analysis and dynamic analysis are combined in the proposed
semi-supervised framework. Moreover, Bytecode is selected
as a static feature, and weight information is involved as
supplementary because Bytecode reflects the characteristics
of malware from a lower level.

B. MALWARE CLUSTERING APPROACHES BASED ON
DYNAMIC ANALYSIS
Dynamic analysis has the advantage of generating accurate
analysis results regardless of the level of anti-static analysis
techniques used in the malware, such as code obfuscation,
encryption. Thus, dynamic features have been applied to
malware clustering in some existing work [10], [11], [21],
[27], [28]. Perdisci et al. [11] presented a new scalable sys-
tem for network-level behavioral clustering of HTTP-based
malware that aims to efficiently group newly collected mal-
ware samples into malware family clusters. Cheng et al. [28]
proposed a novel malware detection approach based on the
family graph. They generated the dependency graph based
on the dependency relationship of API calls. At last, they
constructed the family dependency graph via clustering the
graphs of a known malware family. In [27], a dynamic
behavior analysis system is proposed based on three levels
of API calls. The sequences of API calls are dealt with as
text-like terms and terms are constructed with N-grams for
the clustering process. Shamsi et al. [10] proposed a hierar-
chical clustering algorithm based on the API call sequences.
By comparing the accuracy of Optimal Matching (OM),

2314 VOLUME 8, 2020

Y. Fang et al.: Semi-Supervised Malware Clustering Based on the Weight of Bytecode and API

the Longest Common Subsequence (LCS), and Long Com-
mon Prefix (LCP) [29], [30] for calculating the distance of
sequences, the LCP is chosen as the sequence comparison
algorithm for hierarchical clustering. A similar approach
has also been proposed in [21]. The difference is that they
combined the hierarchical algorithm with the density-based
algorithm for fast clustering.

A critical limitation of dynamic analysis is that only a
single execution path is examined. Another shortcoming is
that dynamic analysis is less effective to malware which
performsmalicious behavior when certain conditions aremet.
However, static analysis can obtain more complete sample
behaviors. In this paper, static features are combined to com-
pensate for the deficiency of dynamic analysis. Moreover,
the above methods based on API calls only consider whether
the API appears, while the weight of the API, which is
important to malware family clustering, is not considered.
Hence, we supplement each API feature with its weight. The
weight reflects the different importance of distinct families,
thus these API features with weights can better represent the
behaviors of malware.

C. FEATURE SELECTION AND SIMILARITY MEASUREMENT
The original feature vectors are usually of high dimensions
with some useless features, increasing in time cost and
decreasing in accuracy [31]–[35]. Therefore, it is necessary to
perform certain dimensionality reduction on features. In [31],
the performance of machine learning algorithms with and
without feature selection by Information Gain is evaluated.
The results show that the machine learning algorithms with
feature selection perform better. An efficient bi-gram extrac-
tion technique was proposed in [32], then an enhanced fea-
ture selection based on a genetic algorithm is used. In text
document clustering field, many feature selection methods
have already been proposed to optimize the feature selection
[33]–[35]. In deep learning, there are similar methods [28],
[36], such as using attention mechanism to weight features
to obtain better results. Therefore, feature selection is also an
important part of malware analysis. In malware classification
and clustering research, Information Gain is a relatively com-
mon method to reduce the dimension of features.

After feature selection, the next step is to calculate the
similarity for the features. There are many traditional similar-
ity measurements, such as Euclidean distance [4], [14], [15],
and edit distance [16]. In recent deep learning studies, some
new methods have emerged, such as Siamese Network or its
variants [37]–[39]. The SiameseNetwork feeds the two inputs
into the two neural networks. After mapping the inputs into
the new space respectively, the representations of the inputs
are formed in the new space. The similarity of two inputs
is evaluated through the calculation of Loss. EMD [40] is
also a similarity metric for two distributions. It is a dynamic
programming distance which can be used to calculate the
minimum cost (distance) for transforming one distribution
into another distribution. Therefore, this paper regards the
features as a distribution and then uses EMD to calculate

similarity for different distributions in this paper. To the best
of our knowledge, there is no related work that EMD is used
for malware detection.

D. MACHINE LEARNING IN CLUSTERING
Machine learning algorithms are widely used in cluster-
ing [6], [8], [14], [15], [41]–[47]. Shen et al. [41] pro-
posed a real-time image superpixel segmentation method
by using the density-based spatial clustering of applica-
tion with noise (DBSCAN) algorithm. Wang et al. [6] pro-
posed a density-based fast clustering algorithm that automat-
ically identified variants of malware from known families.
F. A. Shamsi et al. [10] proposed an unsupervised learn-
ing (clustering) framework to complement the supervised
learning approach. Y. N. Zhang et al. [14] proposed a novel
scalable malware analysis framework to leverage the comple-
mentary nature of different features and algorithms for further
improving the analysis result. Pitolli et al. [15] used the
BIRCH clustering algorithm for clustering with the dynamic
and static features extracted by the Cuckoo Sandbox [48] and
then evaluated the ground truths of the sample labels by two
different approaches.

These current clustering algorithms applied in malware
clustering are mostly supervised learning algorithms, such
as hierarchical clustering algorithms and density clustering
algorithms. Different from the above algorithms, this paper
adopts a semi-supervised clustering algorithm for malware
family clustering. We consider the hierarchical clustering
algorithms are sensitive to noise and outliers. Moreover,
these algorithms can’t handle different-sized clusters and
convex shaped clusters which are common in malware clus-
tering. Thus we design our clustering algorithm based on
density-based clustering algorithm (DBSCAN). By involving
supervision into the origin DBSCAN algorithm and Opti-
mizing the process of data query, the proposed clustering
algorithm obtains better clustering results and reduces the
time cost.

III. THE PROPOSED APPROACH
The clustering approach proposed in this paper comprises
four parts, including preparation, feature extraction, similar-
ity measurement, and S-DBSCAN algorithm. The prepara-
tion includes the collection of datasets and the construction
of the analysis environment. Then, the process of the feature
extraction comprises two parts including the static feature
extraction and dynamic feature extraction. The static features
consist of the Bytecodes and their weights. The dynamic
features comprise API calls and their weights. The similar-
ity measurement metric chosen is EMD, which calculates
the distance of feature distributions. Based on the average
EMD of static feature vectors and dynamic feature vectors,
the similarity matrix is obtained by calculating the EMD of
the hybrid features with different ratios of static features and
dynamic features. Finally, based on our similarity matrix and
a little supervision information, we perform semi-supervised
clustering by S-DBSCAN algorithm for 1124 samples from

VOLUME 8, 2020 2315

Y. Fang et al.: Semi-Supervised Malware Clustering Based on the Weight of Bytecode and API

FIGURE 1. Malware family clustering framework.

9 families. The process of our clustering approach is shown
in Fig. 1.

A. PREPARATION
Many studies [49], [50] perform malware analysis based
on the datasets collected from VirusShare. The dataset used
in this paper follows these previous work. Since Cuckoo
Sandbox supports only parts of formats, the samples with
unsupported formats are removed. For evaluating the effect
of our approach, the ground truths of the whole samples are
required. Then AVClass [51] is leveraged to generate a family
label for each sample and some families that contain only a
few samples are removed. The detailed dataset information is
described in section IV. The analysis environment is based
on Cuckoo Sandbox. Cuckoo Sandbox is an open-source
malware behavior analysis system. To capture the complete
behaviors as far as possible, the frequently detected properties
for the existing Cuckoo Sandbox are modified.

B. FEATURE EXTRACTION
The detailed feature extraction process is shown in Fig. 2.
This process comprises API feature extraction and Byte-
code feature extraction. During feature extraction, we not
only obtain these origin features, but also consider their
weights. The feature signature and the weight histogram are
constructed with these features and their weights. Then the
features are pruned according to the Information Gain by
removing those useless features. After that, we calculate the
corresponding EMD matrix for each signature and form the
final hybrid EMD matrix according to different proportions.
The details are in the following sections.

Algorithm 1 Bytecode Extraction Algorithm
Input:

A binary sample A;
Output:

Bytecode signature P=(p1,w1),(p2,w2). . . (pn,wn)
1: Reading the binary file in hexadecimal format A ⇒
Bytecode;

2: for each i ∈ [0, 255] do
3: numi = 0
4: for j = 0;j < len(Bytecode);j++ do
5: if Bytecode[j] = i then
6: numi = numi + 1
7: end if
8: wi = numi/len(Bytecode)
9: pi = i

10: tuplei = (pi,wi)
11: P.append(tuplei)
12: end for
13: end for
14: return P;

1) BYTECODE FEATURE EXTRACTION
The binary Bytecode features are static features extracted
from a binary file, which contain abundant information of the
sample. Binary Bytecodes appear differently in each family.
Thus, it is an excellent choice for grouping samples to differ-
ent family clusters with Bytecode. The variants of malware
sample generally change only some parameters, such as the
C&C server address, some instructions added or deleted,
instruction confusion and rearrangement. Such masquerad-
ing, confusing techniques or changes in the settings tend
to change a little in the Bytecode. Nataraj also proved that
in [52]. Thus, Bytecodes and their weights are chosen as
features to represent the binary samples. The corresponding
feature extraction algorithm is summarized in Algorithm 1.

The input of the algorithm is a binary file, the output of
the algorithm is its Bytecode feature signature. The value
of Bytecode ranges from 0 to 255 and its weight ranges
from 0 to 1. A Bytecode array is generated by reading the
binary file in the hexadecimal format (Line 1). We iterate
over each Bytecode of the array and count the number of
occurrence of each Bytecode (Line 2 to Line 13). Then the
weight of this Bytecode is obtained through dividing the
number by the total number of Bytecodes. Finally, Bytecode’s
value and weight make up a two-tuple group (pi,wi). Each
feature is represented by a two-tuple group (pi,wi), pi rep-
resents a Bytecode’s value, wi represents its weight. Finally,
a feature signature is generated to represent the whole file
P = {(p1,w1), (p2,w2) . . . (pn,wn)}.

2) API FEATURE EXTRACTION
API is the interface between the application and the system.
The malware implements diverse functions and operations by
calling different API calls. As shown in Fig. 3, if a sample per-
forms file operations, the APIs related to file operations will

2316 VOLUME 8, 2020

Y. Fang et al.: Semi-Supervised Malware Clustering Based on the Weight of Bytecode and API

FIGURE 2. Feature extraction process.

FIGURE 3. Behavior corresponding to the API.

be called, such as CreateFile, ReadFile, WriteFile, etc. Then
if it performs registry operations, the APIs related to registry
operations will be called, such as RegOpenKey, RegCre-
ateKey, RegDeleteKey, etc. Thus, many malware researchers
do their study based on API calls [10], [21], [27].

Based on the considerations above, API calls are used to
represent the dynamic behaviors of malware. Although the
API calls are able to obtain through static analysis [53], static
analysis is vulnerable to the effects of many factors, such
as Packing, and encryption. These factors will lead that the
complete API calls cannot be obtained. Therefore, dynamic
analysis is used to obtain the API calls of the samples. The
extraction algorithm is described in Algorithm 2.

The input of Algorithm 2 is the sample dataset, the output
of the algorithm is the feature signature of all samples.

All the API sequences of all samples are captured by
executing them in an improved Cuckoo Sandbox environ-
ment, then all the API sequences S = {s1, s2, s3 . . . sn}
appeared are numbered for further calculation. We describe
our method of obtaining the API sequences for each sample
and then calculate the total number of all API sequences
that have appeared (Line 1 to Line 2). Each API of the
dataset is iterated and the number of occurrence of each
API is counted (Line 3 to Line 18). The weight of API is
calculated through dividing the number by the total number
of all the API appeared and a two-tuple group(xi,wi) is
formed by the API and its weight. Finally, we construct a
feature signature X = {(x1,w1), (x2,w2) . . . (xn,wn)} made
of tuples(xi,wi) for each sample and then a feature signature
sets P = (X1,X2,X3 . . .Xn) of all the samples are produced.

Algorithm 2 API Extraction Algorithm
Input:

Dataset D;
Output:

The feature vector of all samples
P = (X1,X2,X3 . . . ,Xn), and Xi =

(x1,w1), (x2,w2), (x3,w3), . . . , (xn,wn)
1: Running all the samples in Cuckoo and obtain the API

sequence for each sample Si
2: Calculating the total number T of all API sequences that

have appeared
3: for m = 0;m < len(D);m++ do
4: Sm = (s1, s2, . . . sn))
5: for i = 0;i < T ;i++ do
6: numi = 0
7: for j = 0;j < len(Sm);j++ do
8: if Sm[j] = si then
9: numi = numi + 1

10: end if
11: end for
12: wi = numi/len(Sm)
13: xi = si
14: tuplei = (xi,wi)
15: Xm.append(tuplei)
16: end for
17: P.append(Xm)
18: end for
19: return P;

3) FEATURE SELECTION AND FUSION
In this paper, we employ the Information Gain algorithm for
feature selection. After feature selection, to better combine
dynamic with static features and balance the influence of
both features, dynamic features and static features are not
mixed directly. We calculate the average EMD of dynamic
features and static features based on statistical analysis and
then calculate the respective proportions based on the average
EMD values. The ratio of different features in hybrid features
is calculated in Eqs. (1).

ratio(x) =

∑n
i=1 EMD(yi)/n∑m

j=1 EMD(xj)/m+
∑n

i=1 EMD(yi)/n
(1)

VOLUME 8, 2020 2317

Y. Fang et al.: Semi-Supervised Malware Clustering Based on the Weight of Bytecode and API

EMD is a method for similarity calculation. The detailed
introduction is in the following section. In the Eqs. (1), m and
n are the numbers of the static and dynamic features, xi and
yi represent static feature and dynamic feature, respectively.

C. SIMILARITY MEASUREMENT
EMD is the same as the Euclidean distance. It is also a
definition of a distance metric. EMD is defined as follows.

There are two signatures P and Q, which are composed of
M and N signatures, respectively. The detailed expressions
are shown in Eqs. (2) and (3):

P = (p1,wp1), (p2,wp2) . . . (pM ,wpM). (2)

Q = (q1,wq1), (q2,wq2) . . . (qN ,wqN). (3)

pi is a feature of a sample, such as the bin value of a histogram.
wpi is the weight of pi, such as the height of the bin of a
histogram. qj is another feature of the sample, wqj is the
weight of qj. |dij| is the distance matrix of M*N, each term
represents the distance between pi and qj. Then we wish to
find a flow matrix |fij|, each term is the amount of flow from
pi to qj. Finally, the minimal cost function of two signatures
is as Eqs. (4):

WORK (P,W ,F) =
M∑
i=1

N∑
j=1

dijfij. (4)

This flow is the solution of linear programming and EMD
is the renormalized expression of the cost function, which
is divided by the sum of fij. The expression of EMD is as
Eqs. (5).

EMD(P,Q) =
M∑
i=1

N∑
j=1

dijfij/
M∑
i=1

N∑
j=1

fij. (5)

For malware detection, the samples from the same family
always exhibit similarity which is characterized by Byte-
codes and API calls at a lower level. The difference between
the importance of the same family and distinct family is
expressed as the differentiation in weight. The EMD is the
distance between the two distributions, which is calculated by
considering the feature and its weight. As a result, it is very
suitable for themalware family clustering. As shown in Fig. 4,
A, B, C, D, and E represent the features of the samples. It is
a statistical rule of a certain feature of the samples of normal
and family A and family B. For different families and normal
samples, the unique behavior of the families will lead to a
particularly high weight of the corresponding features, which
will cause a very high EMD between different families.

D. S-DBSCAN ALGORITHM
Now, we introduce the proposed semi-supervised clustering
algorithms (S-DBSACN) in this section. Prototype-based
clustering algorithms need to specify the number of clus-
ters artificially, which is unknown in practical conditions.
Hierarchical-based clustering algorithms are not suitable for

FIGURE 4. Similarity comparison.

large-scale clustering for their high computational complex-
ity. Density-based clustering algorithms need not specify the
numbers of clusters and are not sensitive to noise, which
is suitable for native data clusters. Thus, we choose the
density-based clustering algorithm for malware clustering
analysis. DBSCAN algorithm is a typical density-based clus-
tering algorithm, which is widely used in the field of malware
clustering [18], [21]. However, the original DBSCAN [54]
algorithm applied in malware clustering still needs to be
improved in some aspects. On the one hand, the sparse classes
will be divided into multiple classes when the sparseness
of data is different because of the fixed parameters. These
clusters, which are denser and closer, will be merged into
one. As a result, the clustering effect is not acceptable. On the
other hand, when the dataset is large, the time cost of cluster-
ing would be high. In this paper, the original density-based
algorithm DBSCAN is improved. First, KD-Tree [55] is
used for splitting k-dimensional data space for reducing the
time cost. Then, according to the density-reachable prin-
ciple, some initial clusters are formed. After that, the ini-
tial clusters belonging to the same families are merged
according to the family labels. Finally, the final clusters are
merged again based on the nearest principle in a bottom-up
manner.
Definition 1 (The nearest cluster of a cluster): For clus-

ter A and B, xi is the core point or only point of the cluster A.
If there exists a core point xj ∈ B and xi is in the neighborhood
of xj, at the same time, their similarity is the largest, then we
regard that the nearest cluster of cluster A is existing, and it
is cluster B.

Now, we introduce the S-DBSCAN algorithm in detail.
The specific pseudo code of the algorithm is as Algorithm 3.

The algorithm comprises three parts. The first part com-
prises splitting the dataset through the KD-Tree and obtaining
the initial clusters according to the density-reachable concept.
In the second part, the initial clusters are merged into the cor-
responding knownmalware family clusters according to these
samples with family labels. In the third part, the remaining
clusters are merged into known family clusters or grouped
into new unknown malware family clusters.

2318 VOLUME 8, 2020

Y. Fang et al.: Semi-Supervised Malware Clustering Based on the Weight of Bytecode and API

FIGURE 5. S-DBSCAN clustering algorithm schematic diagram.

The inputs of the algorithm include the dataset, labeled
samples S, Eps and Minpts. The Eps is the neighborhood
radius, and the Minpts is the density threshold. The output
of the algorithm is the family clusters C.

Algorithm 3 first initializes some temporary variables T, K
and C. T is the core points set, k is the number of clusters
and C is the clusters set. The KD-Tree is used for splitting
k-dimensional data space (Line 1). Algorithm 3 calculates
all the core points based on the definition of the concept
of the core object that if the number of sample points in
a given object’s neighborhood is over or equal to MinPts,
the object is regarded as the core object (Line 2 to Line 6).
The detailed process that groups the samples into the initial
clusters according to the principle of density-reachable is
introduced (Line 7 to Line 25). As shown in Fig. 5(a), Red
and green points represent the different samples with different
family classes. As shown in Fig. 5(b), an initial cluster set C
is obtained.

The initial clusters are merged into the corresponding
known malware family clusters according to these samples
with family labels (Line 26 to Line 35). For each sample
with the family label, if the sample has not been merged
into a known family cluster, the initial clusters with the
sample are merged into the known malware family clusters.
As shown in Fig. 5(c), clusters with the red and green points
represent the clusters of known family. For the remaining
initial clusters, we search the nearest clusters of each ini-
tial cluster iteratively, and then merge the initial clusters
into the nearest cluster according to the nearest principle
(Line 36 to Line 40). Until the number of clusters does not
change, the iterative process finishes. As shown in Fig. 5(d),
the remaining initial clusters are merged into known fam-
ily clusters or grouped into new unknown malware family
clusters.

After the clustering process is completed, the evaluation of
clustering results is also very important. In this paper, we use
the Adjusted Rand Index (ARI) and Purity as the evaluation
indicator, the detailed description is in Section IV.

IV. EXPERIMENTAL ANALYSIS
A. EXPERIMENT ENVIRONMENT
The configurations of all the experiments in this paper are
shown in Table 1. Cuckoo Sandbox is an open-source soft-
ware for automatic analysis of suspicious files. This software
makes use of custom components that monitor the behaviors

TABLE 1. Host and guest environment configuration.

FIGURE 6. Experiment environment.

of malicious processes while running in an isolated envi-
ronment. Considering that some samples have the function
to escape virtual machines and disguise as normal software,
the physicalmachine is chosen as the guest to run the samples.
To make sure that the physical machine can return to a
clean state after a sample has been analyzed, a re-imaging
platform called Clonezilla [56] is used to accomplish this
work. To simulate a normal network environment, InetSim
is used to provide a network environment for the sample. The
experimental environment is shown in Fig. 6.

B. EXPERIMENT DATA
Since Bytecode is selected as feature in this paper, there
are no specific requirements for the platform and program-
ming languages of the samples. However, the API calls are
extracted by Cuckoo Sandbox and the operating system of the
guest machine is Windows. Thus, the specific file formats are
chosen, such as PE files, MS-Office files, ZIP archives, and
PDF files. To evaluate the clustering results of our work and
other work, the ground truth of the families of the samples is
needed.

To create a reference dataset with the ground truth of the
families, the following approach is taken: First, we obtain
a set of 10,600 malware samples that are downloaded from
VirusShare [57] which provides malware samples, malware
event libraries, analysis and virus samples. Second, each

VOLUME 8, 2020 2319

Y. Fang et al.: Semi-Supervised Malware Clustering Based on the Weight of Bytecode and API

Algorithm 3 Semi-Supervised Clustering Algorithm
S-DBSACN
Input:

Dataset D = x1, x2 . . . xn,labeled samples S =

{s1, s2, . . . sm},Eps,Minpts
Output:

Family clusters C = C1,C2 . . .Ck
1: Initializing T = ∅, k = 0,C,P = BuildKDTree(D)
2: for i = 1;i < n;i++ do
3: if Neps(xi) > Minpts then
4: T = T ∪ xi
5: end if
6: end for
7: for j = 0;j < len(T);j++ do
8: Pold = P
9: Tc = ∅

10: Tc = Tc ∪ xj
11: while len(Tc)>0 do
12: q ∈ Tc
13: if Neps(q) > Minpts then
14: Q = {x|dist(q, x) < Eps}
15: S = P ∩ Q
16: Tc = Tc ∪ S
17: P = P− S
18: Tc = Tc − xj
19: end if
20: end while
21: k = k + 1
22: Ck = Pold − P
23: T = T − (Ck ∩ T)
24: C = C ∪ Ck
25: end for
26: for m = 0;m < k;m++ do
27: Famm = ∅
28: for i = 0;i < len(S);i++ do
29: x ∈ S
30: if x /∈ Famm then
31: L = {Cb|x ∈ CB,CB ∈ C,B = 1, 2, 3 . . . k}
32: Famm = Famm ∪ L
33: end if
34: end for
35: end for
36: while len(c) not range do
37: for i = 0; i < len(c); i++ do
38: Cj = Ci, which is nearest.
39: Cj = Ci ∪ Cj
40: end for
41: end while
42: return C ;

sample is scanned by 67 different anti-virus programs in
VirusTotal [58]. After downloading the reports of these sam-
ples from VirusTotal, the AVClass tool is used to generate
family labels for samples. We select only those samples for
which the majority of the anti-virus programs reported the

TABLE 2. Data information.

same family and remove the families with very few sam-
ples. This results in a total of 1124 samples from 9 families
for experiments. The number of samples of each family is
inconsistent for simulating the uneven distribution in real
conditions. The detailed information of samples is shown
in Table 2.

C. EVALUATION INDICATOR
In this paper, the Adjusted Rand Index (ARI) and Purity are
selected as evaluation indicators to evaluate the clustering
results.

ARI measures the agreements between the clustering and
the partition by class labels. It is defined as the number of
pairs of objects which are both placed in the same cluster
and the same class, or both in different clusters and differ-
ent classes, divided by the total number of objects. ARI is
set between [-1,1], and the higher the ARI, the more the
resemblance between the clustering results and the labels.
The detailed definition of ARI is as follows.

K is the clustering result, C is the actual classes, a is the
pairs of the same class in both C and K, b is the pairs of the
different classes in both C and k. Then Rand Index is defined
as Equation 5.

RI =
a+ b
Cn
2

(6)

The Cn
2 represents the total pairs that can be formed with

the dataset. The range of RI is from 0 to 1. The larger the
value, the more consistent with the real situation. However,
for the random conditions, it is not guaranteed that RI is close
to 0. The ARI is presented as Equation 6 for guaranteeing
that the indicator will be close to 0 in random clustering
results. The range of ARI is from -1 to 1. The larger the value,
the more consistent with the real situation.

ARI =
RI − E(RI)

max(RI)− E(RI)
(7)

Purity is a simple cluster evaluation method, which only
needs to calculate the proportion of the correct number of
clusters in the total number. Purity reflects the extent to which
clusters contain only members of the same class.

Purity(W ,C) =
1
N

k∑
i=1

maxj|ωi ∩ cj| (8)

2320 VOLUME 8, 2020

Y. Fang et al.: Semi-Supervised Malware Clustering Based on the Weight of Bytecode and API

TABLE 3. Comparison of average EMD for API and bytecode.

FIGURE 7. Comparison of different features and similarity measurements.

In Equation 8, � = {ωi, ω2 . . . ωk} is the cluster sets. ωk
represents the kth cluster set. C = {c1, c2 . . . cj} is the sample
sets and cj represents the jth sample. N represents the total
number of the samples.

D. RESULT ANALYSIS
1) FEATURE SIMILARITY ANALYSIS
First, to show the effectiveness of our proposed similarity
measurement method, we perform an average similarity anal-
ysis of the same family and different families. As shown
in Table 3 and Fig. 7, regardless of the use of the API or
Bytecode, the average EMD of the same family is close to
0. This indicates the large similarity of the same family.
The average EMD of different families is almost over 10,
which shows that there are significant differences between
different families. As a result, EMD can be used to distinguish
the samples of the same family and different families. For
some families, when the Bytecode is chosen as the feature,
the difference between the average EMD of different families
and the same family is more significant.

Now, we compare the difference between EMD and
Euclidean distance in measuring feature similarity. As shown
in Table 4 and Fig. 8, API is chosen as a feature to evaluate
the effect between EMD and Euclidean distance. It can be
seen from Fig. 8 that when Euclidean distance is chosen as
a similarity measurement of features, there is little difference
between the same family and different families. When EMD
is selected as a similarity measurement, samples between

TABLE 4. Comparison of average EMD and Euclidean distance.

FIGURE 8. Comparison of different features and similarity measurements.

the same family and different families can be distinguished
obviously. Thus, in this paper, we use EMD as the similarity
measurement function of sample features.

2) INVOLVING SUPERVISION INFORMATION
To assess the impact of involving different proportions of
the samples with labels to the clustering results, we select
21 different percentages of samples with family class labels to
perform clustering. According to different clustering results,
a series of ARI values are calculated. The abscissa represents
the percentage of the samples with labels as a constraint
condition, and the ordinate represents the value of the ARI
obtained from the result. After increasing the number of sam-
ples with supervised information by about 25%, the clustering
result reaches the best state. The experimental results are
shown in Fig. 10.

3) DETERMINING EPS AND MINPTS
In this section, the effect of the proposed algorithm under dif-
ferent parameters and the advantages of using hybrid features
are shown.

The clustering results vary with the change of Minpts and
Eps. To find the best parameters of S-DBSCAN algorithm,
the value of Minpts ranges from 1 to 10 whose interval is 1.
The value of Eps ranges from 0.1 to 15.0 whose interval
is 0.1.

When the feature is Bytecode, its result can be seen from
Fig. 9(a). When Eps is between 1.0 and 3.0, the value of the

VOLUME 8, 2020 2321

Y. Fang et al.: Semi-Supervised Malware Clustering Based on the Weight of Bytecode and API

FIGURE 9. Determining Eps and Minpts.

FIGURE 10. Involving different ratio of supervision.

ARI is even higher. When the value of Minpts is 2 and the
value of Eps is 1.5, the clustering result is the best and the
ARI reaches the highest at 0.831. When Eps is over 2.0, ARI
declines with the increase of Eps.

When the feature is API, the results are given in Fig. 9(b).
When the value of Eps is between 0.5 and 2.0, the value of the
ARI is higher.WhenMinpts is 2 and Eps is 1.3. The clustering
result is the best at this time and the ARI reaches the highest at
0.854. When Eps is over 6.0, ARI declines with the increase
of Eps. This shows that when choosing API as a feature, Eps
has a wider range for the best performance, which is more
conducive to the clustering process.

To better combine dynamic with static features and bal-
ance the influence of both features, we select 200 samples
randomly and then extract the dynamic and static features
separately. The average of EMD is calculated for different
features. The ratio of different features in hybrid features is
calculated with equation 1. Then we perform our clustering
experiment based on hybrid features. The result is shown
in Fig. 9(c). When Eps is selected as 0.5 to 2, the ARI obtains
a larger value. When the Eps is 0.9, and the Minpts is 2,
the ARI reaches a maximum of 0.897. By combining the
different features, Eps has the widest range for distinguishing
the samples with different families, which is more suitable for
practical malware family clustering. This demonstrates that

FIGURE 11. Determining Comparison result of different features.

choosing the hybrid features for clustering precedes the single
feature.

In summary, when the value of Minpts is 2, the proposed
method performs better. As shown in Fig. 11, although select-
ing API or Bytecode as a feature, the best clustering effect can
be achieved is the same, but selection and range of parameters
are completely different. When choosing API as the feature,
the selection range of Eps is wider. This indicates that the
effect of dynamic analysis is slightly better and static analysis
for this dataset. However, selecting hybrid features not only
optimizes the clustering effect, but also has a wider selection
range of Eps, which can greatly reduce the time for parameter
selection. Therefore, selecting hybrid features for malware
clustering can achieve better results and is more suitable for
large-scale cluster analysis.

4) COMPARATIVE EXPERIMENT
To reduce the dimension of the feature without affecting the
clustering effect, the influence of information gain on the
clustering effect is evaluated. Information Gain is used for
feature selection to remove the useless features for cluster-
ing. Then the comparison of the results with ARI is shown
in Fig. 12.

As shown in Fig. 12, the green line represents the original
clustering result with Bytecode features and the red line

2322 VOLUME 8, 2020

Y. Fang et al.: Semi-Supervised Malware Clustering Based on the Weight of Bytecode and API

FIGURE 12. Comparison of API features selected by information gain with
original features.

TABLE 5. Purity comparison of different algorithms.

represents the clustering results with the Bytecode features
selected by information gain. When Eps ranges from 0 to 2,
the original results are superior to the results after feature
selection. When Eps continues to increase, the results are
roughly the same.

The blue line represents the original clustering results with
API features and the yellow line represents the clustering
results with the API features selected by information gain.
When Eps ranges from 0 to 2, initially, the results after feature
selection are slightly lower than the original results and later
the results after feature selection are gradually better than
the original results. This shows that after feature selection,
the clustering effects are slightly improved.

The darkorchid line represents the original clustering
results with hybrid features and the orange line represents
the clustering results with the hybrid features selected by
information gain. When hybrid features are used to perform
clustering, the original results and the results after feature
selection are approximately the same. This shows that the
feature selection method of information gain is effective and
can be used to reduce feature dimensions.

In the case of obtaining the best ARI values, we evaluate
the clustering results of all the families with different features
which are ByteCode, API and hybrid features. To visually
display the comparative results of clustering with other clus-
tering algorithms, purity is chosen as the evaluation indicator
and select Bytecode, API and hybrid features respectively
as features for clustering. The clustering results are shown
in Fig. 13 and Table 5.

FIGURE 13. Comparing different clustering algorithms with purity.

As shown in Fig. 13 and Table 5, compared with other
clustering algorithms, such as Hierarchical, K-means, and
ExpectationMaximization (EM) algorithms, no matter which
feature is used, the clustering result of the S-DBSCAN
algorithm is better than other algorithms. And the value of
purity is higher than single features when hybrid features
are used. As a kind of density-based clustering algorithm,
S-DBSCAN need not specify the number of clusters and
is suitable for clustering native data with arbitrary shapes
with evolutionary characteristics. As a result, S-DBSCAN is
more suitable for family clustering. Supervision is introduced
into the clustering process, which greatly alleviates the prob-
lem of too little or too many clustering clusters caused by
the degree of data sparsity. Thus, our clustering algorithm
S-DBSCAN outperforms other algorithms in malware family
clustering.

E. TIME CONSUMPTION ANALYSIS
At this point, we have shown that our proposed algorithm
provides better purity. The time consumption of our pro-
posed algorithm is discussed in this section. As mentioned in
section III, the algorithm proposed in this paper is improved
based on the DBSCAN algorithm. In this paper, KD-Tree
is used to divide the experimental data. These steps of data
partitioning and regional queries are combined to reduce the
number of accesses to the dataset and reduce the impact
of the I/O reading and writing process on the efficiency of
the algorithm. The original DBSACN time complexity is
O(N2), which can be reduced to O(Nlog(N)) by speeding up
the calculation through the KD-Tree. The experiment results
are as for Fig. 14. The algorithmic benefit of our approach
becomes more obvious with the increasing of the number of
samples.

We perform the clustering experiments ten times and cal-
culate the time consumption of the proposed algorithm and
the other clustering algorithms. The experimental results
are shown in Table 6. As can be seen from the data
in Table 6, the time efficiency of our algorithm exceeds
that of most algorithms, such as K-means and Hierarchical

VOLUME 8, 2020 2323

Y. Fang et al.: Semi-Supervised Malware Clustering Based on the Weight of Bytecode and API

TABLE 6. Time comparison of different algorithms.

FIGURE 14. Time comparison of DBSCAN and S-DBSCAN.

algorithms, which is only slightly higher than FarthestFirst.
But after comparing the purity of the clustering results,
the time cost is completely acceptable. And the applica-
tion scenario of this algorithm is to label numerous unla-
beled samples in the anti-virus company’s sample library.
When the new samples are captured, the new samples can
be labeled by performing the family similarity compari-
son. Since no strict requirements for real-time performance,
there is not much consideration for time consumption in this
paper.

V. CONCLUSION
In this paper, we propose a semi-supervised density clustering
approach to malware family analysis. Our main contributions
are in three-folds. First, in feature extraction, we not only use
the hybrid features, composed of dynamic and static features
but also involve weight information to the features. On the
one hand, it is effective and robust to combine the advantages
of dynamic analysis with the advantages of static analysis
and complement each other. On the other hand, the weight
involved expresses the importance of distinct families and
help to distinguish samples from different families. In sim-
ilarity measurement, we leverage a new method called EMD
to solve the dynamic programming problems. The similarity
comparison experiments show that the EMD performs better
than the Euclidean distance in terms of measuring the simi-
larity between feature vectors. Third, in clustering algorithm,
we consider the possibility of a semi-supervised clustering
algorithm applied in malware clustering. Based on the orig-
inal DBSACN algorithm, we involve a little supervision to
form the S-DBSCAN algorithm. Experiments show that our

approach can significantly improve the purity of clustering
and reduce the time cost. We will consider other platforms
with different file structures and try to explore the defense of
the attacks in the future.

REFERENCES
[1] (Apr. 2019). Symantec Network Security Threat Report. [Online]. Avail-

able:https://resource.elq.symantec.com/e/f2
[2] O. Kostakis, ‘‘Classy: Fast clustering streams of call-graphs,’’

Data Mining Knowl. Discovery, vol. 28, nos. 5–6, pp. 1554–1585,
Sep. 2014.

[3] L. Kellogg, B. Ruttenberg, A. O’connor, M. Howard, and A. Pfeffer,
‘‘Hierarchical management of large-scale malware data,’’ in Proc. IEEE
Int. Conf. Big Data (Big Data), Oct. 2014, pp. 666–674.

[4] E. Gandotra, S. Singla, D. Bansal, and S. Sofat, ‘‘Clustering Morphed
Malware using opcode sequence pattern matching,’’ Recent Patents Eng.,
vol. 12, no. 1, pp. 30–36, Mar. 2018.

[5] Z. J. Niu, Z. Qin, J. X. Zhang, and H. Yin, ‘‘Malware variants detection
using density based spatial clustering with global opcode matrix,’’ in Proc.
Int. Conf. Secur., Privacy Anonymity Comput., Commun. Storage. Cham,
Switzerland: Springer, 2017, pp. 757–766.

[6] C. Wang, Z. Qin, J. Zhang, and H. Yin, ‘‘A malware variants detec-
tion methodology with an opcode based feature method and a fast
density based clustering algorithm,’’ in Proc. 12th Int. Conf. Natu-
ral Comput., Fuzzy Syst. Knowl. Discovery (ICNC-FSKD), Aug. 2016,
pp. 481–487.

[7] X. Hu, K. G. Shin, S. Bhatkar, and K. Griffin, ‘‘MutantX-S: Scal-
able malware clustering based on static features,’’ in Proc. USENIX
Annu. Tech. Conf. (USENIX ATC), San Jose, CA, USA, 2013,
pp. 187–198.

[8] R. A. Awad and K. D. Sayre, ‘‘Automatic clustering of malware vari-
ants,’’ in Proc. IEEE Conf. Intell. Secur. Inform. (ISI), Sep. 2016,
pp. 298–303.

[9] E. Raff, J. Sylvester, and C. Nicholas, ‘‘Learning the PE header, malware
detection with minimal domain knowledge,’’ in Proc. 10th ACMWorkshop
Artif. Intell. Secur. (AISec), 2017, pp. 121–132.

[10] F. A. Shamsi, W. L. Woon, and Z. Aung, ‘‘Discovering similarities in
malware behaviors by clustering of API call sequences,’’ in Proc. Int. Conf.
Neural Inf. Process. Cham, Switzerland: Springer, 2018, pp. 122–133.

[11] R. Perdisci, D. Ariu, and G. Giacinto, ‘‘Scalable fine-grained behav-
ioral clustering of HTTP-based malware,’’ Comput. Netw., vol. 57, no. 2,
pp. 487–500, Feb. 2013.

[12] K. Berlin, D. Slater, and J. Saxe, ‘‘Malicious behavior detection using
windows audit logs,’’ in Proc. 8th ACM Workshop Artif. Intell. Secur.
(AISec), 2015, pp. 35–44.

[13] X. Y. Deng and J. Mirkovic, ‘‘Malware analysis through high-level behav-
ior,’’ in Proc. 11th USENIX Workshop Cyber Secur. Experimentation Test
(CSET). Baltimore, MD, USA: USENIX Association, 2018.

[14] Y. Zhang, C. Rong, Q. Huang, Y. Wu, Z. Yang, and J. Jiang, ‘‘Based
on multi-features and clustering ensemble method for automatic malware
categorization,’’ in Proc. IEEE Trustcom/BigDataSE/ICESS, Aug. 2017,
pp. 73–82.

[15] G. Pitolli, L. Aniello, G. Laurenza, L. Querzoni, and R. Baldoni, ‘‘Malware
family identification with BIRCH clustering,’’ in Proc. Int. Carnahan
Conf. Secur. Technol. (ICCST), Oct. 2017, pp. 1–6.

[16] S. Dolev,M. Ghanayim, A. Binun, S. Frenkel, and Y. S. Sun, ‘‘Relationship
of Jaccard and edit distance in malware clustering and online identification
(extended abstract),’’ in Proc. IEEE 16th Int. Symp. Netw. Comput. Appl.
(NCA), Oct. 2017, pp. 1–5.

2324 VOLUME 8, 2020

Y. Fang et al.: Semi-Supervised Malware Clustering Based on the Weight of Bytecode and API

[17] S. Samtani, K. Chinn, C. Larson, and H. Chen, ‘‘AZSecure hacker assets
portal: Cyber threat intelligence and malware analysis,’’ in Proc. IEEE
Conf. Intell. Secur. Inform. (ISI), Sep. 2016, pp. 19–24.

[18] S. W. Wang, B. S. Wang, T. Yong, and B. Yu, ‘‘Malware clustering based
on SNN density using system calls,’’ in Proc. Int. Conf. Cloud Comput.
Secur. Cham, Switzerland: Springer, 2015, pp. 181–191.

[19] S. K. Sahay and A. Sharma, ‘‘Grouping the executables to detect mal-
wares with high accuracy,’’ Procedia Comput. Sci., vol. 78, pp. 667–674,
Apr. 2016.

[20] M. Ahmadi, D. Ulyanov, S. Semenov, M. Trofimov, and G. Giacinto,
‘‘Novel feature extraction, selection and fusion for effective malware
family classification,’’ in Proc. 6th ACM Conf. Data Appl. Secur. Privacy
(CODASPY), 2016, pp. 183–194.

[21] J. Abdullah and N. Chanderan, ‘‘Hierarchical density-based clustering of
malware behaviour,’’ J. Telecommun., Electron. Comput. Eng. (JTEC),
vol. 9, nos. 2–10, pp. 159–164, 2017.

[22] A. Sami, B. Yadegari, H. Rahimi, N. Peiravian, S. Hashemi, and A. Hamze,
‘‘Malware detection based on mining API calls,’’ in Proc. ACM Symp.
Appl. Comput., 2010, pp. 1020–1025.

[23] IDA Pro. Accessed: Apr. 2019. [Online]. Available: http://www.
heaventools.com/overview.htm

[24] PE Explorer. Accessed: Apr. 2019. [Online]. Available: http://www.
heaventools.com/overview.htm

[25] N. Singh and S. S. Khurmi, ‘‘ByteFreq: Malware clustering using byte fre-
quency,’’ in Proc. 5th Int. Conf. Rel., INFOCOM Technol. Optim. (Trends
and Future Directions) (ICRITO), Sep. 2016, pp. 333–337.

[26] Microsoft Malware Classification Challenge (Big 2015).
Accessed: May 2019. [Online]. Available: https://kaggle.com/c/malware-
classification

[27] G. J. Széles and A. Coleşa ‘‘Malware clustering based on called API during
runtime,’’ in Proc. Int. Workshop Inf. Oper. Technol. Secur. Syst. Cham,
Switzerland: Springer, 2018, pp. 110–121.

[28] B. Cheng, Q. Tong, J. Wang, and W. Tian, ‘‘Malware clustering using
family dependency graph,’’ IEEE Access, vol. 7, pp. 72267–72272, 2019.

[29] C. H. Elzinga, ‘‘Sequence analysis: Metric representations of categorical
time series,’’ Dept. Social Sci. Res. Methods, Vrije Universiteit Amster-
dam, Amsterdam, The Netherlands, 2007.

[30] A. Gabadinho, G. Ritschard, N. S. Müller, and M. Studer, ‘‘Analyzing and
visualizing state sequences inRwithTraMineR,’’ J. Stat. Soft., vol. 40, no. 4,
pp. 1–37, Sep. 2015.

[31] K. O. Babaagba and S. O. Adesanya, ‘‘A study on the effect of feature
selection on malware analysis using machine learning,’’ in Proc. 8th Int.
Conf. Educ. Inf. Technol. (ICEIT), 2019, pp. 51–55.

[32] H. Parvin, B. Minaei, H. Karshenas, and A. Beigi, ‘‘A new N-gram
feature extraction-selectionmethod for malicious code,’’ in Proc. Int. Conf.
Adapt. Natural Comput. Algorithms. Berlin, Germany: Springer, 2011,
pp. 98–107.

[33] L. M. Q. Abualigah, Feature Selection Enhanced Krill Herd Algorithm for
Text Document Clustering. Berlin, Germany: Springer, 2019.

[34] L. M. Abualigah and A. T. Khader, ‘‘Unsupervised text feature selection
technique based on hybrid particle swarm optimization algorithm with
genetic operators for the text clustering,’’ J. Supercomput., vol. 73, no. 11,
pp. 4773–4795, Nov. 2017.

[35] L. M. Abualigah, A. T. Khader, and E. S. Hanandeh, ‘‘A new feature
selection method to improve the document clustering using particle swarm
optimization algorithm,’’ J. Comput. Sci., vol. 25, pp. 456–466, Mar. 2018.

[36] W. Wang and J. Shen, ‘‘Deep visual attention prediction,’’ IEEE Trans.
Image Process., vol. 27, no. 5, pp. 2368–2378, May 2018.

[37] W.Wang, J. Shen, and H. Ling, ‘‘A deep network solution for attention and
aesthetics aware photo cropping,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 41, no. 7, pp. 1531–1544, Jul. 2019.

[38] X. Dong, J. Shen, D. Wu, K. Guo, X. Jin, and F. Porikli, ‘‘Quadruplet
network with one–shot learning for fast visual object tracking,’’ IEEE
Trans. Image Process., vol. 28, no. 7, pp. 3516–3527, Jul. 2019.

[39] X. P. Dong and J. B. Shen, ‘‘Triplet loss in Siamese network for object
tracking,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV), 2018, pp. 459–474.

[40] Y. Rubner, C. Tomasi, and L. J. Guibas, ‘‘The earth mover’s distance as a
metric for image retrieval,’’ Int. J. Comput. Vis., vol. 40, no. 2, pp. 99–121,
Nov. 2000.

[41] J. Shen, X. Hao, Z. Liang, Y. Liu, W. Wang, and L. Shao, ‘‘Real–time
superpixel segmentation by DBSCAN clustering algorithm,’’ IEEE Trans.
Image Process., vol. 25, no. 12, pp. 5933–5942, Dec. 2016.

[42] H. Rathore, S. Agarwal, S. K. Sahay, and M. Sewak, ‘‘Malware detection
using machine learning and deep learning,’’ in Proc. Int. Conf. Big Data
Anal. Cham, Switzerland: Springer, 2018, pp. 402–411.

[43] INFOSEC. (Mar. 2017). Machine Learning for Malware Detection.
[Online]. Available: https://resources.infosecinstitute.com/machine-
learning-malware-detection/

[44] Z. X. Xu, S. Ray, P. Subramanyan, and S. Malik, ‘‘Malware detection using
machine learning based analysis of virtual memory access patterns,’’ in
Proc. Conf. Design, Autom. Test Eur., 2017, pp. 169–174.

[45] I. Santos, J. Nieves, and P. G. Bringas, ‘‘Semi-supervised learning for
unknown malware detection,’’ in Proc. Int. Symp. Distrib. Comput. Artif.
Intell. Berlin, Germany: Springer, 2011, pp. 415–422.

[46] L. Chen, M. Zhang, C.-Y. Yang, and R. Sahita, ‘‘Semi-supervised classifi-
cation for dynamic Android malware detection,’’ 2017, arXiv:1704.05948.
[Online]. Available: https://arxiv.org/abs/1704.05948

[47] K. Zhang, C. Li, Y. Wang, X. B. Zhu, and H. P. Wang ‘‘Collaborative
support vector machine for malware detection,’’ Procedia Comput. Sci.,
vol. 108, pp. 1682–1691, Jan. 2017.

[48] Cuckoo Sandbox. Accessed: Jun. 2019. [Online]. Available: https://
cuckoosandbox.org/

[49] E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro, and
C. K. Nicholas, ‘‘Malware detection by eating a whole exe,’’ in Proc.
Workshops 32nd AAAI Conf. Artif. Intell., 2018.

[50] S. Das, Y. Liu, W. Zhang, and M. Chandramohan, ‘‘Semantics–based
online malware detection: Towards efficient real–time protection against
malware,’’ IEEE Trans. Inf. Forensics Security, vol. 11, no. 2, pp. 289–302,
Feb. 2016.

[51] M. Sebastián, R. Rivera, P. Kotzias, and J. Caballero, ‘‘AVclass: A tool for
massive malware labeling,’’ in Proc. Int. Symp. Res. Attacks, Intrusions,
Defenses. Cham, Switzerland: Springer, 2016, pp. 230–253.

[52] L. Nataraj, S. Karthikeyan, and B. S. Manjunath, ‘‘SATTVA: SpArsiTy
inspired classificaTion of malware VAriants,’’ in Proc. 3rd ACMWorkshop
Inf. Hiding Multimedia Secur., 2015, pp. 135–140.

[53] M. K. Shankarapani, S. Ramamoorthy, R. S. Movva, and S. Mukkamala,
‘‘Malware detection using assembly and API call sequences,’’ J. Comput.
Virol., vol. 7, no. 2, pp. 107–119, May 2011.

[54] M. Ester, H. Kriegel, J. Sander, and X. W. Xu, ‘‘A density-based algorithm
for discovering clusters in large spatial databases with noise,’’ in Proc.
KDD, vol. 96, 1996, pp. 226–231.

[55] J. L. Bentley, ‘‘Multidimensional binary search trees used for asso-
ciative searching,’’ Commun. ACM, vol. 18, no. 9, pp. 509–517,
Sep. 1975.

[56] Clonezilla. Accessed: Jun. 2019. [Online]. Available: https://clonezilla.
org/

[57] VirusShare. Accessed: Apr. 2019. [Online]. Available: https://virusshare.
com/

[58] VirusTotal. Accessed: Jun. 2019. [Online]. Available: https://www.
virustotal.com/gui/home/url

YONG FANG received the Ph.D. degree from
Sichuan University, Chengdu, China, in 2010.
He is currently a Professor with the College of
Cybersecurity, Sichuan University. His research
interests include information security, the IoT
security, and novel feature learning and their appli-
cations on networks and malicious code.

WENJIE ZHANG received the B.Eng. degree
from the College of Electronics and Information
Engineering, Sichuan University, Chengdu, China,
in 2017, where he is currently pursuing the mas-
ter’s degree with the College of Cybersecurity.

His current research interests include vulnera-
bility mining, malicious code analysis, and win-
dows security.

VOLUME 8, 2020 2325

Y. Fang et al.: Semi-Supervised Malware Clustering Based on the Weight of Bytecode and API

BEIBEI LI received the B.E. degree (awarded
outstanding graduate) in communication engineer-
ing from the Beijing University of Posts and
Telecommunications, China, in 2014, and the
Ph.D. degree (awarded full research scholarship)
from the School of Electrical and Electronic Engi-
neering, Nanyang Technological University, Sin-
gapore, in 2019. He was a Visiting Researcher
with the Faculty of Computer Science, Univer-
sity of New Brunswick, Canada, from March to

August 2018, and the Networked Sensing and Control (NESC) Group, Col-
lege of Control Science and Engineering, Zhejiang University, China, from
February to April 2019. He joined the College of Cybersecurity, Sichuan
University, China, in April 2019, where he has been an Associate Professor.
His research studies have been published in the IEEE TRANSACTIONS ON

INFORMATION FORENSICS AND SECURITY, the IEEE TRANSACTIONS ON INDUSTRIAL
INFORMATICS, ACM Transactions on Cyber-Physical Systems, and the IEEE
INTERNET OF THINGS Journal, Information Sciences. His research studies have
been published the IEEE GLOBECOM and the IEEE ICC. His research
interests include cyber-physical system security, with a focus on intrusion
detection techniques, applied cryptography, and big data privacy in smart
grids and industrial control systems. He has served as a TPCMember of sev-
eral international conferences, including the IEEE GLOBECOM, the IEEE
ICNC, and WCSP.

FAN JING received the M.S. degree in computer
science from Chongqing University, Chongqing,
China, in 2010. He is currently an Assistant
Researcher with the College of Cybersecurity,
Sichuan University. His research interests include
malware detection, artificial intelligence, and net-
work security.

LEI ZHANG received the Ph.D. degree from
Sichuan University, Chengdu, China, in 2015.
He is currently an Assistant Researcher with the
College of Cybersecurity, Sichuan University. His
research interests include information security and
machine learning.

2326 VOLUME 8, 2020

